PlantTFDB
PlantRegMap/PlantTFDB v5.0
Plant Transcription Factor Database
Transcription Factor Information
Basic Information | Signature Domain | Sequence | 
Basic Information? help Back to Top
TF ID RrC1757_p5
Organism
Taxonomic ID
Taxonomic Lineage
cellular organisms; Eukaryota; Viridiplantae; Streptophyta; Streptophytina; Embryophyta; Tracheophyta; Euphyllophyta; Spermatophyta; Magnoliophyta; Mesangiospermae; eudicotyledons; Gunneridae; Pentapetalae; rosids; malvids; Brassicales; Brassicaceae; Brassiceae; Raphanus
Family bHLH
Protein Properties Length: 345aa    MW: 37829.7 Da    PI: 9.686
Description bHLH family protein
Gene Model
Gene Model ID Type Source Coding Sequence
RrC1757_p5genomeMSUView CDS
Signature Domain? help Back to Top
Signature Domain
No. Domain Score E-value Start End HMM Start HMM End
1HLH40.16.6e-13172217454
                 HHHHHHHHHHHHHHHHHHHHHCTSCCC...TTS-STCHHHHHHHHHHHHHH CS
         HLH   4 ahnerErrRRdriNsafeeLrellPkaskapskKlsKaeiLekAveYIksL 54 
                 +h e+Er+RR+++N++f  Lr ++P+       K++Ka+ L  A+ YI++L
  RrC1757_p5 172 NHVEAERQRREKLNQRFYALRAVVPNV-----SKMDKASLLGDAIAYINEL 217
                 799***********************6.....5***************998 PP

Protein Features ? help Back to Top
3D Structure
Database Entry ID E-value Start End InterPro ID Description
PROSITE profilePS5088817.111168217IPR011598Myc-type, basic helix-loop-helix (bHLH) domain
CDDcd000838.89E-14171221No hitNo description
SuperFamilySSF474595.37E-18171240IPR011598Myc-type, basic helix-loop-helix (bHLH) domain
PfamPF000102.3E-10172217IPR011598Myc-type, basic helix-loop-helix (bHLH) domain
Gene3DG3DSA:4.10.280.101.0E-18172238IPR011598Myc-type, basic helix-loop-helix (bHLH) domain
SMARTSM003533.5E-16174223IPR011598Myc-type, basic helix-loop-helix (bHLH) domain
Gene Ontology ? help Back to Top
GO Term GO Category GO Description
GO:0046983Molecular Functionprotein dimerization activity
Sequence ? help Back to Top
Protein Sequence    Length: 345 aa     Download sequence    Send to blast
MWINDPIGVP EQGNGAPSSS SQLFAKSIQF EHGGSSSTIT ENPNPDPTPS PVHSQIQNPK  60
LSNNNFSREL NFSTSSTTLV KPRPGEILSF GDEGKRSSVN PDPSSYSGQT QFENKRKKSI  120
GQSDHDKVLT FGTGGGESDH SDLEASVVKE IPEKRPKKRG RKPANGREEP LNHVEAERQR  180
REKLNQRFYA LRAVVPNVSK MDKASLLGDA IAYINELKAK VTKTESEKTQ VKTQLEEVKM  240
ELAGRKASAG GGDLSSSCSM TAIKPVGMEI EVKIIGWDAM IRVESSKRNH PAARLMSALM  300
DLELEVNHAS MSVVNDLMIQ QATVKMGFRI YTQEQLRASL ISKIG
3D Structure ? help Back to Top
Structure
PDB ID Evalue Query Start Query End Hit Start Hit End Description
5gnj_A1e-45166245281Transcription factor MYC2
5gnj_B1e-45166245281Transcription factor MYC2
5gnj_E1e-45166245281Transcription factor MYC2
5gnj_F1e-45166245281Transcription factor MYC2
5gnj_G1e-45166245281Transcription factor MYC2
5gnj_I1e-45166245281Transcription factor MYC2
5gnj_M1e-45166245281Transcription factor MYC2
5gnj_N1e-45166245281Transcription factor MYC2
Search in ModeBase
Nucleic Localization Signal ? help Back to Top
NLS
No. Start End Sequence
1153161KRPKKRGRK
Functional Description ? help Back to Top
Source Description
UniProtTranscriptional activator. Common transcription factor of light, abscisic acid (ABA), and jasmonic acid (JA) signaling pathways. With MYC3 and MYC4, controls additively subsets of JA-dependent responses. In cooperation with MYB2 is involved in the regulation of ABA-inducible genes under drought stress conditions. Can form complexes with all known glucosinolate-related MYBs to regulate glucosinolate biosynthesis. Binds to the MYC recognition site (5'-CACATG-3'), and to the G-box (5'-CACNTG-3') and Z-box (5'-ATACGTGT-3') of promoters. Binds directly to the promoters of the transcription factors PLETHORA1 (PLT1) and PLT2 and represses their expression. Negative regulator of blue light-mediated photomorphogenic growth and blue- and far-red-light regulated gene expression. Activates multiple TIFY/JAZ promoters. Positive regulator of lateral root formation. Regulates sesquiterpene biosynthesis. Subjected to proteasome-dependent proteolysis. The presence of the destruction element (DE) involved in turnover is required for the function to regulate gene transcription. {ECO:0000269|PubMed:12509522, ECO:0000269|PubMed:15208388, ECO:0000269|PubMed:15923349, ECO:0000269|PubMed:21321051, ECO:0000269|PubMed:21335373, ECO:0000269|PubMed:21954460, ECO:0000269|PubMed:22669881, ECO:0000269|PubMed:23142764, ECO:0000269|PubMed:23593022, ECO:0000269|PubMed:23943862, ECO:0000269|PubMed:9368419}.
Regulation -- Description ? help Back to Top
Source Description
UniProtINDUCTION: Detected early after abscisic acid (ABA) treatment or after dehydration and high-salt stresses. Induced by UV treatment. Up-regulated by methyl jasmonate and herbivory. {ECO:0000269|PubMed:12679534, ECO:0000269|PubMed:15208388, ECO:0000269|PubMed:23593022, ECO:0000269|PubMed:23943862, ECO:0000269|PubMed:9368419}.
Regulation -- PlantRegMap ? help Back to Top
Source Upstream Regulator Target Gene
PlantRegMapRetrieve-
Annotation -- Nucleotide ? help Back to Top
Source Hit ID E-value Description
GenBankEF4238030.0EF423803.1 Brassica oleracea var. gemmifera MYC mRNA, complete cds.
Annotation -- Protein ? help Back to Top
Source Hit ID E-value Description
RefseqXP_018492851.10.0PREDICTED: transcription factor MYC2
SwissprotQ392040.0MYC2_ARATH; Transcription factor MYC2
TrEMBLA0A397ZAP60.0A0A397ZAP6_BRACM; Uncharacterized protein
STRINGBra010178.1-P0.0(Brassica rapa)
Orthologous Group ? help Back to Top
LineageOrthologous Group IDTaxa NumberGene Number
MalvidsOGEM12652896
Best hit in Arabidopsis thaliana ? help Back to Top
Hit ID E-value Description
AT1G32640.10.0bHLH family protein
Publications ? help Back to Top
  1. Zheng XY, et al.
    Coronatine promotes Pseudomonas syringae virulence in plants by activating a signaling cascade that inhibits salicylic acid accumulation.
    Cell Host Microbe, 2012. 11(6): p. 587-96
    [PMID:22704619]
  2. Guo R, et al.
    Jasmonic acid and glucose synergistically modulate the accumulation of glucosinolates in Arabidopsis thaliana.
    J. Exp. Bot., 2013. 64(18): p. 5707-19
    [PMID:24151308]
  3. Gangappa SN,Srivastava AK,Maurya JP,Ram H,Chattopadhyay S
    Z-box binding transcription factors (ZBFs): a new class of transcription factors in Arabidopsis seedling development.
    Mol Plant, 2013. 6(6): p. 1758-68
    [PMID:24157607]
  4. Ding Y, et al.
    Four distinct types of dehydration stress memory genes in Arabidopsis thaliana.
    BMC Plant Biol., 2013. 13: p. 229
    [PMID:24377444]
  5. Vos IA, et al.
    Onset of herbivore-induced resistance in systemic tissue primed for jasmonate-dependent defenses is activated by abscisic acid.
    Front Plant Sci, 2013. 4: p. 539
    [PMID:24416038]
  6. Liu N,Ding Y,Fromm M,Avramova Z
    Different gene-specific mechanisms determine the 'revised-response' memory transcription patterns of a subset of A. thaliana dehydration stress responding genes.
    Nucleic Acids Res., 2014. 42(9): p. 5556-66
    [PMID:24744238]
  7. Chico JM, et al.
    Repression of Jasmonate-Dependent Defenses by Shade Involves Differential Regulation of Protein Stability of MYC Transcription Factors and Their JAZ Repressors in Arabidopsis.
    Plant Cell, 2014. 26(5): p. 1967-1980
    [PMID:24824488]
  8. Karumuri S,Bandopadhyay R
    In silico analysis of the structure and interaction of COP1 protein of Arabidopsis thaliana.
    Indian J. Biochem. Biophys., 2014. 51(5): p. 343-9
    [PMID:25630103]
  9. Roos J,Bejai S,Mozūraitis R,Dixelius C
    Susceptibility to Verticillium longisporum is linked to monoterpene production by TPS23/27 in Arabidopsis.
    Plant J., 2015. 81(4): p. 572-85
    [PMID:25640950]
  10. Yamada Y,Motomura Y,Sato F
    CjbHLH1 homologs regulate sanguinarine biosynthesis in Eschscholzia californica cells.
    Plant Cell Physiol., 2015. 56(5): p. 1019-30
    [PMID:25713177]
  11. Kazan K
    Diverse roles of jasmonates and ethylene in abiotic stress tolerance.
    Trends Plant Sci., 2015. 20(4): p. 219-29
    [PMID:25731753]
  12. Lenka SK, et al.
    Jasmonate-responsive expression of paclitaxel biosynthesis genes in Taxus cuspidata cultured cells is negatively regulated by the bHLH transcription factors TcJAMYC1, TcJAMYC2, and TcJAMYC4.
    Front Plant Sci, 2015. 6: p. 115
    [PMID:25767476]
  13. Carvalhais LC, et al.
    Linking Jasmonic Acid Signaling, Root Exudates, and Rhizosphere Microbiomes.
    Mol. Plant Microbe Interact., 2015. 28(9): p. 1049-58
    [PMID:26035128]
  14. Gasperini D, et al.
    Multilayered Organization of Jasmonate Signalling in the Regulation of Root Growth.
    PLoS Genet., 2015. 11(6): p. e1005300
    [PMID:26070206]
  15. Qi T, et al.
    Regulation of Jasmonate-Induced Leaf Senescence by Antagonism between bHLH Subgroup IIIe and IIId Factors in Arabidopsis.
    Plant Cell, 2015. 27(6): p. 1634-49
    [PMID:26071420]
  16. Wang C, et al.
    Arabidopsis Elongator subunit 2 positively contributes to resistance to the necrotrophic fungal pathogens Botrytis cinerea and Alternaria brassicicola.
    Plant J., 2015. 83(6): p. 1019-33
    [PMID:26216741]
  17. de Ollas C,Arbona V,Gómez-Cadenas A
    Jasmonic acid interacts with abscisic acid to regulate plant responses to water stress conditions.
    Plant Signal Behav, 2015. 10(12): p. e1078953
    [PMID:26340066]
  18. Yastreb TO,Kolupayev YE,Shvidenko AA,Lugovaya AA,Dmitriev AP
    [Salt Stress Response in Arabidopsis thaliana Plants with Defective Jasmonate Signaling].
    Prikl. Biokhim. Mikrobiol., 2015 Jul-Aug. 51(4): p. 412-6
    [PMID:26353406]
  19. Liu Z, et al.
    A Conserved Cytochrome P450 Evolved in Seed Plants Regulates Flower Maturation.
    Mol Plant, 2015. 8(12): p. 1751-65
    [PMID:26388305]
  20. Zhu X, et al.
    Jasmonic acid promotes degreening via MYC2/3/4- and ANAC019/055/072-mediated regulation of major chlorophyll catabolic genes.
    Plant J., 2015. 84(3): p. 597-610
    [PMID:26407000]
  21. de Torres Zabala M, et al.
    Novel JAZ co-operativity and unexpected JA dynamics underpin Arabidopsis defence responses to Pseudomonas syringae infection.
    New Phytol., 2016. 209(3): p. 1120-34
    [PMID:26428397]
  22. Kaurilind E,Xu E,Brosché M
    A genetic framework for H2O2 induced cell death in Arabidopsis thaliana.
    BMC Genomics, 2015. 16: p. 837
    [PMID:26493993]
  23. Yu J, et al.
    JAZ7 negatively regulates dark-induced leaf senescence in Arabidopsis.
    J. Exp. Bot., 2016. 67(3): p. 751-62
    [PMID:26547795]
  24. Lu M, et al.
    AtCNGC2 is involved in jasmonic acid-induced calcium mobilization.
    J. Exp. Bot., 2016. 67(3): p. 809-19
    [PMID:26608645]
  25. Chen X,Huang H,Qi T,Liu B,Song S
    New perspective of the bHLH-MYB complex in jasmonate-regulated plant fertility in arabidopsis.
    Plant Signal Behav, 2016. 11(2): p. e1135280
    [PMID:26829586]
  26. Schmiesing A,Emonet A,Gouhier-Darimont C,Reymond P
    Arabidopsis MYC Transcription Factors Are the Target of Hormonal Salicylic Acid/Jasmonic Acid Cross Talk in Response to Pieris brassicae Egg Extract.
    Plant Physiol., 2016. 170(4): p. 2432-43
    [PMID:26884488]
  27. Liu N,Avramova Z
    Molecular mechanism of the priming by jasmonic acid of specific dehydration stress response genes in Arabidopsis.
    Epigenetics Chromatin, 2016. 9: p. 8
    [PMID:26918031]
  28. Takagi H, et al.
    Allantoin, a stress-related purine metabolite, can activate jasmonate signaling in a MYC2-regulated and abscisic acid-dependent manner.
    J. Exp. Bot., 2016. 67(8): p. 2519-2532
    [PMID:26931169]
  29. Mira MM, et al.
    Jasmonic acid is a downstream component in the modulation of somatic embryogenesis by Arabidopsis Class 2 phytoglobin.
    J. Exp. Bot., 2016. 67(8): p. 2231-46
    [PMID:26962208]
  30. Valenzuela CE, et al.
    Salt stress response triggers activation of the jasmonate signaling pathway leading to inhibition of cell elongation in Arabidopsis primary root.
    J. Exp. Bot., 2016. 67(14): p. 4209-20
    [PMID:27217545]
  31. Aleman F, et al.
    An ABA-increased interaction of the PYL6 ABA receptor with MYC2 Transcription Factor: A putative link of ABA and JA signaling.
    Sci Rep, 2016. 6: p. 28941
    [PMID:27357749]
  32. An JP, et al.
    The molecular cloning and functional characterization of MdMYC2, a bHLH transcription factor in apple.
    Plant Physiol. Biochem., 2016. 108: p. 24-31
    [PMID:27404131]
  33. Gao C, et al.
    MYC2, MYC3, and MYC4 function redundantly in seed storage protein accumulation in Arabidopsis.
    Plant Physiol. Biochem., 2016. 108: p. 63-70
    [PMID:27415132]
  34. Liu N,Staswick PE,Avramova Z
    Memory responses of jasmonic acid-associated Arabidopsis genes to a repeated dehydration stress.
    Plant Cell Environ., 2016. 39(11): p. 2515-2529
    [PMID:27451106]
  35. Allu AD,Brotman Y,Xue GP,Balazadeh S
    Transcription factor ANAC032 modulates JA/SA signalling in response to Pseudomonas syringae infection.
    EMBO Rep., 2016. 17(11): p. 1578-1589
    [PMID:27632992]
  36. Raya-González J,Velázquez-Becerra C,Barrera-Ortiz S,López-Bucio J,Valencia-Cantero E
    N,N-dimethyl hexadecylamine and related amines regulate root morphogenesis via jasmonic acid signaling in Arabidopsis thaliana.
    Protoplasma, 2017. 254(3): p. 1399-1410
    [PMID:27696021]
  37. Gimenez-Ibanez S, et al.
    JAZ2 controls stomata dynamics during bacterial invasion.
    New Phytol., 2017. 213(3): p. 1378-1392
    [PMID:28005270]
  38. Yuan LB, et al.
    Jasmonate Regulates Plant Responses to Postsubmergence Reoxygenation through Transcriptional Activation of Antioxidant Synthesis.
    Plant Physiol., 2017. 173(3): p. 1864-1880
    [PMID:28082717]
  39. Le Hir R, et al.
    AtbHLH68 transcription factor contributes to the regulation of ABA homeostasis and drought stress tolerance in Arabidopsis thaliana.
    Physiol Plant, 2017. 160(3): p. 312-327
    [PMID:28369972]
  40. Li K,Yang F,Miao Y,Song CP
    Abscisic acid signaling is involved in regulating the mitogen-activated protein kinase cascade module, AIK1-MKK5-MPK6.
    Plant Signal Behav, 2017. 12(5): p. e1321188
    [PMID:28494202]
  41. Lian TF,Xu YP,Li LF,Su XD
    Crystal Structure of Tetrameric Arabidopsis MYC2 Reveals the Mechanism of Enhanced Interaction with DNA.
    Cell Rep, 2017. 19(7): p. 1334-1342
    [PMID:28514654]
  42. Yao L,Zheng Y,Zhu Z
    Jasmonate suppresses seedling soil emergence in Arabidopsis thaliana.
    Plant Signal Behav, 2017. 12(6): p. e1330239
    [PMID:28534718]
  43. Jeong JS,Jung C,Seo JS,Kim JK,Chua NH
    The Deubiquitinating Enzymes UBP12 and UBP13 Positively Regulate MYC2 Levels in Jasmonate Responses.
    Plant Cell, 2017. 29(6): p. 1406-1424
    [PMID:28536144]
  44. Huang CF, et al.
    Elevated auxin biosynthesis and transport underlie high vein density in C4 leaves.
    Proc. Natl. Acad. Sci. U.S.A., 2017. 114(33): p. E6884-E6891
    [PMID:28761000]
  45. Wang H, et al.
    The bHLH Transcription Factors MYC2, MYC3, and MYC4 Are Required for Jasmonate-Mediated Inhibition of Flowering in Arabidopsis.
    Mol Plant, 2017. 10(11): p. 1461-1464
    [PMID:28827172]
  46. Jang G, et al.
    Antagonistic interaction between jasmonic acid and cytokinin in xylem development.
    Sci Rep, 2017. 7(1): p. 10212
    [PMID:28860478]
  47. Song S, et al.
    MYC5 is Involved in Jasmonate-Regulated Plant Growth, Leaf Senescence and Defense Responses.
    Plant Cell Physiol., 2017. 58(10): p. 1752-1763
    [PMID:29017003]
  48. Ullah A,Sun H,Yang X,Zhang X
    A novel cotton WRKY gene, GhWRKY6-like, improves salt tolerance by activating the ABA signaling pathway and scavenging of reactive oxygen species.
    Physiol Plant, 2018. 162(4): p. 439-454
    [PMID:29027659]
  49. Zhai Q,Li L,An C,Li C
    Conserved function of mediator in regulating nuclear hormone receptor activation between plants and animals.
    Plant Signal Behav, 2018. 13(5): p. e1403709
    [PMID:29125388]
  50. Li B, et al.
    Network-Guided Discovery of Extensive Epistasis between Transcription Factors Involved in Aliphatic Glucosinolate Biosynthesis.
    Plant Cell, 2018. 30(1): p. 178-195
    [PMID:29317470]
  51. Giri MK,Gautam JK,Rajendra Prasad VB,Chattopadhyay S,Nandi AK
    Rice MYC2 (OsMYC2) modulates light-dependent seedling phenotype, disease defence but not ABA signalling.
    J. Biosci., 2017. 42(3): p. 501-508
    [PMID:29358563]
  52. Han X, et al.
    Jasmonate Negatively Regulates Stomatal Development in Arabidopsis Cotyledons.
    Plant Physiol., 2018. 176(4): p. 2871-2885
    [PMID:29496884]
  53. Li X,Yang R,Chen H
    The Arabidopsis thaliana Mediator subunit MED8 regulates plant immunity to Botrytis Cinerea through interacting with the basic helix-loop-helix (bHLH) transcription factor FAMA.
    PLoS ONE, 2018. 13(3): p. e0193458
    [PMID:29513733]