PlantTFDB
PlantRegMap/PlantTFDB v5.0
Plant Transcription Factor Database
Transcription Factor Information
Basic Information | Signature Domain | Sequence | 
Basic Information? help Back to Top
TF ID Lus10043264
Organism
Taxonomic ID
Taxonomic Lineage
cellular organisms; Eukaryota; Viridiplantae; Streptophyta; Streptophytina; Embryophyta; Tracheophyta; Euphyllophyta; Spermatophyta; Magnoliophyta; Mesangiospermae; eudicotyledons; Gunneridae; Pentapetalae; rosids; fabids; Malpighiales; Linaceae; Linum
Family YABBY
Protein Properties Length: 588aa    MW: 65461.5 Da    PI: 8.2393
Description YABBY family protein
Gene Model
Gene Model ID Type Source Coding Sequence
Lus10043264genomeBGIView CDS
Signature Domain? help Back to Top
Signature Domain
No. Domain Score E-value Start End HMM Start HMM End
1YABBY1632.3e-50101936159
        YABBY   6 sseqvCyvqCnfCntilavsvPstslfkvvtvrCGhCtsllsvnlakas.qllaaeshldeslkee...........................lleel 75 
                  + +q+Cyv CnfCn +lavsvP + l+ +vtvrCGhCt+l svn+a a  + l+a s+ +++ ++                            +   +
  Lus10043264  10 ADQQLCYVPCNFCNIVLAVSVPCSNLMDIVTVRCGHCTNLWSVNMAAAFqYSLSAASRAQQQQQPAadhlslhhhqkggnynvyqaggntndqQ-YYN 106
                  5689*****************************************9876456777777666666667778888888899999888777654421.112 PP

        YABBY  76 kveeenlksnvekeesastsvsseklsenedeevprvpp...virPPekrqrvPsaynrfikeeiqrikasnPdishreafsaaakn 159
                  +  +    s  ++++s+s+s s++++++ +    + +p+   v+rPPekrqrvPsayn+fikeeiqrika+nPdi+hreafs+aakn
  Lus10043264 107 GGGGGGGGSSSSSSSSSSSSSSAKSIPTTKLTARASPPQnriVNRPPEKRQRVPSAYNQFIKEEIQRIKANNPDITHREAFSTAAKN 193
                  2222222333344444444444444444333332222223359*******************************************9 PP

Protein Features ? help Back to Top
3D Structure
Database Entry ID E-value Start End InterPro ID Description
PfamPF046902.4E-5911194IPR006780YABBY protein
PROSITE profilePS5001143.637102402IPR000719Protein kinase domain
SMARTSM002201.9E-81104402IPR000719Protein kinase domain
SuperFamilySSF470952.69E-5143191IPR009071High mobility group box domain
PfamPF000693.2E-60182402IPR000719Protein kinase domain
SuperFamilySSF561121.35E-76189454IPR011009Protein kinase-like domain
Gene3DG3DSA:3.30.200.204.1E-20189245No hitNo description
Gene3DG3DSA:1.10.510.101.4E-61246414No hitNo description
PROSITE patternPS001080268280IPR008271Serine/threonine-protein kinase, active site
PROSITE profilePS5081612.047443467IPR018451NAF/FISL domain
PfamPF038221.5E-18446504IPR004041NAF domain
CDDcd121956.49E-45449563No hitNo description
Gene Ontology ? help Back to Top
GO Term GO Category GO Description
GO:0006468Biological Processprotein phosphorylation
GO:0007165Biological Processsignal transduction
GO:0007275Biological Processmulticellular organism development
GO:0004672Molecular Functionprotein kinase activity
GO:0005524Molecular FunctionATP binding
Sequence ? help Back to Top
Protein Sequence    Length: 588 aa     Download sequence    Send to blast
MGSCSIEMVA DQQLCYVPCN FCNIVLAVSV PCSNLMDIVT VRCGHCTNLW SVNMAAAFQY  60
SLSAASRAQQ QQQPAADHLS LHHHQKGGNY NVYQAGGNTN DQQYYNGGGG GGGGSSSSSS  120
SSSSSSSSAK SIPTTKLTAR ASPPQNRIVN RPPEKRQRVP SAYNQFIKEE IQRIKANNPD  180
ITHREAFSTA AKNIKREISI MKIVRHPYIV RLHEVLAGRT KIYIILEFVT GGELYDRIVH  240
QGRLKEHEAR RYFQQLIDAV DHCHSKRVYH RDLKPENLLL DAAGNLKVSD FGLSALPQDG  300
VGLLHTTCGT PNYVAPEVLR HQGYDGAAAD IWSCGVILYV LMAGYLPFDE TDLPTLYKKI  360
NAAEFTCPFW FSPEAKALID KILTPNPENR IQINAIRRDP WFRKNYMPVK ISKEEEVNLD  420
DVRAVFDDIE DQYVAEKTES SDTGPLLMNA FEMITLSQGL NLSALFDRHQ DYIKRQTRFV  480
SRRPAKDIIS TVEAVAVSMG LKVHTRGYKV QPPTRLEGMS ANKAGQLAVV LEVYEVAPSL  540
FMVDVRKASG ETLEYHKFYK KFCASLENII WKGAEGATSD LLRTMTC*
3D Structure ? help Back to Top
Structure
PDB ID Evalue Query Start Query End Hit Start Hit End Description
4d28_A0.018658643445CBL-INTERACTING SERINE/THREONINE-PROTEIN KINASE 24
4d28_B0.018658643445CBL-INTERACTING SERINE/THREONINE-PROTEIN KINASE 24
4d28_C0.018658643445CBL-INTERACTING SERINE/THREONINE-PROTEIN KINASE 24
4d28_D0.018658643445CBL-INTERACTING SERINE/THREONINE-PROTEIN KINASE 24
Search in ModeBase
Functional Description ? help Back to Top
Source Description
UniProtInvolved in the regulatory pathway for the control of intracellular Na(+) and K(+) homeostasis and salt tolerance. Activates the vacuolar H(+)/Ca(2+) antiporter CAX1 and operates in synergy with CBL4/SOS3 to activate the plasma membrane Na(+)/H(+) antiporter SOS1. CIPK serine-threonine protein kinases interact with CBL proteins. Binding of a CBL protein to the regulatory NAF domain of CIPK protein lead to the activation of the kinase in a calcium-dependent manner. Phosphorylates CBL1, CBL4 and CBL10. {ECO:0000269|PubMed:10725350, ECO:0000269|PubMed:12034882, ECO:0000269|PubMed:14583601, ECO:0000269|PubMed:22253446}.
Cis-element ? help Back to Top
SourceLink
PlantRegMapLus10043264
Regulation -- Description ? help Back to Top
Source Description
UniProtINDUCTION: Up-regulated in roots by salt stress.
Regulation -- PlantRegMap ? help Back to Top
Source Upstream Regulator Target Gene
PlantRegMapRetrieve-
Annotation -- Protein ? help Back to Top
Source Hit ID E-value Description
RefseqXP_021615871.10.0CBL-interacting serine/threonine-protein kinase 24-like
RefseqXP_021615872.10.0CBL-interacting serine/threonine-protein kinase 24-like
RefseqXP_021615873.10.0CBL-interacting serine/threonine-protein kinase 24-like
SwissprotQ9LDI30.0CIPKO_ARATH; CBL-interacting serine/threonine-protein kinase 24
TrEMBLA0A251KM120.0A0A251KM12_MANES; Non-specific serine/threonine protein kinase
STRINGLus100432640.0(Linum usitatissimum)
Best hit in Arabidopsis thaliana ? help Back to Top
Hit ID E-value Description
AT2G26580.22e-52YABBY family protein
Publications ? help Back to Top
  1. Halfter U,Ishitani M,Zhu JK
    The Arabidopsis SOS2 protein kinase physically interacts with and is activated by the calcium-binding protein SOS3.
    Proc. Natl. Acad. Sci. U.S.A., 2000. 97(7): p. 3735-40
    [PMID:10725350]
  2. Liu J,Ishitani M,Halfter U,Kim CS,Zhu JK
    The Arabidopsis thaliana SOS2 gene encodes a protein kinase that is required for salt tolerance.
    Proc. Natl. Acad. Sci. U.S.A., 2000. 97(7): p. 3730-4
    [PMID:10725382]
  3. Shi H,Ishitani M,Kim C,Zhu JK
    The Arabidopsis thaliana salt tolerance gene SOS1 encodes a putative Na+/H+ antiporter.
    Proc. Natl. Acad. Sci. U.S.A., 2000. 97(12): p. 6896-901
    [PMID:10823923]
  4. Ishitani M, et al.
    SOS3 function in plant salt tolerance requires N-myristoylation and calcium binding.
    Plant Cell, 2000. 12(9): p. 1667-78
    [PMID:11006339]
  5. Kim KN,Cheong YH,Gupta R,Luan S
    Interaction specificity of Arabidopsis calcineurin B-like calcium sensors and their target kinases.
    Plant Physiol., 2000. 124(4): p. 1844-53
    [PMID:11115898]
  6. Guo Y,Halfter U,Ishitani M,Zhu JK
    Molecular characterization of functional domains in the protein kinase SOS2 that is required for plant salt tolerance.
    Plant Cell, 2001. 13(6): p. 1383-400
    [PMID:11402167]
  7. Serrano R,Rodriguez-Navarro A
    Ion homeostasis during salt stress in plants.
    Curr. Opin. Cell Biol., 2001. 13(4): p. 399-404
    [PMID:11454443]
  8. Gong D,Gong Z,Guo Y,Zhu JK
    Expression, activation, and biochemical properties of a novel Arabidopsis protein kinase.
    Plant Physiol., 2002. 129(1): p. 225-34
    [PMID:12011353]
  9. Gong D,Gong Z,Guo Y,Chen X,Zhu JK
    Biochemical and functional characterization of PKS11, a novel Arabidopsis protein kinase.
    J. Biol. Chem., 2002. 277(31): p. 28340-50
    [PMID:12029080]
  10. Qiu QS,Guo Y,Dietrich MA,Schumaker KS,Zhu JK
    Regulation of SOS1, a plasma membrane Na+/H+ exchanger in Arabidopsis thaliana, by SOS2 and SOS3.
    Proc. Natl. Acad. Sci. U.S.A., 2002. 99(12): p. 8436-41
    [PMID:12034882]
  11. Yokoi S, et al.
    Differential expression and function of Arabidopsis thaliana NHX Na+/H+ antiporters in the salt stress response.
    Plant J., 2002. 30(5): p. 529-39
    [PMID:12047628]
  12. Quintero FJ,Ohta M,Shi H,Zhu JK,Pardo JM
    Reconstitution in yeast of the Arabidopsis SOS signaling pathway for Na+ homeostasis.
    Proc. Natl. Acad. Sci. U.S.A., 2002. 99(13): p. 9061-6
    [PMID:12070350]
  13. Gong D,Zhang C,Chen X,Gong Z,Zhu JK
    Constitutive activation and transgenic evaluation of the function of an arabidopsis PKS protein kinase.
    J. Biol. Chem., 2002. 277(44): p. 42088-96
    [PMID:12198122]
  14. Gong D,Guo Y,Jagendorf AT,Zhu JK
    Biochemical characterization of the Arabidopsis protein kinase SOS2 that functions in salt tolerance.
    Plant Physiol., 2002. 130(1): p. 256-64
    [PMID:12226505]
  15. Shi H,Zhu JK
    Regulation of expression of the vacuolar Na+/H+ antiporter gene AtNHX1 by salt stress and abscisic acid.
    Plant Mol. Biol., 2002. 50(3): p. 543-50
    [PMID:12369629]
  16. Hrabak EM, et al.
    The Arabidopsis CDPK-SnRK superfamily of protein kinases.
    Plant Physiol., 2003. 132(2): p. 666-80
    [PMID:12805596]
  17. Ohta M,Guo Y,Halfter U,Zhu JK
    A novel domain in the protein kinase SOS2 mediates interaction with the protein phosphatase 2C ABI2.
    Proc. Natl. Acad. Sci. U.S.A., 2003. 100(20): p. 11771-6
    [PMID:14504388]
  18. Qiu QS, et al.
    Regulation of vacuolar Na+/H+ exchange in Arabidopsis thaliana by the salt-overly-sensitive (SOS) pathway.
    J. Biol. Chem., 2004. 279(1): p. 207-15
    [PMID:14570921]
  19. Cheng NH,Pittman JK,Zhu JK,Hirschi KD
    The protein kinase SOS2 activates the Arabidopsis H(+)/Ca(2+) antiporter CAX1 to integrate calcium transport and salt tolerance.
    J. Biol. Chem., 2004. 279(4): p. 2922-6
    [PMID:14583601]
  20. Kim KN, et al.
    Isolation and characterization of a novel rice Ca2+-regulated protein kinase gene involved in responses to diverse signals including cold, light, cytokinins, sugars and salts.
    Plant Mol. Biol., 2003. 52(6): p. 1191-202
    [PMID:14682618]
  21. Kolukisaoglu U,Weinl S,Blazevic D,Batistic O,Kudla J
    Calcium sensors and their interacting protein kinases: genomics of the Arabidopsis and rice CBL-CIPK signaling networks.
    Plant Physiol., 2004. 134(1): p. 43-58
    [PMID:14730064]
  22. Guo Y, et al.
    Transgenic evaluation of activated mutant alleles of SOS2 reveals a critical requirement for its kinase activity and C-terminal regulatory domain for salt tolerance in Arabidopsis thaliana.
    Plant Cell, 2004. 16(2): p. 435-49
    [PMID:14742879]
  23. Gong D,Guo Y,Schumaker KS,Zhu JK
    The SOS3 family of calcium sensors and SOS2 family of protein kinases in Arabidopsis.
    Plant Physiol., 2004. 134(3): p. 919-26
    [PMID:15020756]
  24. Sánchez-Barrena MJ,Martínez-Ripoll M,Zhu JK,Albert A
    SOS3 (salt overly sensitive 3) from Arabidopsis thaliana: expression, purification, crystallization and preliminary X-ray analysis.
    Acta Crystallogr. D Biol. Crystallogr., 2004. 60(Pt 7): p. 1272-4
    [PMID:15213389]
  25. Rus A, et al.
    AtHKT1 facilitates Na+ homeostasis and K+ nutrition in planta.
    Plant Physiol., 2004. 136(1): p. 2500-11
    [PMID:15347798]
  26. Shabala L,Cuin TA,Newman IA,Shabala S
    Salinity-induced ion flux patterns from the excised roots of Arabidopsis sos mutants.
    Planta, 2005. 222(6): p. 1041-50
    [PMID:16079998]
  27. Shoji T, et al.
    Salt stress affects cortical microtubule organization and helical growth in Arabidopsis.
    Plant Cell Physiol., 2006. 47(8): p. 1158-68
    [PMID:16861712]
  28. Martínez-Atienza J, et al.
    Conservation of the salt overly sensitive pathway in rice.
    Plant Physiol., 2007. 143(2): p. 1001-12
    [PMID:17142477]
  29. Quan R, et al.
    SCABP8/CBL10, a putative calcium sensor, interacts with the protein kinase SOS2 to protect Arabidopsis shoots from salt stress.
    Plant Cell, 2007. 19(4): p. 1415-31
    [PMID:17449811]
  30. Sánchez-Barrena MJ, et al.
    The structure of the C-terminal domain of the protein kinase AtSOS2 bound to the calcium sensor AtSOS3.
    Mol. Cell, 2007. 26(3): p. 427-35
    [PMID:17499048]
  31. Sánchez-Barrena MJ,Moreno-Pérez S,Angulo I,Martínez-Ripoll M,Albert A
    The complex between SOS3 and SOS2 regulatory domain from Arabidopsis thaliana: cloning, expression, purification, crystallization and preliminary X-ray analysis.
    Acta Crystallogr. Sect. F Struct. Biol. Cryst. Commun., 2007. 63(Pt 7): p. 568-70
    [PMID:17620712]
  32. Verslues PE, et al.
    Interaction of SOS2 with nucleoside diphosphate kinase 2 and catalases reveals a point of connection between salt stress and H2O2 signaling in Arabidopsis thaliana.
    Mol. Cell. Biol., 2007. 27(22): p. 7771-80
    [PMID:17785451]
  33. Kim BG, et al.
    The calcium sensor CBL10 mediates salt tolerance by regulating ion homeostasis in Arabidopsis.
    Plant J., 2007. 52(3): p. 473-84
    [PMID:17825054]
  34. Batelli G, et al.
    SOS2 promotes salt tolerance in part by interacting with the vacuolar H+-ATPase and upregulating its transport activity.
    Mol. Cell. Biol., 2007. 27(22): p. 7781-90
    [PMID:17875927]
  35. Mahajan S,Pandey GK,Tuteja N
    Calcium- and salt-stress signaling in plants: shedding light on SOS pathway.
    Arch. Biochem. Biophys., 2008. 471(2): p. 146-58
    [PMID:18241665]
  36. Lin H, et al.
    Phosphorylation of SOS3-LIKE CALCIUM BINDING PROTEIN8 by SOS2 protein kinase stabilizes their protein complex and regulates salt tolerance in Arabidopsis.
    Plant Cell, 2009. 21(5): p. 1607-19
    [PMID:19448033]
  37. Fujii H,Zhu JK
    An autophosphorylation site of the protein kinase SOS2 is important for salt tolerance in Arabidopsis.
    Mol Plant, 2009. 2(1): p. 183-90
    [PMID:19529820]
  38. Yang Q, et al.
    Overexpression of SOS (Salt Overly Sensitive) genes increases salt tolerance in transgenic Arabidopsis.
    Mol Plant, 2009. 2(1): p. 22-31
    [PMID:19529826]
  39. Guo KM,Babourina O,Rengel Z
    Na(+)/H(+) antiporter activity of the SOS1 gene: lifetime imaging analysis and electrophysiological studies on Arabidopsis seedlings.
    Physiol Plant, 2009. 137(2): p. 155-65
    [PMID:19758408]
  40. Silva P,Gerós H
    Regulation by salt of vacuolar H+-ATPase and H+-pyrophosphatase activities and Na+/H+ exchange.
    Plant Signal Behav, 2009. 4(8): p. 718-26
    [PMID:19820346]
  41. Wang C, et al.
    The microfilament cytoskeleton plays a vital role in salt and osmotic stress tolerance in Arabidopsis.
    Plant Biol (Stuttg), 2010. 12(1): p. 70-8
    [PMID:20653889]
  42. Taji T, et al.
    Comparative genomic analysis of 1047 completely sequenced cDNAs from an Arabidopsis-related model halophyte, Thellungiella halophila.
    BMC Plant Biol., 2010. 10: p. 261
    [PMID:21106055]
  43. Choi W, et al.
    NKS1, Na(+)- and K(+)-sensitive 1, regulates ion homeostasis in an SOS-independent pathway in Arabidopsis.
    Phytochemistry, 2011. 72(4-5): p. 330-6
    [PMID:21227472]
  44. Quintero FJ, et al.
    Activation of the plasma membrane Na/H antiporter Salt-Overly-Sensitive 1 (SOS1) by phosphorylation of an auto-inhibitory C-terminal domain.
    Proc. Natl. Acad. Sci. U.S.A., 2011. 108(6): p. 2611-6
    [PMID:21262798]
  45. Kushwaha HR,Kumar G,Verma PK,Singla-Pareek SL,Pareek A
    Analysis of a salinity induced BjSOS3 protein from Brassica indicate it to be structurally and functionally related to its ortholog from Arabidopsis.
    Plant Physiol. Biochem., 2011. 49(9): p. 996-1004
    [PMID:21482126]
  46. Feki K,Quintero FJ,Pardo JM,Masmoudi K
    Regulation of durum wheat Na+/H + exchanger TdSOS1 by phosphorylation.
    Plant Mol. Biol., 2011. 76(6): p. 545-56
    [PMID:21573979]
  47. Du W, et al.
    Phosphorylation of SOS3-like calcium-binding proteins by their interacting SOS2-like protein kinases is a common regulatory mechanism in Arabidopsis.
    Plant Physiol., 2011. 156(4): p. 2235-43
    [PMID:21685179]
  48. Hu DG, et al.
    Molecular cloning and functional characterization of MdSOS2 reveals its involvement in salt tolerance in apple callus and Arabidopsis.
    Plant Cell Rep., 2012. 31(4): p. 713-22
    [PMID:22108717]
  49. Hashimoto K, et al.
    Phosphorylation of calcineurin B-like (CBL) calcium sensor proteins by their CBL-interacting protein kinases (CIPKs) is required for full activity of CBL-CIPK complexes toward their target proteins.
    J. Biol. Chem., 2012. 287(11): p. 7956-68
    [PMID:22253446]
  50. Huertas R, et al.
    Overexpression of SlSOS2 (SlCIPK24) confers salt tolerance to transgenic tomato.
    Plant Cell Environ., 2012. 35(8): p. 1467-82
    [PMID:22390672]
  51. Roy SJ, et al.
    A novel protein kinase involved in Na(+) exclusion revealed from positional cloning.
    Plant Cell Environ., 2013. 36(3): p. 553-68
    [PMID:22897323]
  52. Gao P,Kolenovsky A,Cui Y,Cutler AJ,Tsang EW
    Expression, purification and analysis of an Arabidopsis recombinant CBL-interacting protein kinase3 (CIPK3) and its constitutively active form.
    Protein Expr. Purif., 2012. 86(1): p. 45-52
    [PMID:22985939]
  53. Núñez-Ramírez R, et al.
    Structural insights on the plant salt-overly-sensitive 1 (SOS1) Na(+)/H(+) antiporter.
    J. Mol. Biol., 2012. 424(5): p. 283-94
    [PMID:23022605]
  54. Tang RJ, et al.
    Tonoplast calcium sensors CBL2 and CBL3 control plant growth and ion homeostasis through regulating V-ATPase activity in Arabidopsis.
    Cell Res., 2012. 22(12): p. 1650-65
    [PMID:23184060]
  55. Kim WY, et al.
    Release of SOS2 kinase from sequestration with GIGANTEA determines salt tolerance in Arabidopsis.
    Nat Commun, 2013. 4: p. 1352
    [PMID:23322040]
  56. Park HJ,Kim WY,Yun DJ
    A role for GIGANTEA: keeping the balance between flowering and salinity stress tolerance.
    Plant Signal Behav, 2013. 8(7): p. e24820
    [PMID:23656866]
  57. Ma DM, et al.
    Co-expression of the Arabidopsis SOS genes enhances salt tolerance in transgenic tall fescue (Festuca arundinacea Schreb.).
    Protoplasma, 2014. 251(1): p. 219-31
    [PMID:24022678]
  58. Xu C,Wang M,Zhou L,Quan T,Xia G
    Heterologous expression of the wheat aquaporin gene TaTIP2;2 compromises the abiotic stress tolerance of Arabidopsis thaliana.
    PLoS ONE, 2013. 8(11): p. e79618
    [PMID:24223981]
  59. Lv F,Zhang H,Xia X,Yin W
    Expression profiling and functional characterization of a CBL-interacting protein kinase gene from Populus euphratica.
    Plant Cell Rep., 2014. 33(5): p. 807-18
    [PMID:24413762]
  60. Zhou H, et al.
    Inhibition of the Arabidopsis salt overly sensitive pathway by 14-3-3 proteins.
    Plant Cell, 2014. 26(3): p. 1166-82
    [PMID:24659330]
  61. Chaves-Sanjuan A, et al.
    Structural basis of the regulatory mechanism of the plant CIPK family of protein kinases controlling ion homeostasis and abiotic stress.
    Proc. Natl. Acad. Sci. U.S.A., 2014. 111(42): p. E4532-41
    [PMID:25288725]
  62. Kong D,Li M,Dong Z,Ji H,Li X
    Identification of TaWD40D, a wheat WD40 repeat-containing protein that is associated with plant tolerance to abiotic stresses.
    Plant Cell Rep., 2015. 34(3): p. 395-410
    [PMID:25447637]
  63. Li P, et al.
    Chrysanthemum WRKY gene CmWRKY17 negatively regulates salt stress tolerance in transgenic chrysanthemum and Arabidopsis plants.
    Plant Cell Rep., 2015. 34(8): p. 1365-78
    [PMID:25893877]
  64. Ma X, et al.
    CYCLIN-DEPENDENT KINASE G2 regulates salinity stress response and salt mediated flowering in Arabidopsis thaliana.
    Plant Mol. Biol., 2015. 88(3): p. 287-99
    [PMID:25948280]
  65. Liu WZ, et al.
    Rapeseed calcineurin B-like protein CBL4, interacting with CBL-interacting protein kinase CIPK24, modulates salt tolerance in plants.
    Biochem. Biophys. Res. Commun., 2015. 467(3): p. 467-71
    [PMID:26462466]
  66. Monihan SM,Magness CA,Yadegari R,Smith SE,Schumaker KS
    Arabidopsis CALCINEURIN B-LIKE10 Functions Independently of the SOS Pathway during Reproductive Development in Saline Conditions.
    Plant Physiol., 2016. 171(1): p. 369-79
    [PMID:26979332]
  67. Tan T, et al.
    Stability and localization of 14-3-3 proteins are involved in salt tolerance in Arabidopsis.
    Plant Mol. Biol., 2016. 92(3): p. 391-400
    [PMID:27503471]
  68. Quan R, et al.
    EIN3 and SOS2 synergistically modulate plant salt tolerance.
    Sci Rep, 2017. 7: p. 44637
    [PMID:28300216]
  69. Chen Z, et al.
    The AtrbohF-dependent regulation of ROS signaling is required for melatonin-induced salinity tolerance in Arabidopsis.
    Free Radic. Biol. Med., 2017. 108: p. 465-477
    [PMID:28412199]
  70. Ullah A,Sun H,Yang X,Zhang X
    A novel cotton WRKY gene, GhWRKY6-like, improves salt tolerance by activating the ABA signaling pathway and scavenging of reactive oxygen species.
    Physiol Plant, 2018. 162(4): p. 439-454
    [PMID:29027659]
  71. Barajas-Lopez JD, et al.
    Upstream kinases of plant SnRKs are involved in salt stress tolerance.
    Plant J., 2018. 93(1): p. 107-118
    [PMID:29094495]
  72. Wang C, et al.
    SIP1, a novel SOS2 interaction protein, is involved in salt-stress tolerance in Arabidopsis.
    Plant Physiol. Biochem., 2018. 124: p. 167-174
    [PMID:29414312]
  73. Cheng Y,Zhang X,Sun T,Tian Q,Zhang WH
    Glutamate Receptor Homolog3.4 is Involved in Regulation of Seed Germination Under Salt Stress in Arabidopsis.
    Plant Cell Physiol., 2018. 59(5): p. 978-988
    [PMID:29432559]
  74. Yang Z, et al.
    Calcium-activated 14-3-3 proteins as a molecular switch in salt stress tolerance.
    Nat Commun, 2019. 10(1): p. 1199
    [PMID:30867421]
  75. Zhu JK,Liu J,Xiong L
    Genetic analysis of salt tolerance in arabidopsis. Evidence for a critical role of potassium nutrition.
    Plant Cell, 1998. 10(7): p. 1181-91
    [PMID:9668136]