PlantTFDB
PlantRegMap/PlantTFDB v5.0
Plant Transcription Factor Database
Transcription Factor Information
Basic Information | Signature Domain | Sequence | 
Basic Information? help Back to Top
TF ID Jcr4S25695.20
Common NameJCGZ_10901, LOC105637103
Organism
Taxonomic ID
Taxonomic Lineage
cellular organisms; Eukaryota; Viridiplantae; Streptophyta; Streptophytina; Embryophyta; Tracheophyta; Euphyllophyta; Spermatophyta; Magnoliophyta; Mesangiospermae; eudicotyledons; Gunneridae; Pentapetalae; rosids; fabids; Malpighiales; Euphorbiaceae; Crotonoideae; Jatropheae; Jatropha
Family ERF
Protein Properties Length: 191aa    MW: 21496.4 Da    PI: 9.2457
Description ERF family protein
Gene Model
Gene Model ID Type Source Coding Sequence
Jcr4S25695.20genomeKazusaView CDS
Signature Domain? help Back to Top
Signature Domain
No. Domain Score E-value Start End HMM Start HMM End
1AP258.51.6e-183989255
            AP2  2 gykGVrwdkkrgrWvAeIrdpsengkrkrfslgkfgtaeeAakaaiaarkkleg 55
                    y+GVr++   ++Wv+e+r+p++n  + r++lg+f t+e+Aa+a++ a+++l+g
  Jcr4S25695.20 39 FYRGVRRRN-GNKWVCEVREPNKN--KSRIWLGTFPTPEMAARAHDIAALALRG 89
                   7*****887.9******9999776..5*************************97 PP

Protein Features ? help Back to Top
3D Structure
Database Entry ID E-value Start End InterPro ID Description
PROSITE profilePS5103222.4973997IPR001471AP2/ERF domain
SuperFamilySSF541718.5E-223999IPR016177DNA-binding domain
SMARTSM003807.6E-2839103IPR001471AP2/ERF domain
Gene3DG3DSA:3.30.730.109.6E-304099IPR001471AP2/ERF domain
PfamPF008471.4E-124089IPR001471AP2/ERF domain
PRINTSPR003674.4E-84051IPR001471AP2/ERF domain
CDDcd000187.96E-274099No hitNo description
PRINTSPR003674.4E-86379IPR001471AP2/ERF domain
Gene Ontology ? help Back to Top
GO Term GO Category GO Description
GO:0006355Biological Processregulation of transcription, DNA-templated
GO:0003677Molecular FunctionDNA binding
GO:0003700Molecular Functiontranscription factor activity, sequence-specific DNA binding
Sequence ? help Back to Top
Protein Sequence    Length: 191 aa     Download sequence    Send to blast
MEFDNGSIPI SSICRFPPEV VMKKRKAGRT KFKETRHPFY RGVRRRNGNK WVCEVREPNK  60
NKSRIWLGTF PTPEMAARAH DIAALALRGD LAILNFPDSA SVLPRPKSSS AKDIKRVVRA  120
FVSTTPSVSP SSSSCSYMST TSQPYLVDHR SNDEFESCYN ETREVSESNA LFMDEEALFN  180
MPVLLDSLAE G
3D Structure ? help Back to Top
Structure
PDB ID Evalue Query Start Query End Hit Start Hit End Description
5wx9_A2e-1737971272Ethylene-responsive transcription factor ERF096
Search in ModeBase
Functional Description ? help Back to Top
Source Description
UniProtTranscriptional activator that binds specifically to the DNA sequence 5'-[AG]CCGAC-3'. Binding to the C-repeat/DRE element mediates cold-inducible transcription. CBF/DREB1 factors play a key role in freezing tolerance and cold acclimation. {ECO:0000269|PubMed:11798174, ECO:0000269|PubMed:16244146}.
Regulation -- Description ? help Back to Top
Source Description
UniProtINDUCTION: By cold stress. Positively regulated by the transcription factor ICE1. Subject to degradation by the 26S proteasome pathway in freezing conditions (PubMed:28344081). {ECO:0000269|PubMed:28344081, ECO:0000269|PubMed:9707537, ECO:0000269|PubMed:9735350, ECO:0000269|PubMed:9952441}.
Regulation -- PlantRegMap ? help Back to Top
Source Upstream Regulator Target Gene
PlantRegMapRetrieve-
Annotation -- Protein ? help Back to Top
Source Hit ID E-value Description
RefseqXP_012075895.11e-139dehydration-responsive element-binding protein 1A
SwissprotQ9M0L02e-46DRE1A_ARATH; Dehydration-responsive element-binding protein 1A
TrEMBLA0A067KEP41e-138A0A067KEP4_JATCU; Uncharacterized protein
STRINGcassava4.1_033892m5e-66(Manihot esculenta)
Orthologous Group ? help Back to Top
LineageOrthologous Group IDTaxa NumberGene Number
FabidsOGEF24333224
Best hit in Arabidopsis thaliana ? help Back to Top
Hit ID E-value Description
AT4G25480.15e-37dehydration response element B1A
Publications ? help Back to Top
  1. Hong B, et al.
    Over-expression of AtDREB1A in chrysanthemum enhances tolerance to heat stress.
    Plant Mol. Biol., 2009. 70(3): p. 231-40
    [PMID:19234675]
  2. Vadez V,Rao JS,Bhatnagar-Mathur P,Sharma KK
    DREB1A promotes root development in deep soil layers and increases water extraction under water stress in groundnut.
    Plant Biol (Stuttg), 2013. 15(1): p. 45-52
    [PMID:22672619]
  3. Keily J, et al.
    Model selection reveals control of cold signalling by evening-phased components of the plant circadian clock.
    Plant J., 2013. 76(2): p. 247-57
    [PMID:23909712]
  4. Su Z, et al.
    Flower development under drought stress: morphological and transcriptomic analyses reveal acute responses and long-term acclimation in Arabidopsis.
    Plant Cell, 2013. 25(10): p. 3785-807
    [PMID:24179129]
  5. Xu C,Wang M,Zhou L,Quan T,Xia G
    Heterologous expression of the wheat aquaporin gene TaTIP2;2 compromises the abiotic stress tolerance of Arabidopsis thaliana.
    PLoS ONE, 2013. 8(11): p. e79618
    [PMID:24223981]
  6. Ding Y, et al.
    Four distinct types of dehydration stress memory genes in Arabidopsis thaliana.
    BMC Plant Biol., 2013. 13: p. 229
    [PMID:24377444]
  7. Shi H, et al.
    The Cysteine2/Histidine2-Type Transcription Factor ZINC FINGER OF ARABIDOPSIS THALIANA6 Modulates Biotic and Abiotic Stress Responses by Activating Salicylic Acid-Related Genes and C-REPEAT-BINDING FACTOR Genes in Arabidopsis.
    Plant Physiol., 2014. 165(3): p. 1367-1379
    [PMID:24834923]
  8. Zhang L, et al.
    Global analysis of gene expression profiles in physic nut (Jatropha curcas L.) seedlings exposed to salt stress.
    PLoS ONE, 2014. 9(5): p. e97878
    [PMID:24837971]
  9. Xu F, et al.
    Increased drought tolerance through the suppression of ESKMO1 gene and overexpression of CBF-related genes in Arabidopsis.
    PLoS ONE, 2014. 9(9): p. e106509
    [PMID:25184213]
  10. Sarkar T,Thankappan R,Kumar A,Mishra GP,Dobaria JR
    Heterologous expression of the AtDREB1A gene in transgenic peanut-conferred tolerance to drought and salinity stresses.
    PLoS ONE, 2014. 9(12): p. e110507
    [PMID:25545786]
  11. Miyazaki Y,Abe H,Takase T,Kobayashi M,Kiyosue T
    Overexpression of LOV KELCH protein 2 confers dehydration tolerance and is associated with enhanced expression of dehydration-inducible genes in Arabidopsis thaliana.
    Plant Cell Rep., 2015. 34(5): p. 843-52
    [PMID:25627253]
  12. Jiang W,Wu J,Zhang Y,Yin L,Lu J
    Isolation of a WRKY30 gene from Muscadinia rotundifolia (Michx) and validation of its function under biotic and abiotic stresses.
    Protoplasma, 2015. 252(5): p. 1361-74
    [PMID:25643917]
  13. Park S, et al.
    Regulation of the Arabidopsis CBF regulon by a complex low-temperature regulatory network.
    Plant J., 2015. 82(2): p. 193-207
    [PMID:25736223]
  14. Paul S,Gayen D,Datta SK,Datta K
    Dissecting root proteome of transgenic rice cultivars unravels metabolic alterations and accumulation of novel stress responsive proteins under drought stress.
    Plant Sci., 2015. 234: p. 133-43
    [PMID:25804816]
  15. Sazegari S,Niazi A,Ahmadi FS
    A study on the regulatory network with promoter analysis for Arabidopsis DREB-genes.
    Bioinformation, 2015. 11(2): p. 101-6
    [PMID:25848171]
  16. Alvarez-Gerding X,Espinoza C,Inostroza-Blancheteau C,Arce-Johnson P
    Molecular and physiological changes in response to salt stress in Citrus macrophylla W plants overexpressing Arabidopsis CBF3/DREB1A.
    Plant Physiol. Biochem., 2015. 92: p. 71-80
    [PMID:25914135]
  17. Shi H,Qian Y,Tan DX,Reiter RJ,He C
    Melatonin induces the transcripts of CBF/DREB1s and their involvement in both abiotic and biotic stresses in Arabidopsis.
    J. Pineal Res., 2015. 59(3): p. 334-42
    [PMID:26182834]
  18. Wang CL,Zhang SC,Qi SD,Zheng CC,Wu CA
    Delayed germination of Arabidopsis seeds under chilling stress by overexpressing an abiotic stress inducible GhTPS11.
    Gene, 2016. 575(2 Pt 1): p. 206-12
    [PMID:26325072]
  19. Gehan MA, et al.
    Natural variation in the C-repeat binding factor cold response pathway correlates with local adaptation of Arabidopsis ecotypes.
    Plant J., 2015. 84(4): p. 682-93
    [PMID:26369909]
  20. Su F, et al.
    Burkholderia phytofirmans PsJN reduces impact of freezing temperatures on photosynthesis in Arabidopsis thaliana.
    Front Plant Sci, 2015. 6: p. 810
    [PMID:26483823]
  21. Chan Z, et al.
    RDM4 modulates cold stress resistance in Arabidopsis partially through the CBF-mediated pathway.
    New Phytol., 2016. 209(4): p. 1527-39
    [PMID:26522658]
  22. Shah SH,Ali S,Qureshi AA,Zia MA,Ali GM
    WITHDRAWN: Physiological and biochemical characterization of tomato transgenic lines overexpressing Arabidopsis thaliana cold responsive-element binding factor 3 (AtCBF3) gene under chilling stress.
    J. Biotechnol., 2016.
    [PMID:26732415]
  23. Gao S, et al.
    A cotton miRNA is involved in regulation of plant response to salt stress.
    Sci Rep, 2016. 6: p. 19736
    [PMID:26813144]
  24. Qiao Z,Li CL,Zhang W
    WRKY1 regulates stomatal movement in drought-stressed Arabidopsis thaliana.
    Plant Mol. Biol., 2016. 91(1-2): p. 53-65
    [PMID:26820136]
  25. Shi H,Wei Y,He C
    Melatonin-induced CBF/DREB1s are essential for diurnal change of disease resistance and CCA1 expression in Arabidopsis.
    Plant Physiol. Biochem., 2016. 100: p. 150-155
    [PMID:26828406]
  26. Kazama D, et al.
    Identification of Chimeric Repressors that Confer Salt and Osmotic Stress Tolerance in Arabidopsis.
    Plants (Basel), 2013. 2(4): p. 769-85
    [PMID:27137403]
  27. Norén L, et al.
    Circadian and Plastid Signaling Pathways Are Integrated to Ensure Correct Expression of the CBF and COR Genes during Photoperiodic Growth.
    Plant Physiol., 2016. 171(2): p. 1392-406
    [PMID:27208227]
  28. Zhao C, et al.
    Mutational Evidence for the Critical Role of CBF Transcription Factors in Cold Acclimation in Arabidopsis.
    Plant Physiol., 2016. 171(4): p. 2744-59
    [PMID:27252305]
  29. Jia Y, et al.
    The cbfs triple mutants reveal the essential functions of CBFs in cold acclimation and allow the definition of CBF regulons in Arabidopsis.
    New Phytol., 2016. 212(2): p. 345-53
    [PMID:27353960]
  30. Zhao C,Zhu JK
    The broad roles of CBF genes: From development to abiotic stress.
    Plant Signal Behav, 2016. 11(8): p. e1215794
    [PMID:27472659]
  31. Wei T, et al.
    Ectopic Expression of DREB Transcription Factor, AtDREB1A, Confers Tolerance to Drought in Transgenic Salvia miltiorrhiza.
    Plant Cell Physiol., 2016. 57(8): p. 1593-609
    [PMID:27485523]
  32. Bolt S,Zuther E,Zintl S,Hincha DK,Schmülling T
    ERF105 is a transcription factor gene of Arabidopsis thaliana required for freezing tolerance and cold acclimation.
    Plant Cell Environ., 2017. 40(1): p. 108-120
    [PMID:27723941]
  33. An D, et al.
    Divergent Regulation of CBF Regulon on Cold Tolerance and Plant Phenotype in Cassava Overexpressing Arabidopsis CBF3 Gene.
    Front Plant Sci, 2016. 7: p. 1866
    [PMID:27999588]
  34. Shi Y, et al.
    The precise regulation of different COR genes by individual CBF transcription factors in Arabidopsis thaliana.
    J Integr Plant Biol, 2017. 59(2): p. 118-133
    [PMID:28009483]
  35. Zhou M,Chen H,Wei D,Ma H,Lin J
    Arabidopsis CBF3 and DELLAs positively regulate each other in response to low temperature.
    Sci Rep, 2017. 7: p. 39819
    [PMID:28051152]
  36. Liu Z, et al.
    Plasma Membrane CRPK1-Mediated Phosphorylation of 14-3-3 Proteins Induces Their Nuclear Import to Fine-Tune CBF Signaling during Cold Response.
    Mol. Cell, 2017. 66(1): p. 117-128.e5
    [PMID:28344081]
  37. Kidokoro S, et al.
    Different Cold-Signaling Pathways Function in the Responses to Rapid and Gradual Decreases in Temperature.
    Plant Cell, 2017. 29(4): p. 760-774
    [PMID:28351986]
  38. Shen PC,Hour AL,Liu LD
    Microarray meta-analysis to explore abiotic stress-specific gene expression patterns in Arabidopsis.
    Bot Stud, 2017. 58(1): p. 22
    [PMID:28510204]
  39. Kim SH, et al.
    Phosphorylation of the transcriptional repressor MYB15 by mitogen-activated protein kinase 6 is required for freezing tolerance in Arabidopsis.
    Nucleic Acids Res., 2017. 45(11): p. 6613-6627
    [PMID:28510716]
  40. Yang L, et al.
    Systematic analysis of the G-box Factor 14-3-3 gene family and functional characterization of GF14a in Brachypodium distachyon.
    Plant Physiol. Biochem., 2017. 117: p. 1-11
    [PMID:28575641]
  41. Shah SH, et al.
    Chilling tolerance in three tomato transgenic lines overexpressing CBF3 gene controlled by a stress inducible promoter.
    Environ Sci Pollut Res Int, 2017. 24(22): p. 18536-18553
    [PMID:28646315]
  42. Li A, et al.
    Transcriptome Profiling Reveals the Negative Regulation of Multiple Plant Hormone Signaling Pathways Elicited by Overexpression of C-Repeat Binding Factors.
    Front Plant Sci, 2017. 8: p. 1647
    [PMID:28983312]
  43. Du X,Jin Z,Liu D,Yang G,Pei Y
    Hydrogen sulfide alleviates the cold stress through MPK4 in Arabidopsis thaliana.
    Plant Physiol. Biochem., 2017. 120: p. 112-119
    [PMID:29024849]
  44. Cho S, et al.
    Accession-Dependent CBF Gene Deletion by CRISPR/Cas System in Arabidopsis.
    Front Plant Sci, 2017. 8: p. 1910
    [PMID:29163623]
  45. Beine-Golovchuk O, et al.
    Plant Temperature Acclimation and Growth Rely on Cytosolic Ribosome Biogenesis Factor Homologs.
    Plant Physiol., 2018. 176(3): p. 2251-2276
    [PMID:29382692]
  46. Huang KC,Lin WC,Cheng WH
    Salt hypersensitive mutant 9, a nucleolar APUM23 protein, is essential for salt sensitivity in association with the ABA signaling pathway in Arabidopsis.
    BMC Plant Biol., 2018. 18(1): p. 40
    [PMID:29490615]
  47. Wei T, et al.
    Comparative Transcriptome Analyses Reveal Potential Mechanisms of Enhanced Drought Tolerance in Transgenic Salvia Miltiorrhiza Plants Expressing AtDREB1A from Arabidopsis.
    Int J Mol Sci, 2018.
    [PMID:29534548]