PlantTFDB
PlantRegMap/PlantTFDB v5.0
Plant Transcription Factor Database
Transcription Factor Information
Basic Information | Signature Domain | Sequence | 
Basic Information? help Back to Top
TF ID Lsa005365
Organism
Taxonomic ID
Taxonomic Lineage
cellular organisms; Eukaryota; Viridiplantae; Streptophyta; Streptophytina; Embryophyta; Tracheophyta; Euphyllophyta; Spermatophyta; Magnoliophyta; Mesangiospermae; eudicotyledons; Gunneridae; Pentapetalae; asterids; campanulids; Asterales; Asteraceae; Cichorioideae; Cichorieae; Lactucinae; Lactuca
Family ARF
Protein Properties Length: 838aa    MW: 92549.3 Da    PI: 4.9881
Description ARF family protein
Gene Model
Gene Model ID Type Source Coding Sequence
PUT-187a-Lactuca_sativa-35504PU_refplantGDBView CDS
Signature Domain? help Back to Top
Signature Domain
No. Domain Score E-value Start End HMM Start HMM End
1B353.35.2e-17146247199
                EEEE-..-HHHHTT-EE--HHH.HTT......---..--SEEEEEETTS-EEEEEE..EEETTEEEE-TTHHHHHHHHT--TT-EEEEEE-SSSEE..EE CS
         B3   1 ffkvltpsdvlksgrlvlpkkfaeeh......ggkkeesktltledesgrsWevkliyrkksgryvltkGWkeFvkangLkegDfvvFkldgrsefelvv 94 
                f+k+ltpsd++++g +++p++ ae+       ++++++ ++l+ +d++ ++W++++iy +  ++++   G + Fv a++Lk+gD v+F   ++++ +l++
  Lsa005365 146 FCKTLTPSDTSTHGGFSVPRRAAEKLfpqldfSMQPPT-QELIGRDLHDNTWTFRHIYPRAAKTTLTDYGVEMFVGAKRLKAGDAVLFI--RDEKSQLLL 242
                99*********************999*****9555554.48999**************9999999999*********************..456777899 PP

                EEE-S CS
         B3  95 kvfrk 99 
                +v+r+
  Lsa005365 243 GVRRA 247
                99997 PP

2Auxin_resp109.43.8e-36272355183
  Auxin_resp   1 aahaastksvFevvYnPrastseFvvkvekvekalk.vkvsvGmRfkmafetedsserrlsGtvvgvsdldpvrWpnSkWrsLk 83 
                 aahaa+++s+F+++YnPra++seFv+++ +++k++  +++svGmRf m+fete+s +rr++Gt+vg+sd+dp+rWp+SkW +L+
   Lsa005365 272 AAHAAANRSPFTIFYNPRACPSEFVIPLVRYRKSVFgTQLSVGMRFGMMFETEESGKRRYMGTIVGISDVDPLRWPGSKWHNLQ 355
                 79********************************988********************************************997 PP

Protein Features ? help Back to Top
3D Structure
Database Entry ID E-value Start End InterPro ID Description
SuperFamilySSF1019364.05E-37132275IPR015300DNA-binding pseudobarrel domain
Gene3DG3DSA:2.40.330.109.2E-33140260IPR015300DNA-binding pseudobarrel domain
CDDcd100173.61E-13145246No hitNo description
PROSITE profilePS508639.347146248IPR003340B3 DNA binding domain
PfamPF023625.3E-15146247IPR003340B3 DNA binding domain
SMARTSM010191.3E-12146248IPR003340B3 DNA binding domain
PfamPF065073.4E-31272355IPR010525Auxin response factor
PfamPF023095.4E-10711802IPR033389AUX/IAA domain
PROSITE profilePS5174525.738715799IPR000270PB1 domain
SuperFamilySSF542772.6E-9728794No hitNo description
Gene Ontology ? help Back to Top
GO Term GO Category GO Description
GO:0006355Biological Processregulation of transcription, DNA-templated
GO:0009725Biological Processresponse to hormone
GO:0005634Cellular Componentnucleus
GO:0003677Molecular FunctionDNA binding
GO:0005515Molecular Functionprotein binding
Sequence ? help Back to Top
Protein Sequence    Length: 838 aa     Download sequence    Send to blast
MAAIEEKLNS SGVNSGSHSL LEEMKLLKEM QDHSAIKKPI NSELWHACAG PLVTLPQVGS  60
LVYYFPQGHS EQVAVSTNRT ATSQVPNYPN LPSQLLCQVL NATLHADKDT DEIYAQMSLR  120
PVNSEKDVLP IPDFGIKPSR HPSEFFCKTL TPSDTSTHGG FSVPRRAAEK LFPQLDFSMQ  180
PPTQELIGRD LHDNTWTFRH IYPRAAKTTL TDYGVEMFVG AKRLKAGDAV LFIRDEKSQL  240
LLGVRRANRQ QTSLPSSVLS ADSMHIGVLA AAAHAAANRS PFTIFYNPRA CPSEFVIPLV  300
RYRKSVFGTQ LSVGMRFGMM FETEESGKRR YMGTIVGISD VDPLRWPGSK WHNLQVEWDE  360
PGCGDKQSRV SPWDIEAPES LFIFPSLTSS LKRPFNSAFL GAQTEWDNMV TRPFMRAPET  420
INGNFSNPSM SSLWSEQLVK MLMKPQTNHN TPPVIQDTFT TNRPQFHLIQ PNTTTTITAA  480
SPPQSTQNLS GDHQSDQKPP ITVTSDTIKP ESKPMSPFLN QLSPFDSSVL HGQQFDSPQI  540
DSSSLNGLFP YPDTNVLNPY QSLGSETWDP QPNNTSRSFF QQNTGPTNYG FKDLSDENQT  600
HNNVYNCINF EGSNGGSTVV DPSVSSTVLD EFCNLKDIEF QNPSNYLVSN NNFSSSQDVQ  660
SQITSASLVD SQAYSMQELP DNSGGASSSN GEFDDSGGLL QNNSWQQVAV PTRVRTYTKI  720
QKAGSVGRSI DVSSFKNYDE LCCEIEKMFG LEGLLNDSRG SGWKLVYVDF ENDVLLVGDD  780
PWEEFVGCVR CIRILSPSEV QQMGEEGMQL LNSNAALQAG INGGSGSDNG ARTWVGPT
3D Structure ? help Back to Top
Structure
PDB ID Evalue Query Start Query End Hit Start Hit End Description
4ldu_A0.013805392Auxin response factor 5
Search in ModeBase
Functional Description ? help Back to Top
Source Description
UniProtAuxin response factors (ARFs) are transcriptional factors that bind specifically to the DNA sequence 5'-TGTCTC-3' found in the auxin-responsive promoter elements (AuxREs). Seems to act as transcriptional activator. Formation of heterodimers with Aux/IAA proteins may alter their ability to modulate early auxin response genes expression. Mediates embryo axis formation and vascular tissues differentiation. Functionally redundant with ARF7. May be necessary to counteract AMP1 activity. {ECO:0000269|PubMed:12036261, ECO:0000269|PubMed:14973283, ECO:0000269|PubMed:17553903}.
Annotation -- Protein ? help Back to Top
Source Hit ID E-value Description
RefseqXP_023734807.10.0auxin response factor 5-like
SwissprotP930240.0ARFE_ARATH; Auxin response factor 5
TrEMBLA0A2J6KDB80.0A0A2J6KDB8_LACSA; Auxin response factor
STRINGXP_009778804.10.0(Nicotiana sylvestris)
Best hit in Arabidopsis thaliana ? help Back to Top
Hit ID E-value Description
AT1G19850.10.0ARF family protein
Publications ? help Back to Top
  1. Chen MK,Wilson RL,Palme K,Ditengou FA,Shpak ED
    ERECTA family genes regulate auxin transport in the shoot apical meristem and forming leaf primordia.
    Plant Physiol., 2013. 162(4): p. 1978-91
    [PMID:23821653]
  2. Huang JB, et al.
    ROP3 GTPase contributes to polar auxin transport and auxin responses and is important for embryogenesis and seedling growth in Arabidopsis.
    Plant Cell, 2014. 26(9): p. 3501-18
    [PMID:25217509]
  3. Qi J, et al.
    Auxin depletion from leaf primordia contributes to organ patterning.
    Proc. Natl. Acad. Sci. U.S.A., 2014. 111(52): p. 18769-74
    [PMID:25512543]
  4. Crawford BC, et al.
    Plant development. Genetic control of distal stem cell fate within root and embryonic meristems.
    Science, 2015. 347(6222): p. 655-9
    [PMID:25612610]
  5. Zhang Y, et al.
    Regulation of oncogene expression in T-DNA-transformed host plant cells.
    PLoS Pathog., 2015. 11(1): p. e1004620
    [PMID:25615824]
  6. Robert HS, et al.
    Plant embryogenesis requires AUX/LAX-mediated auxin influx.
    Development, 2015. 142(4): p. 702-11
    [PMID:25617434]
  7. Krogan NT,Berleth T
    The identification and characterization of specific ARF-Aux/IAA regulatory modules in plant growth and development.
    Plant Signal Behav, 2015. 10(4): p. e992748
    [PMID:25830553]
  8. Ckurshumova W,Berleth T
    Overcoming recalcitrance - Auxin response factor functions in plant regeneration.
    Plant Signal Behav, 2015. 10(7): p. e993293
    [PMID:26098229]
  9. Wendrich JR, et al.
    A set of domain-specific markers in the Arabidopsis embryo.
    Plant Reprod, 2015. 28(3-4): p. 153-60
    [PMID:26216537]
  10. Wu MF, et al.
    Auxin-regulated chromatin switch directs acquisition of flower primordium founder fate.
    Elife, 2015. 4: p. e09269
    [PMID:26460543]
  11. Yamaguchi N,Jeong CW,Nole-Wilson S,Krizek BA,Wagner D
    AINTEGUMENTA and AINTEGUMENTA-LIKE6/PLETHORA3 Induce LEAFY Expression in Response to Auxin to Promote the Onset of Flower Formation in Arabidopsis.
    Plant Physiol., 2016. 170(1): p. 283-93
    [PMID:26537561]
  12. Müller CJ, et al.
    PHABULOSA Mediates an Auxin Signaling Loop to Regulate Vascular Patterning in Arabidopsis.
    Plant Physiol., 2016. 170(2): p. 956-70
    [PMID:26637548]
  13. Herud O,Weijers D,Lau S,Jürgens G
    Auxin responsiveness of the MONOPTEROS-BODENLOS module in primary root initiation critically depends on the nuclear import kinetics of the Aux/IAA inhibitor BODENLOS.
    Plant J., 2016. 85(2): p. 269-77
    [PMID:26714008]
  14. Luo S, et al.
    Constitutive Expression of OsIAA9 Affects Starch Granules Accumulation and Root Gravitropic Response in Arabidopsis.
    Front Plant Sci, 2015. 6: p. 1156
    [PMID:26734051]
  15. Yamaguchi N,Wu MF,Winter CM,Wagner D
    LEAFY and Polar Auxin Transport Coordinately Regulate Arabidopsis Flower Development.
    Plants (Basel), 2014. 3(2): p. 251-65
    [PMID:27135503]
  16. Krogan NT,Marcos D,Weiner AI,Berleth T
    The auxin response factor MONOPTEROS controls meristem function and organogenesis in both the shoot and root through the direct regulation of PIN genes.
    New Phytol., 2016. 212(1): p. 42-50
    [PMID:27441727]
  17. Fendrych M,Leung J,Friml J
    TIR1/AFB-Aux/IAA auxin perception mediates rapid cell wall acidification and growth of Arabidopsis hypocotyls.
    Elife, 2018.
    [PMID:27627746]
  18. Matthes M,Torres-Ruiz RA
    Boronic acid treatment phenocopies monopteros by affecting PIN1 membrane stability and polar auxin transport in Arabidopsis thaliana embryos.
    Development, 2016. 143(21): p. 4053-4062
    [PMID:27697905]
  19. Bhatia N, et al.
    Auxin Acts through MONOPTEROS to Regulate Plant Cell Polarity and Pattern Phyllotaxis.
    Curr. Biol., 2016. 26(23): p. 3202-3208
    [PMID:27818174]
  20. Wójcikowska B,Gaj MD
    Expression profiling of AUXIN RESPONSE FACTOR genes during somatic embryogenesis induction in Arabidopsis.
    Plant Cell Rep., 2017. 36(6): p. 843-858
    [PMID:28255787]
  21. Möller BK, et al.
    Auxin response cell-autonomously controls ground tissue initiation in the early Arabidopsis embryo.
    Proc. Natl. Acad. Sci. U.S.A., 2017. 114(12): p. E2533-E2539
    [PMID:28265057]
  22. Carey NS,Krogan NT
    The role of AUXIN RESPONSE FACTORs in the development and differential growth of inflorescence stems.
    Plant Signal Behav, 2017. 12(4): p. e1307492
    [PMID:28340328]
  23. Guan C, et al.
    Spatial Auxin Signaling Controls Leaf Flattening in Arabidopsis.
    Curr. Biol., 2017. 27(19): p. 2940-2950.e4
    [PMID:28943086]
  24. Gaillochet C, et al.
    Control of plant cell fate transitions by transcriptional and hormonal signals.
    Elife, 2018.
    [PMID:29058667]
  25. Zheng K, et al.
    Involvement of PACLOBUTRAZOL RESISTANCE6/KIDARI, an Atypical bHLH Transcription Factor, in Auxin Responses in Arabidopsis.
    Front Plant Sci, 2017. 8: p. 1813
    [PMID:29114256]
  26. Liu Z, et al.
    ARF2-ARF4 and ARF5 are Essential for Female and Male Gametophyte Development in Arabidopsis.
    Plant Cell Physiol., 2018. 59(1): p. 179-189
    [PMID:29145642]