PlantTFDB
PlantRegMap/PlantTFDB v5.0
Plant Transcription Factor Database
Transcription Factor Information
Basic Information | Signature Domain | Sequence | 
Basic Information? help Back to Top
TF ID KZV28906.1
Organism
Taxonomic ID
Taxonomic Lineage
cellular organisms; Eukaryota; Viridiplantae; Streptophyta; Streptophytina; Embryophyta; Tracheophyta; Euphyllophyta; Spermatophyta; Magnoliophyta; Mesangiospermae; eudicotyledons; Gunneridae; Pentapetalae; asterids; lamiids; Lamiales; Gesneriaceae; Didymocarpoideae; Trichosporeae; Loxocarpinae; Dorcoceras
Family C2H2
Protein Properties Length: 885aa    MW: 100227 Da    PI: 7.7533
Description C2H2 family protein
Gene Model
Gene Model ID Type Source Coding Sequence
KZV28906.1genomeCNUView CDS
Signature Domain? help Back to Top
Signature Domain
No. Domain Score E-value Start End HMM Start HMM End
1zf-C2H218.27e-06741760120
                 EEETTTTEEESSHHHHHHHH CS
     zf-C2H2   1 ykCpdCgksFsrksnLkrHi 20 
                 ++C++C+k+F+r  nL+ H+
  KZV28906.1 741 FSCQICKKTFNRYNNLQMHM 760
                 89*****************9 PP

Protein Features ? help Back to Top
3D Structure
Database Entry ID E-value Start End InterPro ID Description
Gene3DG3DSA:3.40.50.6206.7E-455164IPR014729Rossmann-like alpha/beta/alpha sandwich fold
PROSITE profilePS5164534.0355134IPR006050DNA photolyase, N-terminal
TIGRFAMsTIGR027664.8E-2856482IPR014134Cryptochrome, plant
SuperFamilySSF524253.14E-477174IPR006050DNA photolyase, N-terminal
PfamPF008758.6E-397162IPR006050DNA photolyase, N-terminal
SuperFamilySSF481739.55E-100192486IPR005101Cryptochrome/DNA photolyase, FAD-binding domain
Gene3DG3DSA:1.25.40.802.3E-26206291No hitNo description
PfamPF034419.9E-59283481IPR005101Cryptochrome/DNA photolyase, FAD-binding domain
Gene3DG3DSA:1.10.579.102.7E-63292485No hitNo description
PRINTSPR001476.1E-10332348IPR002081Cryptochrome/DNA photolyase class 1
PROSITE patternPS003940332344IPR018394Cryptochrome/DNA photolyase class 1, conserved site, C-terminal
PROSITE patternPS006910352371IPR018394Cryptochrome/DNA photolyase class 1, conserved site, C-terminal
PRINTSPR001476.1E-10352370IPR002081Cryptochrome/DNA photolyase class 1
PRINTSPR001476.1E-10391405IPR002081Cryptochrome/DNA photolyase class 1
PfamPF125462.7E-29508624IPR020978Cryptochrome C-terminal
SuperFamilySSF576674.96E-5736764No hitNo description
Gene3DG3DSA:3.30.160.605.5E-4741760IPR013087Zinc finger C2H2-type/integrase DNA-binding domain
PROSITE profilePS5015710.97741768IPR007087Zinc finger, C2H2
PROSITE patternPS000280743763IPR007087Zinc finger, C2H2
Gene Ontology ? help Back to Top
GO Term GO Category GO Description
GO:0009414Biological Processresponse to water deprivation
GO:0009583Biological Processdetection of light stimulus
GO:0009638Biological Processphototropism
GO:0009640Biological Processphotomorphogenesis
GO:0009644Biological Processresponse to high light intensity
GO:0009646Biological Processresponse to absence of light
GO:0009785Biological Processblue light signaling pathway
GO:0010075Biological Processregulation of meristem growth
GO:0010114Biological Processresponse to red light
GO:0010117Biological Processphotoprotection
GO:0010118Biological Processstomatal movement
GO:0010218Biological Processresponse to far red light
GO:0010244Biological Processresponse to low fluence blue light stimulus by blue low-fluence system
GO:0010310Biological Processregulation of hydrogen peroxide metabolic process
GO:0010343Biological Processsinglet oxygen-mediated programmed cell death
GO:0010617Biological Processcircadian regulation of calcium ion oscillation
GO:0042752Biological Processregulation of circadian rhythm
GO:0046283Biological Processanthocyanin-containing compound metabolic process
GO:0046777Biological Processprotein autophosphorylation
GO:0051510Biological Processregulation of unidimensional cell growth
GO:0055114Biological Processoxidation-reduction process
GO:0060918Biological Processauxin transport
GO:0071000Biological Processresponse to magnetism
GO:0072387Biological Processflavin adenine dinucleotide metabolic process
GO:1900426Biological Processpositive regulation of defense response to bacterium
GO:1901332Biological Processnegative regulation of lateral root development
GO:1901371Biological Processregulation of leaf morphogenesis
GO:1901529Biological Processpositive regulation of anion channel activity
GO:1901672Biological Processpositive regulation of systemic acquired resistance
GO:1902347Biological Processresponse to strigolactone
GO:1902448Biological Processpositive regulation of shade avoidance
GO:0005737Cellular Componentcytoplasm
GO:0016604Cellular Componentnuclear body
GO:0003676Molecular Functionnucleic acid binding
GO:0004672Molecular Functionprotein kinase activity
GO:0005524Molecular FunctionATP binding
GO:0009882Molecular Functionblue light photoreceptor activity
GO:0042803Molecular Functionprotein homodimerization activity
GO:0046872Molecular Functionmetal ion binding
GO:0071949Molecular FunctionFAD binding
Sequence ? help Back to Top
Protein Sequence    Length: 885 aa     Download sequence    Send to blast
MSGGGCSIVW FRRDLRVEDN PALAAGVRAG AVIAVFIWAP EEEGPYYPGR VSRWWLKQSL  60
AHLDISLKRL GTSLLTKRST DSVSSLLEIV KSTGATQILF NHLYDPISLV RDHRAKEVLT  120
AQGVAVRSFN ADLLYEPWEV HDQEGLPFTT FAGFWERCLS MPYDPEAPLL PPKRIISVDI  180
SKCASDPLVF EDESEKGSNA LLARAWSPGW SNADKALTSF INGPLIEYSK NRRKADSATT  240
SFLSPHLHFG EVSVRKVFHL VRSKQVLWAN DGNKAGEESV NLFLKSIGLR EYSRYMSFNH  300
PYSHERPLLG HLKFFPWVVD EGYFKAWRQG RTGYPLVDAG MRELWASGWL HDRIRVVVSS  360
FFVKVLQLPW RWGMKYFWDT LLDADLESDA LGWQYISGTL PDGRQLDRID NPQFEGYKFD  420
PNGEYVRRWL PELARLPTEW IHHPWNAPES VLQAAGIELG SNYPLPIVEI DDAKARLQEA  480
LSQMWRNEAV SRAGNGMEEG LGDSSESTPI AFPQETEVEM EMDNDPIRNN HINSNIRQYE  540
DQMVPSITSF VRVQDEETSV DVRISADESR AEVPSNVNMA EEPRRDAFGR VTAETVRPNS  600
GFLQFNTTGR RNSEDSTAES SSVSRRERDG GLVPVWSPSS STYSEPFAAE DGSIGNGPSY  660
SQRHPQSHQL INRRRLYQTG PWLRGEDAAL ALQIGLPNRA CGCLDDSSAD VGGIKDVNPV  720
ELLSQYWIPT PEQILVGFTH FSCQICKKTF NRYNNLQMHM WGHGSEYRRG PNSLKGTQPR  780
AMLGIPCYCY REGCKHNINH PRAKPLKDFR TLQTHHKRKH GMKRFSCRKC GKLLAVKGDW  840
RTHEKNCGKR WLCVCGSDFK HKRSLKDHVA SFGSGHGPSF PTHFS
3D Structure ? help Back to Top
Structure
PDB ID Evalue Query Start Query End Hit Start Hit End Description
1u3c_A0.0850015509Cryptochrome 1 apoprotein
1u3d_A0.0850015509Cryptochrome 1 apoprotein
Search in ModeBase
Functional Description ? help Back to Top
Source Description
UniProtPhotoreceptor that mediates primarily blue light inhibition of hypocotyl elongation and photoperiodic control of floral initiation, and regulates other light responses, including circadian rhythms, tropic growth, stomata opening, guard cell development, root development, bacterial and viral pathogen responses, abiotic stress responses, cell cycles, programmed cell death, apical dominance, fruit and ovule development, seed dormancy, and magnetoreception. Photoexcited cryptochromes interact with signaling partner proteins to alter gene expression at both transcriptional and post-translational levels and, consequently, regulate the corresponding metabolic and developmental programs (PubMed:21841916). Blue-light absorbing flavoprotein that activates reversible flavin photoreduction via an electron transport chain comprising a tryptophan triad (W-324, W-377 and W-400), accompanied by a large conformational change upon photoexcitation, or via an alternative electron transport that involves small metabolites, including NADPH, NADH, and ATP. The half-life of the activated signaling state is about 5 minutes (PubMed:26313597, PubMed:25157750, PubMed:23398192, PubMed:21875594, PubMed:21467031). Also involved in the detection of blue/green ratio in light (shade under leaf canopies) and subsequent adaptations on plant growth and development (PubMed:20668058). In darkness, the dark reoxidation of flavin occurs and leads to inactivated state (PubMed:21467031, PubMed:23398192). Perceives low blue light (LBL) and responds by directly contacting two bHLH transcription factors, PIF4 and PIF5, at chromatin on E-box variant 5'-CA[CT]GTG-3' to promote their activity and stimulate specific gene expression to adapt global physiology (e.g. hypocotyl elongation and hyponastic growth in low blue light) (PubMed:26724867, PubMed:19558423). When activated by high-intensity blue light, catalyzes direct enzymatic conversion of molecular oxygen O(2) to reactive oxygen species (ROS) and hydrogen peroxide H(2)O(2) in vitro. ROS accumulation upon activation by blue light leads to cell death in protoplasts (PubMed:25728686). Seems essential for blue-light-triggered and singlet oxygen-mediated programmed cell death (PCD) (PubMed:17075038). Required for the induction of nuclear genes encoding photoprotective components by GATA24 and GATA28 in extreme light intensities that exceed the electron utilization capacity of the chloroplast (PubMed:22786870). Involved in shortening the circadian clock period, especially at 27 degrees Celsius, in blue light (BL) and required to maintain clock genes expression rhythm (PubMed:23511208). Mediates blue light-induced gene expression and hypocotyl elongation through the inhibition of COP1-mediated degradation of the transcription factors BIT1 and HY5 and via the activation of anion channels at the plasma membrane, probably via auxin signaling (PubMed:21511872, PubMed:21511871, PubMed:16093319, PubMed:18397371, PubMed:12324610, PubMed:8528277, PubMed:9765547, PubMed:25721730). Required for the hypocotyl hook formation in darkness (PubMed:22855128). Involved in blue light-dependent stomatal opening, CHS gene expression, transpiration, inhibition of stem growth and increase of root growth, probably by regulating abscisic acid (ABA) (PubMed:22147516, PubMed:16093319, PubMed:16703358, PubMed:7756321, PubMed:9565033). Prevents lateral roots growth by inhibiting auxin transport (PubMed:20133010). Necessary for shade avoidance syndrome (SAS), characterized by leaf hyponasty and reduced lamina/petiole ratio, when exposed to blue light attenuation (PubMed:21457375). Together with phototropins, involved in phototropism regulation by various blue light fluence; blue light attenuates phototropism in high fluence rates (100 umol.m-2.s-1) but enhances phototropism in low fluence rates (<1.0 umol.m-2.s-1) (PubMed:12857830). Required for blue/UV-A wavelengths-mediated inhibition of explants shoot regeneration in vitro (e.g. new shoot apical meristems regeneration from excised cotyledons) (PubMed:22681544). Modulates anthocyanin accumulation in a PHYA-dependent manner in far-red-light. Acts as a PHYA/PHYB-dependent modulator of chlorophyll accumulation in red light. Contributes to most blue light deetiolation responses (PubMed:9733523, PubMed:8528277). May act as a chemical magnetoreceptor, via magnetically sensitive kinetics and quantum yields of photo-induced flavin / tryptophan radical pairs (PubMed:22421133). The effect of near-null magnetic field on flowering is altered by changes of blue light cycle and intensity in a CRY1/CRY2-dependent manner (PubMed:26095447). Involved in the strigolactone signaling that regulates hypocotyl growth in response to blue light (PubMed:24126495). Modulates temperature-dependent growth and physiology maintenance, especially at warm ambient temperatures, via HFR1-dependent activity (PubMed:21265897). {ECO:0000269|PubMed:12324610, ECO:0000269|PubMed:12857830, ECO:0000269|PubMed:16093319, ECO:0000269|PubMed:16703358, ECO:0000269|PubMed:17075038, ECO:0000269|PubMed:18397371, ECO:0000269|PubMed:19558423, ECO:0000269|PubMed:20133010, ECO:0000269|PubMed:20668058, ECO:0000269|PubMed:21265897, ECO:0000269|PubMed:21457375, ECO:0000269|PubMed:21467031, ECO:0000269|PubMed:21511871, ECO:0000269|PubMed:21511872, ECO:0000269|PubMed:21875594, ECO:0000269|PubMed:22147516, ECO:0000269|PubMed:22421133, ECO:0000269|PubMed:22681544, ECO:0000269|PubMed:22786870, ECO:0000269|PubMed:22855128, ECO:0000269|PubMed:23398192, ECO:0000269|PubMed:23511208, ECO:0000269|PubMed:24126495, ECO:0000269|PubMed:25157750, ECO:0000269|PubMed:25721730, ECO:0000269|PubMed:25728686, ECO:0000269|PubMed:26095447, ECO:0000269|PubMed:26313597, ECO:0000269|PubMed:26724867, ECO:0000269|PubMed:7756321, ECO:0000269|PubMed:8528277, ECO:0000269|PubMed:9565033, ECO:0000269|PubMed:9733523, ECO:0000269|PubMed:9765547, ECO:0000303|PubMed:21841916}.; FUNCTION: Implicated in promoting R protein-mediated resistance to Pseudomonas syringae pv. tomato (Pst.) DC3000 under continuous light conditions. Promotes systemic acquired resistance (SAR) and PR gene expression triggered by P. syringae. {ECO:0000269|PubMed:20053798}.
Cis-element ? help Back to Top
SourceLink
PlantRegMapKZV28906.1
Regulation -- Description ? help Back to Top
Source Description
UniProtINDUCTION: Expression levels display circadian oscillations under constant conditions, with a high amplitude and an early phase, with maximal expression around 4-6 hours of the light phase. Induced by light (PubMed:11743105). Transcripts levels oscillate weakly and proportionally to temperature, but protein levels are stable, with higher levels at low temperature (12 degrees Celsius) (PubMed:23511208). Accumulates in response to low blue light (LBL) (PubMed:26724867). {ECO:0000269|PubMed:11743105, ECO:0000269|PubMed:23511208, ECO:0000269|PubMed:26724867}.
Regulation -- PlantRegMap ? help Back to Top
Source Upstream Regulator Target Gene
PlantRegMapRetrieve-
Annotation -- Protein ? help Back to Top
Source Hit ID E-value Description
RefseqXP_002307379.10.0cryptochrome-1 isoform X1
RefseqXP_024457693.10.0cryptochrome-1 isoform X2
SwissprotQ431250.0CRY1_ARATH; Cryptochrome-1
TrEMBLA0A2Z7BAG20.0A0A2Z7BAG2_9LAMI; Cryptochrome 1 family protein
STRINGPOPTR_0005s17100.10.0(Populus trichocarpa)
Best hit in Arabidopsis thaliana ? help Back to Top
Hit ID E-value Description
AT1G34790.11e-95C2H2 family protein
Publications ? help Back to Top
  1. Mockler TC,Guo H,Yang H,Duong H,Lin C
    Antagonistic actions of Arabidopsis cryptochromes and phytochrome B in the regulation of floral induction.
    Development, 1999. 126(10): p. 2073-82
    [PMID:10207133]
  2. Cashmore AR,Jarillo JA,Wu YJ,Liu D
    Cryptochromes: blue light receptors for plants and animals.
    Science, 1999. 284(5415): p. 760-5
    [PMID:10221900]
  3. Hennig L,Poppe C,Unger S,Schäfer E
    Control of hypocotyl elongation in Arabidopsis thaliana by photoreceptor interaction.
    Planta, 1999. 208(2): p. 257-63
    [PMID:10333589]
  4. Ninu L,Ahmad M,Miarelli C,Cashmore AR,Giuliano G
    Cryptochrome 1 controls tomato development in response to blue light.
    Plant J., 1999. 18(5): p. 551-556
    [PMID:10417705]
  5. Anderson MB, et al.
    Blue light-directed destabilization of the pea Lhcb1*4 transcript depends on sequences within the 5' untranslated region.
    Plant Cell, 1999. 11(8): p. 1579-90
    [PMID:10449589]
  6. Kleiner O,Kircher S,Harter K,Batschauer A
    Nuclear localization of the Arabidopsis blue light receptor cryptochrome 2.
    Plant J., 1999. 19(3): p. 289-96
    [PMID:10476076]
  7. Baum G,Long JC,Jenkins GI,Trewavas AJ
    Stimulation of the blue light phototropic receptor NPH1 causes a transient increase in cytosolic Ca2+.
    Proc. Natl. Acad. Sci. U.S.A., 1999. 96(23): p. 13554-9
    [PMID:10557359]
  8. Hennig L,Funk M,Whitelam GC,Schafer E
    Functional interaction of cryptochrome 1 and phytochrome D
    Plant J., 1999. 20(3): p. 289-94
    [PMID:10571889]
  9. Frechilla S,Zhu J,Talbott LD,Zeiger E
    Stomata from npq1, a zeaxanthin-less Arabidopsis mutant, lack a specific response to blue light.
    Plant Cell Physiol., 1999. 40(9): p. 949-54
    [PMID:10588066]
  10. Briggs WR,Huala E
    Blue-light photoreceptors in higher plants.
    Annu. Rev. Cell Dev. Biol., 1999. 15: p. 33-62
    [PMID:10611956]
  11. Casal JJ
    Phytochromes, cryptochromes, phototropin: photoreceptor interactions in plants.
    Photochem. Photobiol., 2000. 71(1): p. 1-11
    [PMID:10649883]
  12. Mazzella MA,Bertero D,Casal JJ
    Temperature-dependent internode elongation in vegetative plants of Arabidopsis thaliana lacking phytochrome B and cryptochrome 1.
    Planta, 2000. 210(3): p. 497-501
    [PMID:10750908]
  13. Reed JW, et al.
    Independent action of ELF3 and phyB to control hypocotyl elongation and flowering time.
    Plant Physiol., 2000. 122(4): p. 1149-60
    [PMID:10759510]
  14. Perrotta G, et al.
    Tomato contains homologues of Arabidopsis cryptochromes 1 and 2.
    Plant Mol. Biol., 2000. 42(5): p. 765-73
    [PMID:10809448]
  15. Lin C
    Plant blue-light receptors.
    Trends Plant Sci., 2000. 5(8): p. 337-42
    [PMID:10908878]
  16. Yanovsky MJ,Mazzella MA,Casal JJ
    A quadruple photoreceptor mutant still keeps track of time.
    Curr. Biol., 2000. 10(16): p. 1013-5
    [PMID:10985392]
  17. Más P,Devlin PF,Panda S,Kay SA
    Functional interaction of phytochrome B and cryptochrome 2.
    Nature, 2000. 408(6809): p. 207-11
    [PMID:11089975]
  18. Yang HQ, et al.
    The C termini of Arabidopsis cryptochromes mediate a constitutive light response.
    Cell, 2000. 103(5): p. 815-27
    [PMID:11114337]
  19. Weston E,Thorogood K,Vinti G,López-Juez E
    Light quantity controls leaf-cell and chloroplast development in Arabidopsis thaliana wild type and blue-light-perception mutants.
    Planta, 2000. 211(6): p. 807-15
    [PMID:11144265]
  20. Weller JL, et al.
    Genetic dissection of blue-light sensing in tomato using mutants deficient in cryptochrome 1 and phytochromes A, B1 and B2.
    Plant J., 2001. 25(4): p. 427-40
    [PMID:11260499]
  21. Jarillo JA, et al.
    An Arabidopsis circadian clock component interacts with both CRY1 and phyB.
    Nature, 2001. 410(6827): p. 487-90
    [PMID:11260718]
  22. Chun L,Kawakami A,Christopher DA
    Phytochrome A mediates blue light and UV-A-dependent chloroplast gene transcription in green leaves.
    Plant Physiol., 2001. 125(4): p. 1957-66
    [PMID:11299375]
  23. Wade HK,Bibikova TN,Valentine WJ,Jenkins GI
    Interactions within a network of phytochrome, cryptochrome and UV-B phototransduction pathways regulate chalcone synthase gene expression in Arabidopsis leaf tissue.
    Plant J., 2001. 25(6): p. 675-85
    [PMID:11319034]
  24. Boccalandro HE,Mazza CA,Mazzella MA,Casal JJ,Ballaré CL
    Ultraviolet B radiation enhances a phytochrome-B-mediated photomorphogenic response in Arabidopsis.
    Plant Physiol., 2001. 126(2): p. 780-8
    [PMID:11402206]
  25. Folta KM,Spalding EP
    Unexpected roles for cryptochrome 2 and phototropin revealed by high-resolution analysis of blue light-mediated hypocotyl growth inhibition.
    Plant J., 2001. 26(5): p. 471-8
    [PMID:11439133]
  26. Mazzella MA,Cerdán PD,Staneloni RJ,Casal JJ
    Hierarchical coupling of phytochromes and cryptochromes reconciles stability and light modulation of Arabidopsis development.
    Development, 2001. 128(12): p. 2291-9
    [PMID:11493548]
  27. Folta KM,Spalding EP
    Opposing roles of phytochrome A and phytochrome B in early cryptochrome-mediated growth inhibition.
    Plant J., 2001. 28(3): p. 333-40
    [PMID:11722775]
  28. Kinoshita T, et al.
    Phot1 and phot2 mediate blue light regulation of stomatal opening.
    Nature, 2001. 414(6864): p. 656-60
    [PMID:11740564]
  29. Tóth R, et al.
    Circadian clock-regulated expression of phytochrome and cryptochrome genes in Arabidopsis.
    Plant Physiol., 2001. 127(4): p. 1607-16
    [PMID:11743105]
  30. Yang HQ,Tang RH,Cashmore AR
    The signaling mechanism of Arabidopsis CRY1 involves direct interaction with COP1.
    Plant Cell, 2001. 13(12): p. 2573-87
    [PMID:11752373]
  31. Yanovsky MJ,Mazzella MA,Whitelam GC,Casal JJ
    Resetting of the circadian clock by phytochromes and cryptochromes in Arabidopsis.
    J. Biol. Rhythms, 2001. 16(6): p. 523-30
    [PMID:11760010]
  32. Ahmad M, et al.
    Action spectrum for cryptochrome-dependent hypocotyl growth inhibition in Arabidopsis.
    Plant Physiol., 2002. 129(2): p. 774-85
    [PMID:12068118]
  33. Gao J,Kaufman LS
    Blue-Light Regulation of the Arabidopsis thaliana Cab1 Gene.
    Plant Physiol., 1994. 104(4): p. 1251-1257
    [PMID:12232164]
  34. Liscum E,Hangarter RP
    Arabidopsis Mutants Lacking Blue Light-Dependent Inhibition of Hypocotyl Elongation.
    Plant Cell, 1991. 3(7): p. 685-694
    [PMID:12324610]
  35. Stoelzle S,Kagawa T,Wada M,Hedrich R,Dietrich P
    Blue light activates calcium-permeable channels in Arabidopsis mesophyll cells via the phototropin signaling pathway.
    Proc. Natl. Acad. Sci. U.S.A., 2003. 100(3): p. 1456-61
    [PMID:12540824]
  36. Wade HK,Sohal AK,Jenkins GI
    Arabidopsis ICX1 is a negative regulator of several pathways regulating flavonoid biosynthesis genes.
    Plant Physiol., 2003. 131(2): p. 707-15
    [PMID:12586894]
  37. Duek PD,Fankhauser C
    HFR1, a putative bHLH transcription factor, mediates both phytochrome A and cryptochrome signalling.
    Plant J., 2003. 34(6): p. 827-36
    [PMID:12795702]
  38. Kleine T,Lockhart P,Batschauer A
    An Arabidopsis protein closely related to Synechocystis cryptochrome is targeted to organelles.
    Plant J., 2003. 35(1): p. 93-103
    [PMID:12834405]
  39. Bouly JP, et al.
    Novel ATP-binding and autophosphorylation activity associated with Arabidopsis and human cryptochrome-1.
    Eur. J. Biochem., 2003. 270(14): p. 2921-8
    [PMID:12846824]
  40. Whippo CW,Hangarter RP
    Second positive phototropism results from coordinated co-action of the phototropins and cryptochromes.
    Plant Physiol., 2003. 132(3): p. 1499-507
    [PMID:12857830]
  41. Shalitin D,Yu X,Maymon M,Mockler T,Lin C
    Blue light-dependent in vivo and in vitro phosphorylation of Arabidopsis cryptochrome 1.
    Plant Cell, 2003. 15(10): p. 2421-9
    [PMID:14523249]
  42. Botto JF,Alonso-Blanco C,Garzarón I,Sánchez RA,Casal JJ
    The Cape Verde Islands allele of cryptochrome 2 enhances cotyledon unfolding in the absence of blue light in Arabidopsis.
    Plant Physiol., 2003. 133(4): p. 1547-56
    [PMID:14605225]
  43. Ohgishi M,Saji K,Okada K,Sakai T
    Functional analysis of each blue light receptor, cry1, cry2, phot1, and phot2, by using combinatorial multiple mutants in Arabidopsis.
    Proc. Natl. Acad. Sci. U.S.A., 2004. 101(8): p. 2223-8
    [PMID:14982991]
  44. Wolyn DJ, et al.
    Light-response quantitative trait loci identified with composite interval and eXtreme array mapping in Arabidopsis thaliana.
    Genetics, 2004. 167(2): p. 907-17
    [PMID:15238539]
  45. Brautigam CA, et al.
    Structure of the photolyase-like domain of cryptochrome 1 from Arabidopsis thaliana.
    Proc. Natl. Acad. Sci. U.S.A., 2004. 101(33): p. 12142-7
    [PMID:15299148]
  46. Usami T,Mochizuki N,Kondo M,Nishimura M,Nagatani A
    Cryptochromes and phytochromes synergistically regulate Arabidopsis root greening under blue light.
    Plant Cell Physiol., 2004. 45(12): p. 1798-808
    [PMID:15653798]
  47. Partch CL,Clarkson MW,Ozgür S,Lee AL,Sancar A
    Role of structural plasticity in signal transduction by the cryptochrome blue-light photoreceptor.
    Biochemistry, 2005. 44(10): p. 3795-805
    [PMID:15751956]
  48. Zeugner A, et al.
    Light-induced electron transfer in Arabidopsis cryptochrome-1 correlates with in vivo function.
    J. Biol. Chem., 2005. 280(20): p. 19437-40
    [PMID:15774475]
  49. Sang Y, et al.
    N-terminal domain-mediated homodimerization is required for photoreceptor activity of Arabidopsis CRYPTOCHROME 1.
    Plant Cell, 2005. 17(5): p. 1569-84
    [PMID:15805487]
  50. Mao J,Zhang YC,Sang Y,Li QH,Yang HQ
    From The Cover: A role for Arabidopsis cryptochromes and COP1 in the regulation of stomatal opening.
    Proc. Natl. Acad. Sci. U.S.A., 2005. 102(34): p. 12270-5
    [PMID:16093319]
  51. Kottke T,Batschauer A,Ahmad M,Heberle J
    Blue-light-induced changes in Arabidopsis cryptochrome 1 probed by FTIR difference spectroscopy.
    Biochemistry, 2006. 45(8): p. 2472-9
    [PMID:16489739]
  52. Chatterjee M,Sharma P,Khurana JP
    Cryptochrome 1 from Brassica napus is up-regulated by blue light and controls hypocotyl/stem growth and anthocyanin accumulation.
    Plant Physiol., 2006. 141(1): p. 61-74
    [PMID:16531484]
  53. Canamero RC, et al.
    Cryptochrome photoreceptors cry1 and cry2 antagonistically regulate primary root elongation in Arabidopsis thaliana.
    Planta, 2006. 224(5): p. 995-1003
    [PMID:16703358]
  54. Zhang YC,Gong SF,Li QH,Sang Y,Yang HQ
    Functional and signaling mechanism analysis of rice CRYPTOCHROME 1.
    Plant J., 2006. 46(6): p. 971-83
    [PMID:16805731]
  55. Ahmad M,Galland P,Ritz T,Wiltschko R,Wiltschko W
    Magnetic intensity affects cryptochrome-dependent responses in Arabidopsis thaliana.
    Planta, 2007. 225(3): p. 615-24
    [PMID:16955271]
  56. Ozgür S,Sancar A
    Analysis of autophosphorylating kinase activities of Arabidopsis and human cryptochromes.
    Biochemistry, 2006. 45(44): p. 13369-74
    [PMID:17073458]
  57. Danon A,Coll NS,Apel K
    Cryptochrome-1-dependent execution of programmed cell death induced by singlet oxygen in Arabidopsis thaliana.
    Proc. Natl. Acad. Sci. U.S.A., 2006. 103(45): p. 17036-41
    [PMID:17075038]
  58. Bouly JP, et al.
    Cryptochrome blue light photoreceptors are activated through interconversion of flavin redox states.
    J. Biol. Chem., 2007. 282(13): p. 9383-91
    [PMID:17237227]
  59. Banerjee R, et al.
    The signaling state of Arabidopsis cryptochrome 2 contains flavin semiquinone.
    J. Biol. Chem., 2007. 282(20): p. 14916-22
    [PMID:17355959]
  60. Phee BK, et al.
    Comparative proteomic analysis of blue light signaling components in the Arabidopsis cryptochrome 1 mutant.
    Mol. Cells, 2007. 23(2): p. 154-60
    [PMID:17464191]
  61. Wu G,Spalding EP
    Separate functions for nuclear and cytoplasmic cryptochrome 1 during photomorphogenesis of Arabidopsis seedlings.
    Proc. Natl. Acad. Sci. U.S.A., 2007. 104(47): p. 18813-8
    [PMID:18003924]
  62. Kang B, et al.
    Multiple interactions between cryptochrome and phototropin blue-light signalling pathways in Arabidopsis thaliana.
    Planta, 2008. 227(5): p. 1091-9
    [PMID:18183416]
  63. Chen X,Lin WH,Wang Y,Luan S,Xue HW
    An inositol polyphosphate 5-phosphatase functions in PHOTOTROPIN1 signaling in Arabidopis by altering cytosolic Ca2+.
    Plant Cell, 2008. 20(2): p. 353-66
    [PMID:18252844]
  64. Onda Y,Yagi Y,Saito Y,Takenaka N,Toyoshima Y
    Light induction of Arabidopsis SIG1 and SIG5 transcripts in mature leaves: differential roles of cryptochrome 1 and cryptochrome 2 and dual function of SIG5 in the recognition of plastid promoters.
    Plant J., 2008. 55(6): p. 968-78
    [PMID:18532976]
  65. Xu P, et al.
    Wheat cryptochromes: subcellular localization and involvement in photomorphogenesis and osmotic stress responses.
    Plant Physiol., 2009. 149(2): p. 760-74
    [PMID:19052154]
  66. Wang L,Uilecan IV,Assadi AH,Kozmik CA,Spalding EP
    HYPOTrace: image analysis software for measuring hypocotyl growth and shape demonstrated on Arabidopsis seedlings undergoing photomorphogenesis.
    Plant Physiol., 2009. 149(4): p. 1632-7
    [PMID:19211697]
  67. Burney S, et al.
    Conformational change induced by ATP binding correlates with enhanced biological function of Arabidopsis cryptochrome.
    FEBS Lett., 2009. 583(9): p. 1427-33
    [PMID:19327354]
  68. Millenaar FF, et al.
    Differential petiole growth in Arabidopsis thaliana: photocontrol and hormonal regulation.
    New Phytol., 2009. 184(1): p. 141-52
    [PMID:19558423]
  69. Ozturk N, et al.
    Comparative photochemistry of animal type 1 and type 4 cryptochromes.
    Biochemistry, 2009. 48(36): p. 8585-93
    [PMID:19663499]
  70. Hoang N,Bouly JP,Ahmad M
    Evidence of a light-sensing role for folate in Arabidopsis cryptochrome blue-light receptors.
    Mol Plant, 2008. 1(1): p. 68-74
    [PMID:20031915]
  71. Yang YJ, et al.
    Blue-light-independent activity of Arabidopsis cryptochromes in the regulation of steady-state levels of protein and mRNA expression.
    Mol Plant, 2008. 1(1): p. 167-77
    [PMID:20031923]
  72. Wu L,Yang HQ
    CRYPTOCHROME 1 is implicated in promoting R protein-mediated plant resistance to Pseudomonas syringae in Arabidopsis.
    Mol Plant, 2010. 3(3): p. 539-48
    [PMID:20053798]
  73. Wu G,Cameron JN,Ljung K,Spalding EP
    A role for ABCB19-mediated polar auxin transport in seedling photomorphogenesis mediated by cryptochrome 1 and phytochrome B.
    Plant J., 2010. 62(2): p. 179-91
    [PMID:20088903]
  74. Zeng J, et al.
    Arabidopsis cryptochrome-1 restrains lateral roots growth by inhibiting auxin transport.
    J. Plant Physiol., 2010. 167(8): p. 670-3
    [PMID:20133010]
  75. Tsuchida-Mayama T, et al.
    Role of the phytochrome and cryptochrome signaling pathways in hypocotyl phototropism.
    Plant J., 2010. 62(4): p. 653-62
    [PMID:20202166]
  76. Sellaro R, et al.
    Cryptochrome as a sensor of the blue/green ratio of natural radiation in Arabidopsis.
    Plant Physiol., 2010. 154(1): p. 401-9
    [PMID:20668058]
  77. Kami C,Lorrain S,Hornitschek P,Fankhauser C
    Light-regulated plant growth and development.
    Curr. Top. Dev. Biol., 2010. 91: p. 29-66
    [PMID:20705178]
  78. Iwata T,Zhang Y,Hitomi K,Getzoff ED,Kandori H
    Key dynamics of conserved asparagine in a cryptochrome/photolyase family protein by fourier transform infrared spectroscopy.
    Biochemistry, 2010. 49(41): p. 8882-91
    [PMID:20828134]
  79. Exner V, et al.
    A gain-of-function mutation of Arabidopsis cryptochrome1 promotes flowering.
    Plant Physiol., 2010. 154(4): p. 1633-45
    [PMID:20926618]
  80. Jeong RD,Kachroo A,Kachroo P
    Blue light photoreceptors are required for the stability and function of a resistance protein mediating viral defense in Arabidopsis.
    Plant Signal Behav, 2010. 5(11): p. 1504-9
    [PMID:21057210]
  81. Keller MM, et al.
    Cryptochrome 1 and phytochrome B control shade-avoidance responses in Arabidopsis via partially independent hormonal cascades.
    Plant J., 2011. 67(2): p. 195-207
    [PMID:21457375]
  82. Müller P,Ahmad M
    Light-activated cryptochrome reacts with molecular oxygen to form a flavin-superoxide radical pair consistent with magnetoreception.
    J. Biol. Chem., 2011. 286(24): p. 21033-40
    [PMID:21467031]
  83. Lian HL, et al.
    Blue-light-dependent interaction of cryptochrome 1 with SPA1 defines a dynamic signaling mechanism.
    Genes Dev., 2011. 25(10): p. 1023-8
    [PMID:21511872]
  84. Li J, et al.
    Microbial volatile-induced accumulation of exceptionally high levels of starch in Arabidopsis leaves is a process involving NTRC and starch synthase classes III and IV.
    Mol. Plant Microbe Interact., 2011. 24(10): p. 1165-78
    [PMID:21649509]
  85. Gu NN,Zhang YC,Yang HQ
    Substitution of a conserved glycine in the PHR domain of Arabidopsis cryptochrome 1 confers a constitutive light response.
    Mol Plant, 2012. 5(1): p. 85-97
    [PMID:21765176]
  86. Yu X,Liu H,Klejnot J,Lin C
    The Cryptochrome Blue Light Receptors.
    Arabidopsis Book, 2010. 8: p. e0135
    [PMID:21841916]
  87. Kondoh M, et al.
    Light-induced conformational changes in full-length Arabidopsis thaliana cryptochrome.
    J. Mol. Biol., 2011. 413(1): p. 128-37
    [PMID:21875594]
  88. Banas AK,Łabuz J,Sztatelman O,Gabrys H,Fiedor L
    Expression of enzymes involved in chlorophyll catabolism in Arabidopsis is light controlled.
    Plant Physiol., 2011. 157(3): p. 1497-504
    [PMID:21896889]
  89. Boccalandro HE, et al.
    Phototropins but not cryptochromes mediate the blue light-specific promotion of stomatal conductance, while both enhance photosynthesis and transpiration under full sunlight.
    Plant Physiol., 2012. 158(3): p. 1475-84
    [PMID:22147516]
  90. Maeda K, et al.
    Magnetically sensitive light-induced reactions in cryptochrome are consistent with its proposed role as a magnetoreceptor.
    Proc. Natl. Acad. Sci. U.S.A., 2012. 109(13): p. 4774-9
    [PMID:22421133]
  91. Fox AR, et al.
    cry1 and GPA1 signaling genetically interact in hook opening and anthocyanin synthesis in Arabidopsis.
    Plant Mol. Biol., 2012. 80(3): p. 315-24
    [PMID:22855128]
  92. Burney S, et al.
    Single amino acid substitution reveals latent photolyase activity in Arabidopsis cry1.
    Angew. Chem. Int. Ed. Engl., 2012. 51(37): p. 9356-60
    [PMID:22890584]
  93. Wang Y,Maruhnich SA,Mageroy MH,Justice JR,Folta KM
    Phototropin 1 and cryptochrome action in response to green light in combination with other wavelengths.
    Planta, 2013. 237(1): p. 225-37
    [PMID:23007554]
  94. Sandhu KS,Hagely K,Neff MM
    Genetic interactions between brassinosteroid-inactivating P450s and photomorphogenic photoreceptors in Arabidopsis thaliana.
    G3 (Bethesda), 2012. 2(12): p. 1585-93
    [PMID:23275881]
  95. dela Paz JS, et al.
    Chromosome fragile sites in Arabidopsis harbor matrix attachment regions that may be associated with ancestral chromosome rearrangement events.
    PLoS Genet., 2012. 8(12): p. e1003136
    [PMID:23284301]
  96. Herbel V, et al.
    Lifetimes of Arabidopsis cryptochrome signaling states in vivo.
    Plant J., 2013. 74(4): p. 583-92
    [PMID:23398192]
  97. Li YY, et al.
    Molecular cloning of cryptochrome 1 from apple and its functional characterization in Arabidopsis.
    Plant Physiol. Biochem., 2013. 67: p. 169-77
    [PMID:23570872]
  98. Jia KP,Luo Q,He SB,Lu XD,Yang HQ
    Strigolactone-regulated hypocotyl elongation is dependent on cryptochrome and phytochrome signaling pathways in Arabidopsis.
    Mol Plant, 2014. 7(3): p. 528-40
    [PMID:24126495]
  99. Young JC,Liscum E,Hangarter RP
    Spectral-dependence of light-inhibited hypocotyl elongation in photomorphogenic mutants of Arabidopsis: evidence for a UV-A photosensor.
    Planta, 1992. 188(1): p. 106-14
    [PMID:24178206]
  100. Tsai HL, et al.
    HUA ENHANCER1 is involved in posttranscriptional regulation of positive and negative regulators in Arabidopsis photomorphogenesis.
    Plant Cell, 2014. 26(7): p. 2858-72
    [PMID:25052717]
  101. Cailliez F,Müller P,Gallois M,de la Lande A
    ATP binding and aspartate protonation enhance photoinduced electron transfer in plant cryptochrome.
    J. Am. Chem. Soc., 2014. 136(37): p. 12974-86
    [PMID:25157750]
  102. Crepy MA,Casal JJ
    Photoreceptor-mediated kin recognition in plants.
    New Phytol., 2015. 205(1): p. 329-38
    [PMID:25264216]
  103. Li T, et al.
    Jasmonic acid enhancement of anthocyanin accumulation is dependent on phytochrome A signaling pathway under far-red light in Arabidopsis.
    Biochem. Biophys. Res. Commun., 2014. 454(1): p. 78-83
    [PMID:25450360]
  104. Wang Y,M Folta K
    Phototropin 1 and dim-blue light modulate the red light de-etiolation response.
    Plant Signal Behav, 2014. 9(11): p. e976158
    [PMID:25482790]
  105. Mao K,Jiang L,Bo W,Xu F,Wu R
    Cloning of the cryptochrome-encoding PeCRY1 gene from Populus euphratica and functional analysis in Arabidopsis.
    PLoS ONE, 2014. 9(12): p. e115201
    [PMID:25503486]
  106. He SB, et al.
    The CNT1 Domain of Arabidopsis CRY1 Alone Is Sufficient to Mediate Blue Light Inhibition of Hypocotyl Elongation.
    Mol Plant, 2015. 8(5): p. 822-5
    [PMID:25721730]
  107. Consentino L, et al.
    Blue-light dependent reactive oxygen species formation by Arabidopsis cryptochrome may define a novel evolutionarily conserved signaling mechanism.
    New Phytol., 2015. 206(4): p. 1450-62
    [PMID:25728686]
  108. Xu C,Li Y,Yu Y,Zhang Y,Wei S
    Suppression of Arabidopsis flowering by near-null magnetic field is affected by light.
    Bioelectromagnetics, 2015. 36(6): p. 476-9
    [PMID:26095447]
  109. Gao J, et al.
    Trp triad-dependent rapid photoreduction is not required for the function of Arabidopsis CRY1.
    Proc. Natl. Acad. Sci. U.S.A., 2015. 112(29): p. 9135-40
    [PMID:26106155]
  110. Zoltowski BD
    Resolving cryptic aspects of cryptochrome signaling.
    Proc. Natl. Acad. Sci. U.S.A., 2015. 112(29): p. 8811-2
    [PMID:26157135]
  111. Jourdan N, et al.
    Blue-light dependent ROS formation by Arabidopsis cryptochrome-2 may contribute toward its signaling role.
    Plant Signal Behav, 2015. 10(8): p. e1042647
    [PMID:26179959]
  112. Ohara T,Fukuda H,Tokuda IT
    An extended mathematical model for reproducing the phase response of Arabidopsis thaliana under various light conditions.
    J. Theor. Biol., 2015. 382: p. 337-44
    [PMID:26231414]
  113. Fox AR,Barberini ML,Ploschuk EL,Muschietti JP,Mazzella MA
    A proteome map of a quadruple photoreceptor mutant sustains its severe photosynthetic deficient phenotype.
    J. Plant Physiol., 2015. 185: p. 13-23
    [PMID:26264966]
  114. El-Esawi M, et al.
    Cellular metabolites modulate in vivo signaling of Arabidopsis cryptochrome-1.
    Plant Signal Behav, 2015. 10(9): p. e1063758
    [PMID:26313597]
  115. Sarid-Krebs L, et al.
    Phosphorylation of CONSTANS and its COP1-dependent degradation during photoperiodic flowering of Arabidopsis.
    Plant J., 2015. 84(3): p. 451-63
    [PMID:26358558]
  116. Chen S,Lory N,Stauber J,Hoecker U
    Photoreceptor Specificity in the Light-Induced and COP1-Mediated Rapid Degradation of the Repressor of Photomorphogenesis SPA2 in Arabidopsis.
    PLoS Genet., 2015. 11(9): p. e1005516
    [PMID:26368289]
  117. Liu B, et al.
    Signaling mechanisms of plant cryptochromes in Arabidopsis thaliana.
    J. Plant Res., 2016. 129(2): p. 137-48
    [PMID:26810763]
  118. Wang WX, et al.
    Transcriptome Analyses Reveal the Involvement of Both C and N Termini of Cryptochrome 1 in Its Regulation of Phytohormone-Responsive Gene Expression in Arabidopsis.
    Front Plant Sci, 2016. 7: p. 294
    [PMID:27014317]
  119. Kattnig DR,Solov'yov IA,Hore PJ
    Electron spin relaxation in cryptochrome-based magnetoreception.
    Phys Chem Chem Phys, 2016. 18(18): p. 12443-56
    [PMID:27020113]
  120. Mellenthin M,Ellersiek U,Börger A,Baier M
    Expression of the Arabidopsis Sigma Factor SIG5 Is Photoreceptor and Photosynthesis Controlled.
    Plants (Basel), 2014. 3(3): p. 359-91
    [PMID:27135509]
  121. Chen ZJ,Ding CY,Zheng Y
    [Expression and functional analyses of the Arabidopsis QUA1 gene in light signal transduction].
    Yi Chuan, 2016. 38(5): p. 436-43
    [PMID:27232492]
  122. Yuan S, et al.
    Arabidopsis cryptochrome 1 functions in nitrogen regulation of flowering.
    Proc. Natl. Acad. Sci. U.S.A., 2016. 113(27): p. 7661-6
    [PMID:27325772]
  123. Procopio M, et al.
    Kinetic Modeling of the Arabidopsis Cryptochrome Photocycle: FADH(o) Accumulation Correlates with Biological Activity.
    Front Plant Sci, 2016. 7: p. 888
    [PMID:27446119]
  124. Liu Q, et al.
    The Blue Light-Dependent Polyubiquitination and Degradation of Arabidopsis Cryptochrome2 Requires Multiple E3 Ubiquitin Ligases.
    Plant Cell Physiol., 2016. 57(10): p. 2175-2186
    [PMID:27516416]
  125. Xu C,Yu Y,Zhang Y,Li Y,Wei S
    Gibberellins are involved in effect of near-null magnetic field on Arabidopsis flowering.
    Bioelectromagnetics, 2017. 38(1): p. 1-10
    [PMID:27598690]
  126. Ong WD, et al.
    Chemical-Induced Inhibition of Blue Light-Mediated Seedling Development Caused by Disruption of Upstream Signal Transduction Involving Cryptochromes in Arabidopsis thaliana.
    Plant Cell Physiol., 2017. 58(1): p. 95-105
    [PMID:28011868]
  127. Yang L, et al.
    Molecular cloning and function analysis of ClCRY1a and ClCRY1b, two genes in Chrysanthemum lavandulifolium that play vital roles in promoting floral transition.
    Gene, 2017. 617: p. 32-43
    [PMID:28216039]
  128. Qu Y, et al.
    Expression of Root Genes in Arabidopsis Seedlings Grown by Standard and Improved Growing Methods.
    Int J Mol Sci, 2018.
    [PMID:28467358]
  129. Zhou R, et al.
    The asparagine-rich protein NRP interacts with the Verticillium effector PevD1 and regulates the subcellular localization of cryptochrome 2.
    J. Exp. Bot., 2017. 68(13): p. 3427-3440
    [PMID:28633330]
  130. Orth C,Niemann N,Hennig L,Essen LO,Batschauer A
    Hyperactivity of the Arabidopsis cryptochrome (cry1) L407F mutant is caused by a structural alteration close to the cry1 ATP-binding site.
    J. Biol. Chem., 2017. 292(31): p. 12906-12920
    [PMID:28634231]
  131. Wang X, et al.
    A CRY-BIC negative-feedback circuitry regulating blue light sensitivity of Arabidopsis.
    Plant J., 2017. 92(3): p. 426-436
    [PMID:28833729]
  132. Xu C,Zhang Y,Yu Y,Li Y,Wei S
    Suppression of Arabidopsis flowering by near-null magnetic field is mediated by auxin.
    Bioelectromagnetics, 2018. 39(1): p. 15-24
    [PMID:28940601]
  133. Holtkotte X,Ponnu J,Ahmad M,Hoecker U
    The blue light-induced interaction of cryptochrome 1 with COP1 requires SPA proteins during Arabidopsis light signaling.
    PLoS Genet., 2017. 13(10): p. e1007044
    [PMID:28991901]
  134. El-Esawi M, et al.
    Blue-light induced biosynthesis of ROS contributes to the signaling mechanism of Arabidopsis cryptochrome.
    Sci Rep, 2017. 7(1): p. 13875
    [PMID:29066723]
  135. Xu F, et al.
    Photoactivated CRY1 and phyB Interact Directly with AUX/IAA Proteins to Inhibit Auxin Signaling in Arabidopsis.
    Mol Plant, 2018. 11(4): p. 523-541
    [PMID:29269022]
  136. Chen HJ,Fu TY,Yang SL,Hsieh HL
    FIN219/JAR1 and cryptochrome1 antagonize each other to modulate photomorphogenesis under blue light in Arabidopsis.
    PLoS Genet., 2018. 14(3): p. e1007248
    [PMID:29561841]
  137. Conley TR,Shih MC
    Effects of light and chloroplast functional state on expression of nuclear genes encoding chloroplast glyceraldehyde-3-phosphate dehydrogenase in long hypocotyl (hy) mutants and wild-type Arabidopsis thaliana.
    Plant Physiol., 1995. 108(3): p. 1013-22
    [PMID:7630933]
  138. Small GD,Min B,Lefebvre PA
    Characterization of a Chlamydomonas reinhardtii gene encoding a protein of the DNA photolyase/blue light photoreceptor family.
    Plant Mol. Biol., 1995. 28(3): p. 443-54
    [PMID:7632915]
  139. Lin C, et al.
    Association of flavin adenine dinucleotide with the Arabidopsis blue light receptor CRY1.
    Science, 1995. 269(5226): p. 968-70
    [PMID:7638620]
  140. Lin C,Ahmad M,Gordon D,Cashmore AR
    Expression of an Arabidopsis cryptochrome gene in transgenic tobacco results in hypersensitivity to blue, UV-A, and green light.
    Proc. Natl. Acad. Sci. U.S.A., 1995. 92(18): p. 8423-7
    [PMID:7667306]
  141. Malhotra K,Kim ST,Batschauer A,Dawut L,Sancar A
    Putative blue-light photoreceptors from Arabidopsis thaliana and Sinapis alba with a high degree of sequence homology to DNA photolyase contain the two photolyase cofactors but lack DNA repair activity.
    Biochemistry, 1995. 34(20): p. 6892-9
    [PMID:7756321]
  142. Reed JW,Chory J
    Mutational analyses of light-controlled seedling development in Arabidopsis.
    Semin. Cell Biol., 1994. 5(5): p. 327-34
    [PMID:7881072]
  143. Blum DE,Neff MM,Van Volkenburgh E
    Light-stimulated cotyledon expansion in the blu3 and hy4 mutants of Arabidopsis thaliana.
    Plant Physiol., 1994. 105(4): p. 1433-6
    [PMID:7972499]
  144. Ahmad M,Cashmore AR
    HY4 gene of A. thaliana encodes a protein with characteristics of a blue-light photoreceptor.
    Nature, 1993. 366(6451): p. 162-6
    [PMID:8232555]
  145. Ahmad M,Lin C,Cashmore AR
    Mutations throughout an Arabidopsis blue-light photoreceptor impair blue-light-responsive anthocyanin accumulation and inhibition of hypocotyl elongation.
    Plant J., 1995. 8(5): p. 653-8
    [PMID:8528277]
  146. Casal JJ,Boccalandro H
    Co-action between phytochrome B and HY4 in Arabidopsis thaliana.
    Planta, 1995. 197(2): p. 213-8
    [PMID:8547813]
  147. Jackson JA,Jenkins GI
    Extension-growth responses and expression of flavonoid biosynthesis genes in the Arabidopsis hy4 mutant.
    Planta, 1995. 197(2): p. 233-9
    [PMID:8547814]
  148. Walters RG,Horton P
    Acclimation of Arabidopsis thaliana to the light environment: regulation of chloroplast composition.
    Planta, 1995. 197(3): p. 475-81
    [PMID:8580761]
  149. Zagotta MT, et al.
    The Arabidopsis ELF3 gene regulates vegetative photomorphogenesis and the photoperiodic induction of flowering.
    Plant J., 1996. 10(4): p. 691-702
    [PMID:8893545]
  150. Bruggemann E,Handwerger K,Essex C,Storz G
    Analysis of fast neutron-generated mutants at the Arabidopsis thaliana HY4 locus.
    Plant J., 1996. 10(4): p. 755-60
    [PMID:8893551]
  151. Bagnall DJ,King RW,Hangarter RP
    Blue-light promotion of flowering is absent in hy4 mutants of Arabidopsis.
    Planta, 1996. 200(2): p. 278-80
    [PMID:8904811]
  152. Lin C,Ahmad M,Cashmore AR
    Arabidopsis cryptochrome 1 is a soluble protein mediating blue light-dependent regulation of plant growth and development.
    Plant J., 1996. 10(5): p. 893-902
    [PMID:8953250]
  153. Fuglevand G,Jackson JA,Jenkins GI
    UV-B, UV-A, and blue light signal transduction pathways interact synergistically to regulate chalcone synthase gene expression in Arabidopsis.
    Plant Cell, 1996. 8(12): p. 2347-57
    [PMID:8989887]
  154. Hoffman PD,Batschauer A,Hays JB
    PHH1, a novel gene from Arabidopsis thaliana that encodes a protein similar to plant blue-light photoreceptors and microbial photolyases.
    Mol. Gen. Genet., 1996. 253(1-2): p. 259-65
    [PMID:9003312]
  155. Ahmad M,Cashmore AR
    The blue-light receptor cryptochrome 1 shows functional dependence on phytochrome A or phytochrome B in Arabidopsis thaliana.
    Plant J., 1997. 11(3): p. 421-7
    [PMID:9107032]
  156. Lin C, et al.
    Enhancement of blue-light sensitivity of Arabidopsis seedlings by a blue light receptor cryptochrome 2.
    Proc. Natl. Acad. Sci. U.S.A., 1998. 95(5): p. 2686-90
    [PMID:9482948]
  157. Noh B,Spalding EP
    Anion channels and the stimulation of anthocyanin accumulation by blue light in Arabidopsis seedlings.
    Plant Physiol., 1998. 116(2): p. 503-9
    [PMID:9489009]
  158. Ahmad M,Jarillo JA,Cashmore AR
    Chimeric proteins between cry1 and cry2 Arabidopsis blue light photoreceptors indicate overlapping functions and varying protein stability.
    Plant Cell, 1998. 10(2): p. 197-207
    [PMID:9490743]
  159. Ahmad M,Jarillo JA,Smirnova O,Cashmore AR
    Cryptochrome blue-light photoreceptors of Arabidopsis implicated in phototropism.
    Nature, 1998. 392(6677): p. 720-3
    [PMID:9565033]
  160. Bruggemann EP,Doan B,Handwerger K,Storz G
    Characterization of an unstable allele of the Arabidopsis HY4 locus.
    Genetics, 1998. 149(3): p. 1575-85
    [PMID:9649544]
  161. Ahmad M,Jarillo JA,Smirnova O,Cashmore AR
    The CRY1 blue light photoreceptor of Arabidopsis interacts with phytochrome A in vitro.
    Mol. Cell, 1998. 1(7): p. 939-48
    [PMID:9651577]
  162. Gendreau E,Höfte H,Grandjean O,Brown S,Traas J
    Phytochrome controls the number of endoreduplication cycles in the Arabidopsis thaliana hypocotyl.
    Plant J., 1998. 13(2): p. 221-30
    [PMID:9680978]
  163. Christopher DA,Hoffer PH
    DET1 represses a chloroplast blue light-responsive promoter in a developmental and tissue-specific manner in Arabidopsis thaliana.
    Plant J., 1998. 14(1): p. 1-11
    [PMID:9681024]
  164. Wang X,Iino M
    Interaction of cryptochrome 1, phytochrome, and ion fluxes in blue-light-induced shrinking of Arabidopsis hypocotyl protoplasts.
    Plant Physiol., 1998. 117(4): p. 1265-79
    [PMID:9701582]
  165. Casal JJ,Mazzella MA
    Conditional synergism between cryptochrome 1 and phytochrome B is shown by the analysis of phyA, phyB, and hy4 simple, double, and triple mutants in Arabidopsis.
    Plant Physiol., 1998. 118(1): p. 19-25
    [PMID:9733522]
  166. Neff MM,Chory J
    Genetic interactions between phytochrome A, phytochrome B, and cryptochrome 1 during Arabidopsis development.
    Plant Physiol., 1998. 118(1): p. 27-35
    [PMID:9733523]
  167. Chattopadhyay S,Puente P,Deng XW,Wei N
    Combinatorial interaction of light-responsive elements plays a critical role in determining the response characteristics of light-regulated promoters in Arabidopsis.
    Plant J., 1998. 15(1): p. 69-77
    [PMID:9744096]
  168. Parks BM,Cho MH,Spalding EP
    Two genetically separable phases of growth inhibition induced by blue light in Arabidopsis seedlings.
    Plant Physiol., 1998. 118(2): p. 609-15
    [PMID:9765547]
  169. Kim BC,Tennessen DJ,Last RL
    UV-B-induced photomorphogenesis in Arabidopsis thaliana.
    Plant J., 1998. 15(5): p. 667-74
    [PMID:9778848]
  170. Kanegae T,Wada M
    Isolation and characterization of homologues of plant blue-light photoreceptor (cryptochrome) genes from the fern Adiantum capillus-veneris.
    Mol. Gen. Genet., 1998. 259(4): p. 345-53
    [PMID:9790588]
  171. Somers DE,Devlin PF,Kay SA
    Phytochromes and cryptochromes in the entrainment of the Arabidopsis circadian clock.
    Science, 1998. 282(5393): p. 1488-90
    [PMID:9822379]
  172. Osterlund MT,Deng XW
    Multiple photoreceptors mediate the light-induced reduction of GUS-COP1 from Arabidopsis hypocotyl nuclei.
    Plant J., 1998. 16(2): p. 201-8
    [PMID:9839465]
  173. Poppe C,Sweere U,Drumm-Herrel H,Schäfer E
    The blue light receptor cryptochrome 1 can act independently of phytochrome A and B in Arabidopsis thaliana.
    Plant J., 1998. 16(4): p. 465-71
    [PMID:9881166]