PlantTFDB
PlantRegMap/PlantTFDB v5.0
Plant Transcription Factor Database
Transcription Factor Information
Basic Information | Signature Domain | Sequence | 
Basic Information? help Back to Top
TF ID Niben101Scf06666g01011.1
Organism
Taxonomic ID
Taxonomic Lineage
cellular organisms; Eukaryota; Viridiplantae; Streptophyta; Streptophytina; Embryophyta; Tracheophyta; Euphyllophyta; Spermatophyta; Magnoliophyta; Mesangiospermae; eudicotyledons; Gunneridae; Pentapetalae; asterids; lamiids; Solanales; Solanaceae; Nicotianoideae; Nicotianeae; Nicotiana
Family MIKC_MADS
Protein Properties Length: 1226aa    MW: 138387 Da    PI: 7.463
Description MIKC_MADS family protein
Gene Model
Gene Model ID Type Source Coding Sequence
Niben101Scf06666g01011.1genomeBTI-
Signature Domain? help Back to Top
Signature Domain
No. Domain Score E-value Start End HMM Start HMM End
1SRF-TF89.51.8e-2810491099151
                                S---SHHHHHHHHHHHHHHHHHHHHHHHHHHT-EEEEEEE-TTSEEEEEE- CS
                    SRF-TF    1 krienksnrqvtfskRrngilKKAeELSvLCdaevaviifsstgklyeyss 51  
                                krien+sn qvt+skRrngilKKA+E+SvLCda+v+viif+stgk++e+ss
  Niben101Scf06666g01011.1 1049 KRIENSSNMQVTYSKRRNGILKKAKEISVLCDARVSVIIFASTGKMHEFSS 1099
                                79***********************************************96 PP

2K-box33.32.1e-1211091183188
                     K-box    1 yqkssgksleeakaeslqqelakLkkeienLqreqRhllGedLesLslkeLqqLeqqLekslkkiRskKnellleqieelqkk 83  
                                y+k +g++l++ak+e+l++e++k+kk ++n+q e             l+eL+ Le++Le++l++iR+k+++ + e+ ++l  +
  Niben101Scf06666g01011.1 1109 YHKLTGRRLWDAKHENLDNEINKVKKDNDNMQIE-------------LRELMMLEDALENGLTSIRNKQTQSMEEEQDQLNCQ 1178
                                78999999*************************9.............89***************************9998777 PP

                     K-box   84 ekelq 88  
                                 ++l+
  Niben101Scf06666g01011.1 1179 LRQLE 1183
                                66665 PP

Protein Features ? help Back to Top
3D Structure
Database Entry ID E-value Start End InterPro ID Description
Gene3DG3DSA:2.170.260.104.4E-11188289No hitNo description
SMARTSM009495.7E-5203357IPR003100PAZ domain
SuperFamilySSF1016906.28E-13213289IPR003100PAZ domain
PfamPF021704.4E-11213353IPR003100PAZ domain
PROSITE profilePS5082116.876218300IPR003100PAZ domain
SuperFamilySSF1016906.28E-13321329IPR003100PAZ domain
Gene3DG3DSA:2.170.260.104.4E-11321329No hitNo description
PROSITE profilePS5014224.597358530IPR000999Ribonuclease III domain
SuperFamilySSF690658.55E-34372464IPR000999Ribonuclease III domain
Gene3DG3DSA:1.10.1520.104.9E-34375452IPR000999Ribonuclease III domain
SMARTSM005351.9E-27377550IPR000999Ribonuclease III domain
CDDcd005931.92E-34377541IPR000999Ribonuclease III domain
PfamPF006364.9E-24395528IPR000999Ribonuclease III domain
Gene3DG3DSA:1.10.1520.104.9E-34498543IPR000999Ribonuclease III domain
SuperFamilySSF690658.55E-34510547IPR000999Ribonuclease III domain
Gene3DG3DSA:1.10.1520.101.6E-42569731IPR000999Ribonuclease III domain
SuperFamilySSF690651.46E-34570732IPR000999Ribonuclease III domain
PROSITE profilePS5014231.606571712IPR000999Ribonuclease III domain
SMARTSM005353.8E-33586735IPR000999Ribonuclease III domain
CDDcd005933.21E-37587733IPR000999Ribonuclease III domain
PROSITE patternPS005170607615IPR000999Ribonuclease III domain
PfamPF006361.3E-21607711IPR000999Ribonuclease III domain
PROSITE profilePS501379.052780804IPR014720Double-stranded RNA-binding domain
SMARTSM004321.6E-3710411100IPR002100Transcription factor, MADS-box
PROSITE profilePS5006631.24410411101IPR002100Transcription factor, MADS-box
SuperFamilySSF554551.7E-3310421134IPR002100Transcription factor, MADS-box
CDDcd002654.37E-3810421118No hitNo description
PRINTSPR004041.5E-2510431063IPR002100Transcription factor, MADS-box
PfamPF003192.9E-2110501097IPR002100Transcription factor, MADS-box
PRINTSPR004041.5E-2510631078IPR002100Transcription factor, MADS-box
PRINTSPR004041.5E-2510781099IPR002100Transcription factor, MADS-box
PROSITE profilePS512976.53311081204IPR002487Transcription factor, K-box
Gene Ontology ? help Back to Top
GO Term GO Category GO Description
GO:0006355Biological Processregulation of transcription, DNA-templated
GO:0010216Biological Processmaintenance of DNA methylation
GO:0010267Biological Processproduction of ta-siRNAs involved in RNA interference
GO:0051214Biological ProcessRNA virus induced gene silencing
GO:0005730Cellular Componentnucleolus
GO:0003677Molecular FunctionDNA binding
GO:0003700Molecular Functiontranscription factor activity, sequence-specific DNA binding
GO:0003725Molecular Functiondouble-stranded RNA binding
GO:0004525Molecular Functionribonuclease III activity
GO:0046983Molecular Functionprotein dimerization activity
Sequence ? help Back to Top
Protein Sequence    Length: 1226 aa     Download sequence    Send to blast
MNLKGTTKLK ELHGTAHISA LSGTWGYDPN GEVFQAYKMN FSCNIPEVNY SSFVLLLQSE  60
LDDDVGNVEV ELFLVSKFVQ SSVSHCGKLH LDAQQVAKAK LFQELFFNGV FGKLFVKSSG  120
GRKFLLETDE SLWEPSNMYL LLPLDPLDSS CEPCRIDWGG IESSVSVVKF LKRNAWLNAE  180
QSETTRKNSL VDRTVPFMVD LDQTDLIHFA NMSVCRSKLK DMVVVAIHTG RIYSVLDAVA  240
NTSAESPFEV NSEASQSPFS SFANYFHKKY GLVLLYPGQP LLLLKQSHNA FNLLVDFQKE  300
GVSRGTNSTD SKMVVQKSLS NVHMPPELLV GIDIRIDILK SFYLLPSLMH RLESLMLASE  360
LRKEITSHSG DLHISSSLIL EALTSLRCNE SFSMERLELL GDSVLKYAVS CHLFLKYPKK  420
HEGQLSDRRS WAVCNSTLHK VGTSRHLQGY IRDGAFDPRR WTAPGQLSLH LCPCDHGVET  480
SEVPLDKKFL TEDPKVVVGK HCDRGHRWMG SKTISDCVEA LIGAYYVGGG FIAALKLMKW  540
LGVEAELEPS LVEDAIKTAS LYCYTPKAKD IEDLELKLTY KFFVKGLLLE AITHATVLEV  600
DVSYNYQRLE FLGDSVLDIL ITWYLYQKHK DIDPGELTDL RSASVNNDNF AYAAVKRELH  660
VHLQHHSGYL ESEISAFVKL VSDSCSLQGN KAPKVLGDLV ESIAGAILID TKLNLDEVWK  720
IVKPLLSPIV TPDKLELPPL RELIELCDSF GYFLKDHCMV KGDTVHAELR LQLKDELLVA  780
EGCGQTRKNA KGQAALKLLK DLEYKGISSK KKKQETILVD VPHSLGSDGD ICSQANNTCP  840
AMAPCKKQKT ILLNLETAKA QPRACNSNKD IQGMHTVAIA IGPINMKKGG PRQSLYELCK  900
KLQWPMPSLE STERKSKSLV ECGEGSDKRK VYNTFASQIS LTIPDYGLIE LTGDERADKK  960
SSQDSAALLM LYELERRGKV IIGASKFLQY SKFLFNENFF LNYGRLFRDE EGEKPKDKKV  1020
QERIKRKAST QENNNKRKEK MGRGKIEIKR IENSSNMQVT YSKRRNGILK KAKEISVLCD  1080
ARVSVIIFAS TGKMHEFSST SLVDILDQYH KLTGRRLWDA KHENLDNEIN KVKKDNDNMQ  1140
IELRELMMLE DALENGLTSI RNKQTQSMEE EQDQLNCQLR QLEIASMNRN MGEIGQVFQQ  1200
RENEYQNQMP FAFRVQPMQP NLQERF
3D Structure ? help Back to Top
Structure
PDB ID Evalue Query Start Query End Hit Start Hit End Description
3c4b_A9e-3557180315262Endoribonuclease Dicer
3c4t_A9e-3557180315262Endoribonuclease Dicer
Search in ModeBase
Functional Description ? help Back to Top
Source Description
UniProtRibonuclease (RNase) III involved in RNA-mediated post-transcriptional gene silencing (PTGS). Involved in the processing of repeat-associated small interfering RNAs (ra-siRNAs, derived from heterochromatin and DNA repeats such as transposons) by cleaving small dsRNAs into 24 nucleotide ra-siRNAs. Plays a role in antiviral RNA silencing. Involved in the production of viral siRNAs derived from the cabbage leaf curl virus (CaLCuV) and tobacco rattle virus (TRV). Targeted by the viral silencing suppressor (VSR) protein 2b of the cucumber mosaic virus (CMV) that inactivates DCL3 function in RNA silencing. Acts redundantly with DICER-LIKE 1 (DCL1) to promote flowering via repression of FLOWERING LOCUS C (FLC). Does not seem to be involved in microRNAs (miRNAs) processing. {ECO:0000269|PubMed:16040244, ECO:0000269|PubMed:16810317, ECO:0000269|PubMed:17579240, ECO:0000269|PubMed:17586651, ECO:0000269|PubMed:18353962}.
Annotation -- Protein ? help Back to Top
Source Hit ID E-value Description
RefseqXP_009777737.10.0PREDICTED: endoribonuclease Dicer homolog 3a
SwissprotQ9LXW70.0DCL3_ARATH; Endoribonuclease Dicer homolog 3
TrEMBLA0A1U7WCM40.0A0A1U7WCM4_NICSY; endoribonuclease Dicer homolog 3a
STRINGXP_009777737.10.0(Nicotiana sylvestris)
Best hit in Arabidopsis thaliana ? help Back to Top
Hit ID E-value Description
AT5G20240.13e-55MIKC_MADS family protein
Publications ? help Back to Top
  1. Xie Z, et al.
    Genetic and functional diversification of small RNA pathways in plants.
    PLoS Biol., 2004. 2(5): p. E104
    [PMID:15024409]
  2. Herr AJ,Jensen MB,Dalmay T,Baulcombe DC
    RNA polymerase IV directs silencing of endogenous DNA.
    Science, 2005. 308(5718): p. 118-20
    [PMID:15692015]
  3. Hiraguri A, et al.
    Specific interactions between Dicer-like proteins and HYL1/DRB-family dsRNA-binding proteins in Arabidopsis thaliana.
    Plant Mol. Biol., 2005. 57(2): p. 173-88
    [PMID:15821876]
  4. Allen E,Xie Z,Gustafson AM,Carrington JC
    microRNA-directed phasing during trans-acting siRNA biogenesis in plants.
    Cell, 2005. 121(2): p. 207-21
    [PMID:15851028]
  5. Gasciolli V,Mallory AC,Bartel DP,Vaucheret H
    Partially redundant functions of Arabidopsis DICER-like enzymes and a role for DCL4 in producing trans-acting siRNAs.
    Curr. Biol., 2005. 15(16): p. 1494-500
    [PMID:16040244]
  6. Vaughn MW,Martienssen R
    It's a small RNA world, after all.
    Science, 2005. 309(5740): p. 1525-6
    [PMID:16141062]
  7. Akbergenov R, et al.
    Molecular characterization of geminivirus-derived small RNAs in different plant species.
    Nucleic Acids Res., 2006. 34(2): p. 462-71
    [PMID:16421273]
  8. Margis R, et al.
    The evolution and diversification of Dicers in plants.
    FEBS Lett., 2006. 580(10): p. 2442-50
    [PMID:16638569]
  9. Henderson IR, et al.
    Dissecting Arabidopsis thaliana DICER function in small RNA processing, gene silencing and DNA methylation patterning.
    Nat. Genet., 2006. 38(6): p. 721-5
    [PMID:16699516]
  10. Bouché N,Lauressergues D,Gasciolli V,Vaucheret H
    An antagonistic function for Arabidopsis DCL2 in development and a new function for DCL4 in generating viral siRNAs.
    EMBO J., 2006. 25(14): p. 3347-56
    [PMID:16810317]
  11. Pontes O, et al.
    The Arabidopsis chromatin-modifying nuclear siRNA pathway involves a nucleolar RNA processing center.
    Cell, 2006. 126(1): p. 79-92
    [PMID:16839878]
  12. Fusaro AF, et al.
    RNA interference-inducing hairpin RNAs in plants act through the viral defence pathway.
    EMBO Rep., 2006. 7(11): p. 1168-75
    [PMID:17039251]
  13. Blevins T, et al.
    Four plant Dicers mediate viral small RNA biogenesis and DNA virus induced silencing.
    Nucleic Acids Res., 2006. 34(21): p. 6233-46
    [PMID:17090584]
  14. Moissiard G,Voinnet O
    RNA silencing of host transcripts by cauliflower mosaic virus requires coordinated action of the four Arabidopsis Dicer-like proteins.
    Proc. Natl. Acad. Sci. U.S.A., 2006. 103(51): p. 19593-8
    [PMID:17164336]
  15. Kasschau KD, et al.
    Genome-wide profiling and analysis of Arabidopsis siRNAs.
    PLoS Biol., 2007. 5(3): p. e57
    [PMID:17298187]
  16. Zhang X,Henderson IR,Lu C,Green PJ,Jacobsen SE
    Role of RNA polymerase IV in plant small RNA metabolism.
    Proc. Natl. Acad. Sci. U.S.A., 2007. 104(11): p. 4536-41
    [PMID:17360559]
  17. Pikaard CS
    Cell biology of the Arabidopsis nuclear siRNA pathway for RNA-directed chromatin modification.
    Cold Spring Harb. Symp. Quant. Biol., 2006. 71: p. 473-80
    [PMID:17381329]
  18. Hernandez-Pinzon I, et al.
    SDE5, the putative homologue of a human mRNA export factor, is required for transgene silencing and accumulation of trans-acting endogenous siRNA.
    Plant J., 2007. 50(1): p. 140-8
    [PMID:17397509]
  19. Smith LM, et al.
    An SNF2 protein associated with nuclear RNA silencing and the spread of a silencing signal between cells in Arabidopsis.
    Plant Cell, 2007. 19(5): p. 1507-21
    [PMID:17526749]
  20. Dunoyer P,Himber C,Ruiz-Ferrer V,Alioua A,Voinnet O
    Intra- and intercellular RNA interference in Arabidopsis thaliana requires components of the microRNA and heterochromatic silencing pathways.
    Nat. Genet., 2007. 39(7): p. 848-56
    [PMID:17558406]
  21. Diaz-Pendon JA,Li F,Li WX,Ding SW
    Suppression of antiviral silencing by cucumber mosaic virus 2b protein in Arabidopsis is associated with drastically reduced accumulation of three classes of viral small interfering RNAs.
    Plant Cell, 2007. 19(6): p. 2053-63
    [PMID:17586651]
  22. Brosnan CA, et al.
    Nuclear gene silencing directs reception of long-distance mRNA silencing in Arabidopsis.
    Proc. Natl. Acad. Sci. U.S.A., 2007. 104(37): p. 14741-6
    [PMID:17785412]
  23. Jordan ND,West JP,Bottley A,Sheikh M,Furner I
    Transcript profiling of the hypomethylated hog1 mutant of Arabidopsis.
    Plant Mol. Biol., 2007. 65(5): p. 571-86
    [PMID:17786563]
  24. Agorio A,Vera P
    ARGONAUTE4 is required for resistance to Pseudomonas syringae in Arabidopsis.
    Plant Cell, 2007. 19(11): p. 3778-90
    [PMID:17993621]
  25. Donaire L, et al.
    Structural and genetic requirements for the biogenesis of tobacco rattle virus-derived small interfering RNAs.
    J. Virol., 2008. 82(11): p. 5167-77
    [PMID:18353962]
  26. Curtin SJ, et al.
    The roles of plant dsRNA-binding proteins in RNAi-like pathways.
    FEBS Lett., 2008. 582(18): p. 2753-60
    [PMID:18625233]
  27. Qu F,Ye X,Morris TJ
    Arabidopsis DRB4, AGO1, AGO7, and RDR6 participate in a DCL4-initiated antiviral RNA silencing pathway negatively regulated by DCL1.
    Proc. Natl. Acad. Sci. U.S.A., 2008. 105(38): p. 14732-7
    [PMID:18799732]
  28. Vazquez F,Blevins T,Ailhas J,Boller T,Meins F
    Evolution of Arabidopsis MIR genes generates novel microRNA classes.
    Nucleic Acids Res., 2008. 36(20): p. 6429-38
    [PMID:18842626]
  29. Kuang H, et al.
    Identification of miniature inverted-repeat transposable elements (MITEs) and biogenesis of their siRNAs in the Solanaceae: new functional implications for MITEs.
    Genome Res., 2009. 19(1): p. 42-56
    [PMID:19037014]
  30. Preuss SB, et al.
    Multimegabase silencing in nucleolar dominance involves siRNA-directed DNA methylation and specific methylcytosine-binding proteins.
    Mol. Cell, 2008. 32(5): p. 673-84
    [PMID:19061642]
  31. Daxinger L, et al.
    A stepwise pathway for biogenesis of 24-nt secondary siRNAs and spreading of DNA methylation.
    EMBO J., 2009. 28(1): p. 48-57
    [PMID:19078964]
  32. Cho SH, et al.
    Physcomitrella patens DCL3 is required for 22-24 nt siRNA accumulation, suppression of retrotransposon-derived transcripts, and normal development.
    PLoS Genet., 2008. 4(12): p. e1000314
    [PMID:19096705]
  33. Liu Q,Feng Y,Zhu Z
    Dicer-like (DCL) proteins in plants.
    Funct. Integr. Genomics, 2009. 9(3): p. 277-86
    [PMID:19221817]
  34. Fahlgren N, et al.
    Computational and analytical framework for small RNA profiling by high-throughput sequencing.
    RNA, 2009. 15(5): p. 992-1002
    [PMID:19307293]
  35. Mallory AC,Vaucheret H
    ARGONAUTE 1 homeostasis invokes the coordinate action of the microRNA and siRNA pathways.
    EMBO Rep., 2009. 10(5): p. 521-6
    [PMID:19343050]
  36. Ziebell H,Carr JP
    Effects of dicer-like endoribonucleases 2 and 4 on infection of Arabidopsis thaliana by cucumber mosaic virus and a mutant virus lacking the 2b counter-defence protein gene.
    J. Gen. Virol., 2009. 90(Pt 9): p. 2288-92
    [PMID:19474248]
  37. Lewsey MG,Carr JP
    Effects of DICER-like proteins 2, 3 and 4 on cucumber mosaic virus and tobacco mosaic virus infections in salicylic acid-treated plants.
    J. Gen. Virol., 2009. 90(Pt 12): p. 3010-4
    [PMID:19710258]
  38. Pontes O,Costa-Nunes P,Vithayathil P,Pikaard CS
    RNA polymerase V functions in Arabidopsis interphase heterochromatin organization independently of the 24-nt siRNA-directed DNA methylation pathway.
    Mol Plant, 2009. 2(4): p. 700-710
    [PMID:19825650]
  39. Douet J,Tutois S,Tourmente S
    A Pol V-mediated silencing, independent of RNA-directed DNA methylation, applies to 5S rDNA.
    PLoS Genet., 2009. 5(10): p. e1000690
    [PMID:19834541]
  40. Boyko A, et al.
    Transgenerational adaptation of Arabidopsis to stress requires DNA methylation and the function of Dicer-like proteins.
    PLoS ONE, 2010. 5(3): p. e9514
    [PMID:20209086]
  41. Azevedo J, et al.
    Argonaute quenching and global changes in Dicer homeostasis caused by a pathogen-encoded GW repeat protein.
    Genes Dev., 2010. 24(9): p. 904-15
    [PMID:20439431]
  42. Cao M, et al.
    The capsid protein of Turnip crinkle virus overcomes two separate defense barriers to facilitate systemic movement of the virus in Arabidopsis.
    J. Virol., 2010. 84(15): p. 7793-802
    [PMID:20504923]
  43. Chellappan P, et al.
    siRNAs from miRNA sites mediate DNA methylation of target genes.
    Nucleic Acids Res., 2010. 38(20): p. 6883-94
    [PMID:20621980]
  44. Boyko A,Kovalchuk I
    Transgenerational response to stress in Arabidopsis thaliana.
    Plant Signal Behav, 2010. 5(8): p. 995-8
    [PMID:20724818]
  45. Laubinger S, et al.
    Global effects of the small RNA biogenesis machinery on the Arabidopsis thaliana transcriptome.
    Proc. Natl. Acad. Sci. U.S.A., 2010. 107(41): p. 17466-73
    [PMID:20870966]
  46. Yao Y,Bilichak A,Golubov A,Blevins T,Kovalchuk I
    Differential sensitivity of Arabidopsis siRNA biogenesis mutants to genotoxic stress.
    Plant Cell Rep., 2010. 29(12): p. 1401-10
    [PMID:20953786]
  47. Mlotshwa S, et al.
    Transcriptional silencing induced by Arabidopsis T-DNA mutants is associated with 35S promoter siRNAs and requires genes involved in siRNA-mediated chromatin silencing.
    Plant J., 2010. 64(4): p. 699-704
    [PMID:21070421]
  48. Ito H, et al.
    An siRNA pathway prevents transgenerational retrotransposition in plants subjected to stress.
    Nature, 2011. 472(7341): p. 115-9
    [PMID:21399627]
  49. Dzianott A,Sztuba-Solińska J,Bujarski JJ
    Mutations in the antiviral RNAi defense pathway modify Brome mosaic virus RNA recombinant profiles.
    Mol. Plant Microbe Interact., 2012. 25(1): p. 97-106
    [PMID:21936664]
  50. Matsunaga W,Kobayashi A,Kato A,Ito H
    The effects of heat induction and the siRNA biogenesis pathway on the transgenerational transposition of ONSEN, a copia-like retrotransposon in Arabidopsis thaliana.
    Plant Cell Physiol., 2012. 53(5): p. 824-33
    [PMID:22173101]
  51. Rasmann S, et al.
    Herbivory in the previous generation primes plants for enhanced insect resistance.
    Plant Physiol., 2012. 158(2): p. 854-63
    [PMID:22209873]
  52. Ausin I,Greenberg MV,Li CF,Jacobsen SE
    The splicing factor SR45 affects the RNA-directed DNA methylation pathway in Arabidopsis.
    Epigenetics, 2012. 7(1): p. 29-33
    [PMID:22274613]
  53. Zhang X, et al.
    Genome-wide analysis of plant nat-siRNAs reveals insights into their distribution, biogenesis and function.
    Genome Biol., 2012. 13(3): p. R20
    [PMID:22439910]
  54. Fan D, et al.
    IBM1, a JmjC domain-containing histone demethylase, is involved in the regulation of RNA-directed DNA methylation through the epigenetic control of RDR2 and DCL3 expression in Arabidopsis.
    Nucleic Acids Res., 2012. 40(18): p. 8905-16
    [PMID:22772985]
  55. Wu L
    DICER-LIKE1 processed trans-acting siRNAs mediate DNA methylation: case study of complex small RNA biogenesis and action pathways in plants.
    Plant Signal Behav, 2013. 8(1): p. e22476
    [PMID:23104109]
  56. Zhan S,Lukens L
    Protein-coding cis-natural antisense transcripts have high and broad expression in Arabidopsis.
    Plant Physiol., 2013. 161(4): p. 2171-80
    [PMID:23457227]
  57. Nagano H,Fukudome A,Hiraguri A,Moriyama H,Fukuhara T
    Distinct substrate specificities of Arabidopsis DCL3 and DCL4.
    Nucleic Acids Res., 2014. 42(3): p. 1845-56
    [PMID:24214956]
  58. Xu R,Zhang S,Huang J,Zheng C
    Genome-wide comparative in silico analysis of the RNA helicase gene family in Zea mays and Glycine max: a comparison with Arabidopsis and Oryza sativa.
    PLoS ONE, 2013. 8(11): p. e78982
    [PMID:24265739]
  59. Raja P,Jackel JN,Li S,Heard IM,Bisaro DM
    Arabidopsis double-stranded RNA binding protein DRB3 participates in methylation-mediated defense against geminiviruses.
    J. Virol., 2014. 88(5): p. 2611-22
    [PMID:24352449]
  60. Migicovsky Z,Yao Y,Kovalchuk I
    Transgenerational phenotypic and epigenetic changes in response to heat stress in Arabidopsis thaliana.
    Plant Signal Behav, 2014. 9(2): p. e27971
    [PMID:24513700]
  61. Ma X, et al.
    Different roles for RNA silencing and RNA processing components in virus recovery and virus-induced gene silencing in plants.
    J. Exp. Bot., 2015. 66(3): p. 919-32
    [PMID:25385769]
  62. Migicovsky Z,Kovalchuk I
    Transgenerational changes in plant physiology and in transposon expression in response to UV-C stress in Arabidopsis thaliana.
    Plant Signal Behav, 2014. 9(11): p. e976490
    [PMID:25482751]
  63. Bulgakov VP,Veremeichik GN,Shkryl YN
    The rolB gene activates the expression of genes encoding microRNA processing machinery.
    Biotechnol. Lett., 2015. 37(4): p. 921-5
    [PMID:25491479]
  64. Rossi M, et al.
    The Importance of the KR-Rich Region of the Coat Protein of Ourmia melon virus for Host Specificity, Tissue Tropism, and Interference With Antiviral Defense.
    Mol. Plant Microbe Interact., 2015. 28(1): p. 30-41
    [PMID:25494356]
  65. Fang X,Shi Y,Lu X,Chen Z,Qi Y
    CMA33/XCT Regulates Small RNA Production through Modulating the Transcription of Dicer-Like Genes in Arabidopsis.
    Mol Plant, 2015. 8(8): p. 1227-36
    [PMID:25770820]
  66. Brosseau C,Moffett P
    Functional and Genetic Analysis Identify a Role for Arabidopsis ARGONAUTE5 in Antiviral RNA Silencing.
    Plant Cell, 2015. 27(6): p. 1742-54
    [PMID:26023161]
  67. Blevins T, et al.
    Identification of Pol IV and RDR2-dependent precursors of 24 nt siRNAs guiding de novo DNA methylation in Arabidopsis.
    Elife, 2015. 4: p. e09591
    [PMID:26430765]
  68. Yang DL, et al.
    Dicer-independent RNA-directed DNA methylation in Arabidopsis.
    Cell Res., 2016. 26(1): p. 66-82
    [PMID:26642813]
  69. Ye R, et al.
    A Dicer-Independent Route for Biogenesis of siRNAs that Direct DNA Methylation in Arabidopsis.
    Mol. Cell, 2016. 61(2): p. 222-35
    [PMID:26711010]
  70. Yao Y,Bilichak A,Golubov A,Kovalchuk I
    Arabidopsis thaliana siRNA biogenesis mutants have the lower frequency of homologous recombination.
    Plant Signal Behav, 2016. 11(7): p. e1151599
    [PMID:26901311]
  71. Panda K, et al.
    Full-length autonomous transposable elements are preferentially targeted by expression-dependent forms of RNA-directed DNA methylation.
    Genome Biol., 2016. 17(1): p. 170
    [PMID:27506905]
  72. Brosseau C,El Oirdi M,Adurogbangba A,Ma X,Moffett P
    Antiviral Defense Involves AGO4 in an Arabidopsis-Potexvirus Interaction.
    Mol. Plant Microbe Interact., 2016. 29(11): p. 878-888
    [PMID:27762650]
  73. Seta A, et al.
    Post-Translational Regulation of the Dicing Activities of Arabidopsis DICER-LIKE 3 and 4 by Inorganic Phosphate and the Redox State.
    Plant Cell Physiol., 2017. 58(3): p. 485-495
    [PMID:28069892]
  74. Tschopp MA,Iki T,Brosnan CA,Jullien PE,Pumplin N
    A complex of Arabidopsis DRB proteins can impair dsRNA processing.
    RNA, 2017. 23(5): p. 782-797
    [PMID:28232389]
  75. Zhang S, et al.
    DAWDLE Interacts with DICER-LIKE Proteins to Mediate Small RNA Biogenesis.
    Plant Physiol., 2018. 177(3): p. 1142-1151
    [PMID:29784765]
  76. Eimer H, et al.
    RNA-Dependent Epigenetic Silencing Directs Transcriptional Downregulation Caused by Intronic Repeat Expansions.
    Cell, 2018. 174(5): p. 1095-1105.e11
    [PMID:30057112]