PlantTFDB
PlantRegMap/PlantTFDB v5.0
Plant Transcription Factor Database
Transcription Factor Information
Basic Information | Signature Domain | Sequence | 
Basic Information? help Back to Top
TF ID evm_27.model.AmTr_v1.0_scaffold00025.64
Common NameAMTR_s00025p00081740
Organism
Taxonomic ID
Taxonomic Lineage
cellular organisms; Eukaryota; Viridiplantae; Streptophyta; Streptophytina; Embryophyta; Tracheophyta; Euphyllophyta; Spermatophyta; Magnoliophyta; basal Magnoliophyta; Amborellales; Amborellaceae; Amborella
Family bHLH
Protein Properties Length: 179aa    MW: 19565.4 Da    PI: 6.5181
Description bHLH family protein
Gene Model
Gene Model ID Type Source Coding Sequence
evm_27.model.AmTr_v1.0_scaffold00025.64genomeTAGPView CDS
Signature Domain? help Back to Top
Signature Domain
No. Domain Score E-value Start End HMM Start HMM End
1HLH12.10.00036218420
                                             HHHHHHHHHHHHHHHHH CS
                                      HLH  4 ahnerErrRRdriNsaf 20
                                             +h  +Er+RR+++N+ +
  evm_27.model.AmTr_v1.0_scaffold00025.64  2 SHITVERNRRKQMNEHL 18
                                             7999**********987 PP

Protein Features ? help Back to Top
3D Structure
Database Entry ID E-value Start End InterPro ID Description
SuperFamilySSF474599.29E-9158IPR011598Myc-type, basic helix-loop-helix (bHLH) domain
CDDcd000836.22E-5141No hitNo description
Gene Ontology ? help Back to Top
GO Term GO Category GO Description
GO:0010374Biological Processstomatal complex development
GO:0005634Cellular Componentnucleus
GO:0046983Molecular Functionprotein dimerization activity
Sequence ? help Back to Top
Protein Sequence    Length: 179 aa     Download sequence    Send to blast
MSHITVERNR RKQMNEHLKG DQASIISGVI EFIKELHEVL QSLEAKKRRK SLSPSPGPSP  60
TPSPRLAASN NEIGFDNVSG LVGSCNSSVA DVEAKISGSN VVLRTVSRRI PGQVVKIIRV  120
LETLSFEILH LNISSMDDTV LYIFTIKIGL ECQLSVEELV QEVQQTFSGD SQNDIILA*
Nucleic Localization Signal ? help Back to Top
NLS
No. Start End Sequence
14549KKRRK
Functional Description ? help Back to Top
Source Description
UniProtTranscription factor. Together with FMA and SPCH, regulates the stomata formation. Required for the differentiation of stomatal guard cells, by promoting successive asymmetric cell divisions and the formation of guard mother cells. Promotes the conversion of the leaf epidermis into stomata. {ECO:0000269|PubMed:17183265, ECO:0000269|PubMed:17183267}.
Regulation -- Description ? help Back to Top
Source Description
UniProtINDUCTION: By UV, flagellin, and jasmonic acid (JA) treatments. {ECO:0000269|PubMed:12679534}.
Regulation -- PlantRegMap ? help Back to Top
Source Upstream Regulator Target Gene
PlantRegMapRetrieve-
Annotation -- Protein ? help Back to Top
Source Hit ID E-value Description
RefseqXP_020527048.11e-126transcription factor MUTE isoform X2
SwissprotQ9M8K65e-65MUTE_ARATH; Transcription factor MUTE
TrEMBLW1PY071e-125W1PY07_AMBTC; Uncharacterized protein
STRINGERN123501e-126(Amborella trichopoda)
Orthologous Group ? help Back to Top
LineageOrthologous Group IDTaxa NumberGene Number
Representative plantOGRP25315131
Best hit in Arabidopsis thaliana ? help Back to Top
Hit ID E-value Description
AT3G06120.13e-64bHLH family protein
Publications ? help Back to Top
  1. Casson S,Gray JE
    Influence of environmental factors on stomatal development.
    New Phytol., 2008. 178(1): p. 9-23
    [PMID:18266617]
  2. Skinner MK,Rawls A,Wilson-Rawls J,Roalson EH
    Basic helix-loop-helix transcription factor gene family phylogenetics and nomenclature.
    Differentiation, 2010. 80(1): p. 1-8
    [PMID:20219281]
  3. Amborella Genome Project
    The Amborella genome and the evolution of flowering plants.
    Science, 2013. 342(6165): p. 1241089
    [PMID:24357323]
  4. Balcerowicz M,Ranjan A,Rupprecht L,Fiene G,Hoecker U
    Auxin represses stomatal development in dark-grown seedlings via Aux/IAA proteins.
    Development, 2014. 141(16): p. 3165-76
    [PMID:25063454]
  5. de Marcos A, et al.
    Transcriptional profiles of Arabidopsis stomataless mutants reveal developmental and physiological features of life in the absence of stomata.
    Front Plant Sci, 2015. 6: p. 456
    [PMID:26157447]
  6. Mahoney AK, et al.
    Functional analysis of the Arabidopsis thaliana MUTE promoter reveals a regulatory region sufficient for stomatal-lineage expression.
    Planta, 2016. 243(4): p. 987-98
    [PMID:26748914]
  7. Klermund C, et al.
    LLM-Domain B-GATA Transcription Factors Promote Stomatal Development Downstream of Light Signaling Pathways in Arabidopsis thaliana Hypocotyls.
    Plant Cell, 2016. 28(3): p. 646-60
    [PMID:26917680]
  8. Fu ZW,Wang YL,Lu YT,Yuan TT
    Nitric oxide is involved in stomatal development by modulating the expression of stomatal regulator genes in Arabidopsis.
    Plant Sci., 2016. 252: p. 282-289
    [PMID:27717464]
  9. Qi X, et al.
    Autocrine regulation of stomatal differentiation potential by EPF1 and ERECTA-LIKE1 ligand-receptor signaling.
    Elife, 2018.
    [PMID:28266915]
  10. Raissig MT, et al.
    Mobile MUTE specifies subsidiary cells to build physiologically improved grass stomata.
    Science, 2017. 355(6330): p. 1215-1218
    [PMID:28302860]
  11. Lee JH,Jung JH,Park CM
    Light Inhibits COP1-Mediated Degradation of ICE Transcription Factors to Induce Stomatal Development in Arabidopsis.
    Plant Cell, 2017. 29(11): p. 2817-2830
    [PMID:29070509]
  12. Han SK, et al.
    MUTE Directly Orchestrates Cell-State Switch and the Single Symmetric Division to Create Stomata.
    Dev. Cell, 2018. 45(3): p. 303-315.e5
    [PMID:29738710]