PlantRegMap/PlantTFDB v5.0
Plant Transcription Factor Database
Transcription Factor Information
Basic Information | Signature Domain | Sequence | 
Basic Information? help Back to Top
TF ID AT1G56650.1
Common NameATMYB75, F25P12.92, MYB75, PAP1, SIAA1
Taxonomic ID
Taxonomic Lineage
cellular organisms; Eukaryota; Viridiplantae; Streptophyta; Streptophytina; Embryophyta; Tracheophyta; Euphyllophyta; Spermatophyta; Magnoliophyta; Mesangiospermae; eudicotyledons; Gunneridae; Pentapetalae; rosids; malvids; Brassicales; Brassicaceae; Camelineae; Arabidopsis
Family MYB
Protein Properties Length: 248aa    MW: 28469.7 Da    PI: 9.4398
Description production of anthocyanin pigment 1
Gene Model
Gene Model ID Type Source Coding Sequence
AT1G56650.1genomeTAIRView CDS
Signature Domain? help Back to Top
Signature Domain
No. Domain Score E-value Start End HMM Start HMM End
  Myb_DNA-binding  1 rgrWTteEdellvdavkqlGggtWktIartmgkgRtlkqcksrwqkyl 48
                     +g+WTteEd ll ++++++G g W+ ++ + g++R++k+c++rw++yl
                     79********************************************97 PP

  Myb_DNA-binding   1 rgrWTteEdellvdavkqlGggtWktIartmgkgRtlkqcksrwqkyl 48 
                      rg+ + +E +ll++++++lG++ W++Ia +++ gRt++++k++w+++l
                      78999*****************.*********.************996 PP

Protein Features ? help Back to Top
3D Structure
Database Entry ID E-value Start End InterPro ID Description
PROSITE profilePS5129418.07557IPR017930Myb domain
SMARTSM007177.0E-15959IPR001005SANT/Myb domain
PfamPF002496.6E-161057IPR001005SANT/Myb domain
CDDcd001671.31E-101257No hitNo description
PROSITE profilePS5129424.82158112IPR017930Myb domain
SMARTSM007172.9E-1462110IPR001005SANT/Myb domain
PfamPF002497.9E-1463108IPR001005SANT/Myb domain
Gene Ontology ? help Back to Top
GO Term GO Category GO Description
GO:0006357Biological Processregulation of transcription from RNA polymerase II promoter
GO:0009651Biological Processresponse to salt stress
GO:0009723Biological Processresponse to ethylene
GO:0009733Biological Processresponse to auxin
GO:0009745Biological Processsucrose mediated signaling
GO:0009753Biological Processresponse to jasmonic acid
GO:0019430Biological Processremoval of superoxide radicals
GO:0030154Biological Processcell differentiation
GO:0031540Biological Processregulation of anthocyanin biosynthetic process
GO:0050832Biological Processdefense response to fungus
GO:0005634Cellular Componentnucleus
GO:0000981Molecular FunctionRNA polymerase II transcription factor activity, sequence-specific DNA binding
GO:0001135Molecular Functiontranscription factor activity, RNA polymerase II transcription factor recruiting
GO:0005515Molecular Functionprotein binding
GO:0043565Molecular Functionsequence-specific DNA binding
GO:0044212Molecular Functiontranscription regulatory region DNA binding
Plant Ontology ? help Back to Top
PO Term PO Category PO Description
PO:0000037anatomyshoot apex
PO:0000293anatomyguard cell
PO:0009006anatomyshoot system
PO:0009009anatomyplant embryo
PO:0009025anatomyvascular leaf
PO:0001185developmental stageplant embryo globular stage
PO:0007115developmental stageLP.04 four leaves visible stage
PO:0007616developmental stageflowering stage
Sequence ? help Back to Top
Protein Sequence    Length: 248 aa     Download sequence    Send to blast
3D Structure ? help Back to Top
PDB ID Evalue Query Start Query End Hit Start Hit End Description
Search in ModeBase
Expression -- Microarray ? help Back to Top
Source ID E-value
Expression AtlasAT1G56650-
Expression -- Description ? help Back to Top
Source Description
UniprotTISSUE SPECIFICITY: Mostly expressed in mature plant aerial part. Detected ubiquitously, with higher levels in rosette leaves and flowers. {ECO:0000269|PubMed:17147621, ECO:0000269|PubMed:9839469}.
Functional Description ? help Back to Top
Source Description
TAIREncodes a putative MYB domain containing transcription factor involved in anthocyanin metabolism and radical scavenging. Essential for the sucrose-mediated expression of the dihydroflavonol reductase gene.
UniProtTranscription activator, when associated with BHLH12/MYC1, EGL3, or GL3. Promotes the synthesis of. phenylpropanoid-derived compounds such as anthocyanins and proanthocyanidin, probably together with GL3 and BHLH2. Regulates the expression of CHS, DFRA, LDOX, and BAN. {ECO:0000269|PubMed:11148285, ECO:0000269|PubMed:12917293, ECO:0000269|PubMed:15361138, ECO:0000269|PubMed:15807784, ECO:0000269|PubMed:16299184, ECO:0000269|PubMed:17147621}.
Function -- GeneRIF ? help Back to Top
  1. Two putative glycosyltransferase genes (At5g17050 and At4g14090) induced by PAP1 expression were confirmed to encode flavonoid 3-O-glucosyltransferase and anthocyanin 5-O-glucosyltransferase, respectively.
    [PMID: 15807784]
  2. High-temperature, low-light (HTLL) treatment of 35S:PAP1 Arabidopsis thaliana over-expressing the PAP1 (Production of Anthocyanin Pigment 1) gene results in reversible reduction of red colouration.
    [PMID: 19192188]
  3. In the same light intensity condition, the responses of anthocyanin levels and profiling to medium alternation were different between pap1-D and wild type plants.
    [PMID: 20309578]
  4. MYB75 is nuclear localized and acts as a transcriptional activator. Loss of MYB75 function affects secondary cell wall structure and composition.
    [PMID: 20807862]
  5. Data indicate that miR828, TAS4-siRNA81(-), and its targets MYB transcription factors PAP1 and PAP2 are responsive to sucrose.
    [PMID: 21533841]
  6. Nitrogen regulation of anthocyanin biosynthesis in Arabidopsis thaliana red cells undergoes a mechanism by which nitrogen controls the expression of genes encoding both main components of the TTG1-GL3/TT8-PAP1 complex and negative regulators.
    [PMID: 22669605]
  7. Cytokinins enhance anthocyanin content and transcript levels of sugar inducible structural gene UDPglucose: flavonoid 3-O-glucosyl transferase and regulatory gene PRODUCTION OF ANTHOCYANIN PIGMENT 1.
    [PMID: 22699753]
  8. The COP1/SPA complex affects PAP1 and PAP2 both transcriptionally and post-translationally. The COP1/SPA complex controls anthocyanin levels in Arabidopsis.
    [PMID: 23425305]
  9. Bifurcate regulation of anthocyanin biosynthesis by HY5 via transcriptional activation of PAP1.
    [PMID: 23583450]
  10. The quantity and diversity of flavonoids is increased by overexpressing MYB12/PAP1. Flavonoids enhances both biotic and abiotic stress tolerance in crops.
    [PMID: 24274116]
  11. the production of anthocyanin pigment 1 (AtPAP1) transcription factor from Arabidopsis thaliana induces anthocyanin production in transgenic Taraxacum brevicorniculatum.[AtPAP1]
    [PMID: 24556963]
  12. Performance of a specialist aphid (Brevicoryne brassicae) was unaffected after feeding on oxMYB75 plants, whereas a specialist caterpillar (Pieris brassicae) gained significantly higher body mass when feeding on this plant.
    [PMID: 24619996]
  13. Flowers of 35S:PAP1 transgenic plants produced the same or even higher levels of volatiles when exposed to a long-term high-temperature regime.
    [PMID: 25402319]
  14. This work lays the foundation for dissecting the sucrose signaling pathway of PAP1 and contributes to understanding the interplay between sucrose signaling, anthocyanin biosynthesis, and stress responses
    [PMID: 27248141]
  15. double mutant plants that harbor fls1kknock out in the pap1-D background (i.e., pap1-D/fls1ko plants) were generated, to examine whether anthocyanins can be further enhanced by blocking flavonol biosynthesis under PAP1 overexpression.
    [PMID: 27562381]
  16. Data show that MPK4 phosphorylation of MYB75 increases its stability and is essential for light-induced anthocyanin accumulation. Our findings reveal an important role for a MAPK pathway in light signal transduction.
    [PMID: 27811015]
  17. DRB3 negatively regulates anthocyanin biosynthesis by modulating the level of PAP1 transcript.
    [PMID: 27995376]
Cis-element ? help Back to Top
Regulation -- Description ? help Back to Top
Source Description
UniProtINDUCTION: By jasmonic acid (JA), NaCl, sucrose, UV light, nitrogen deficiency and drought. {ECO:0000269|PubMed:16463103, ECO:0000269|PubMed:17053893, ECO:0000269|PubMed:9839469}.
Regulation -- PlantRegMap ? help Back to Top
Source Upstream Regulator Target Gene
Regulation -- ATRM (Manually Curated Upstream Regulators) ? help Back to Top
Source Upstream Regulator (A: Activate/R: Repress)
ATRM AT1G71030 (R), AT1G78600 (A)
Regulation -- ATRM (Manually Curated Target Genes) ? help Back to Top
Source Target Gene (A: Activate/R: Repress)
ATRM AT1G03940(A), AT1G22640(A), AT1G66390(A), AT2G23000(R), AT2G37260(A), AT3G29590(A), AT3G55120(A), AT4G09820(A), AT4G14090(A), AT5G13930(A), AT5G17050(A), AT5G17220(A), AT5G42800(A), AT5G54060(A)
Regulation -- Hormone ? help Back to Top
Source Hormone
AHDjasmonic acid
Interaction -- BIND ? help Back to Top
Source Intact With Description
BINDAT1G63650EGL3 interacts with PAP1.
Interaction ? help Back to Top
Source Intact With
BioGRIDAT1G62990, AT1G63650
IntActSearch Q9FE25
Phenotype -- Mutation ? help Back to Top
Source ID
T-DNA ExpressAT1G56650
Annotation -- Nucleotide ? help Back to Top
Source Hit ID E-value Description
GenBankAK2216390.0AK221639.1 Arabidopsis thaliana mRNA for transcription factor, complete cds, clone: RAFL07-99-A21.
Annotation -- Protein ? help Back to Top
Source Hit ID E-value Description
RefseqNP_176057.10.0production of anthocyanin pigment 1
SwissprotQ9FE250.0MYB75_ARATH; Transcription factor MYB75
STRINGAT1G56650.10.0(Arabidopsis thaliana)
Orthologous Group ? help Back to Top
LineageOrthologous Group IDTaxa NumberGene Number
Representative plantOGRP5171784
Publications ? help Back to Top
  1. Riechmann JL, et al.
    Arabidopsis transcription factors: genome-wide comparative analysis among eukaryotes.
    Science, 2000. 290(5499): p. 2105-10
  2. Borevitz JO,Xia Y,Blount J,Dixon RA,Lamb C
    Activation tagging identifies a conserved MYB regulator of phenylpropanoid biosynthesis.
    Plant Cell, 2000. 12(12): p. 2383-2394
  3. Stracke R,Werber M,Weisshaar B
    The R2R3-MYB gene family in Arabidopsis thaliana.
    Curr. Opin. Plant Biol., 2001. 4(5): p. 447-56
  4. Hiratsu K,Matsui K,Koyama T,Ohme-Takagi M
    Dominant repression of target genes by chimeric repressors that include the EAR motif, a repression domain, in Arabidopsis.
    Plant J., 2003. 34(5): p. 733-9
  5. Zhang F,Gonzalez A,Zhao M,Payne CT,Lloyd A
    A network of redundant bHLH proteins functions in all TTG1-dependent pathways of Arabidopsis.
    Development, 2003. 130(20): p. 4859-69
  6. Zimmermann IM,Heim MA,Weisshaar B,Uhrig JF
    Comprehensive identification of Arabidopsis thaliana MYB transcription factors interacting with R/B-like BHLH proteins.
    Plant J., 2004. 40(1): p. 22-34
  7. Tohge T, et al.
    Functional genomics by integrated analysis of metabolome and transcriptome of Arabidopsis plants over-expressing an MYB transcription factor.
    Plant J., 2005. 42(2): p. 218-35
  8. Tohge T,Matsui K,Ohme-Takagi M,Yamazaki M,Saito K
    Enhanced radical scavenging activity of genetically modified Arabidopsis seeds.
    Biotechnol. Lett., 2005. 27(5): p. 297-303
  9. Tokimatsu T, et al.
    KaPPA-view: a web-based analysis tool for integration of transcript and metabolite data on plant metabolic pathway maps.
    Plant Physiol., 2005. 138(3): p. 1289-300
  10. Sharma SB,Dixon RA
    Metabolic engineering of proanthocyanidins by ectopic expression of transcription factors in Arabidopsis thaliana.
    Plant J., 2005. 44(1): p. 62-75
  11. Teng S,Keurentjes J,Bentsink L,Koornneef M,Smeekens S
    Sucrose-specific induction of anthocyanin biosynthesis in Arabidopsis requires the MYB75/PAP1 gene.
    Plant Physiol., 2005. 139(4): p. 1840-52
  12. Solfanelli C,Poggi A,Loreti E,Alpi A,Perata P
    Sucrose-specific induction of the anthocyanin biosynthetic pathway in Arabidopsis.
    Plant Physiol., 2006. 140(2): p. 637-46
  13. Yanhui C, et al.
    The MYB transcription factor superfamily of Arabidopsis: expression analysis and phylogenetic comparison with the rice MYB family.
    Plant Mol. Biol., 2006. 60(1): p. 107-24
  14. Xie DY,Sharma SB,Wright E,Wang ZY,Dixon RA
    Metabolic engineering of proanthocyanidins through co-expression of anthocyanidin reductase and the PAP1 MYB transcription factor.
    Plant J., 2006. 45(6): p. 895-907
  15. Pourtau N,Jennings R,Pelzer E,Pallas J,Wingler A
    Effect of sugar-induced senescence on gene expression and implications for the regulation of senescence in Arabidopsis.
    Planta, 2006. 224(3): p. 556-68
  16. G
    A novel R2R3 MYB transcription factor NtMYBJS1 is a methyl jasmonate-dependent regulator of phenylpropanoid-conjugate biosynthesis in tobacco.
    Plant J., 2006. 46(4): p. 573-92
  17. Baudry A,Caboche M,Lepiniec L
    TT8 controls its own expression in a feedback regulation involving TTG1 and homologous MYB and bHLH factors, allowing a strong and cell-specific accumulation of flavonoids in Arabidopsis thaliana.
    Plant J., 2006. 46(5): p. 768-79
  18. Matousek J, et al.
    Sequence analysis of a "true" chalcone synthase (chs_H1) oligofamily from hop (Humulus lupulus L.) and PAP1 activation of chs_H1 in heterologous systems.
    J. Agric. Food Chem., 2006. 54(20): p. 7606-15
  19. Lea US,Slimestad R,Smedvig P,Lillo C
    Nitrogen deficiency enhances expression of specific MYB and bHLH transcription factors and accumulation of end products in the flavonoid pathway.
    Planta, 2007. 225(5): p. 1245-53
  20. Matsui K,Tanaka H,Ohme-Takagi M
    Suppression of the biosynthesis of proanthocyanidin in Arabidopsis by a chimeric PAP1 repressor.
    Plant Biotechnol. J., 2004. 2(6): p. 487-93
  21. Espley RV, et al.
    Red colouration in apple fruit is due to the activity of the MYB transcription factor, MdMYB10.
    Plant J., 2007. 49(3): p. 414-27
  22. Fraser CM, et al.
    Related Arabidopsis serine carboxypeptidase-like sinapoylglucose acyltransferases display distinct but overlapping substrate specificities.
    Plant Physiol., 2007. 144(4): p. 1986-99
  23. Cominelli E, et al.
    Expression analysis of anthocyanin regulatory genes in response to different light qualities in Arabidopsis thaliana.
    J. Plant Physiol., 2008. 165(8): p. 886-94
  24. Ishida T, et al.
    Arabidopsis TRANSPARENT TESTA GLABRA2 is directly regulated by R2R3 MYB transcription factors and is involved in regulation of GLABRA2 transcription in epidermal differentiation.
    Plant Cell, 2007. 19(8): p. 2531-43
  25. Lillo C,Lea US,Ruoff P
    Nutrient depletion as a key factor for manipulating gene expression and product formation in different branches of the flavonoid pathway.
    Plant Cell Environ., 2008. 31(5): p. 587-601
  26. Gonzalez A,Zhao M,Leavitt JM,Lloyd AM
    Regulation of the anthocyanin biosynthetic pathway by the TTG1/bHLH/Myb transcriptional complex in Arabidopsis seedlings.
    Plant J., 2008. 53(5): p. 814-27
  27. Gao P,Xin Z,Zheng ZL
    The OSU1/QUA2/TSD2-encoded putative methyltransferase is a critical modulator of carbon and nitrogen nutrient balance response in Arabidopsis.
    PLoS ONE, 2008. 3(1): p. e1387
  28. Chang CS, et al.
    LZF1, a HY5-regulated transcriptional factor, functions in Arabidopsis de-etiolation.
    Plant J., 2008. 54(2): p. 205-19
  29. Ben Zvi MM, et al.
    Interlinking showy traits: co-engineering of scent and colour biosynthesis in flowers.
    Plant Biotechnol. J., 2008. 6(4): p. 403-15
  30. Matsui K,Umemura Y,Ohme-Takagi M
    AtMYBL2, a protein with a single MYB domain, acts as a negative regulator of anthocyanin biosynthesis in Arabidopsis.
    Plant J., 2008. 55(6): p. 954-67
  31. Dubos C, et al.
    MYBL2 is a new regulator of flavonoid biosynthesis in Arabidopsis thaliana.
    Plant J., 2008. 55(6): p. 940-53
  32. Loreti E, et al.
    Gibberellins, jasmonate and abscisic acid modulate the sucrose-induced expression of anthocyanin biosynthetic genes in Arabidopsis.
    New Phytol., 2008. 179(4): p. 1004-16
  33. Dare AP,Schaffer RJ,Lin-Wang K,Allan AC,Hellens RP
    Identification of a cis-regulatory element by transient analysis of co-ordinately regulated genes.
    Plant Methods, 2008. 4: p. 17
  34. Ascencio-Ib
    Global analysis of Arabidopsis gene expression uncovers a complex array of changes impacting pathogen response and cell cycle during geminivirus infection.
    Plant Physiol., 2008. 148(1): p. 436-54
  35. Zhou LL,Zeng HN,Shi MZ,Xie DY
    Development of tobacco callus cultures over expressing Arabidopsis PAP1/MYB75 transcription factor and characterization of anthocyanin biosynthesis.
    Planta, 2008. 229(1): p. 37-51
  36. Olsen KM, et al.
    Temperature and nitrogen effects on regulators and products of the flavonoid pathway: experimental and kinetic model studies.
    Plant Cell Environ., 2009. 32(3): p. 286-99
  37. Rowan DD, et al.
    Environmental regulation of leaf colour in red 35S:PAP1 Arabidopsis thaliana.
    New Phytol., 2009. 182(1): p. 102-15
  38. Peel GJ,Pang Y,Modolo LV,Dixon RA
    The LAP1 MYB transcription factor orchestrates anthocyanidin biosynthesis and glycosylation in Medicago.
    Plant J., 2009. 59(1): p. 136-49
  39. Pan Y, et al.
    Cytochrome P450 monooxygenases as reporters for circadian-regulated pathways.
    Plant Physiol., 2009. 150(2): p. 858-78
  40. Hugueney P, et al.
    A novel cation-dependent O-methyltransferase involved in anthocyanin methylation in grapevine.
    Plant Physiol., 2009. 150(4): p. 2057-70
  41. Shan X,Zhang Y,Peng W,Wang Z,Xie D
    Molecular mechanism for jasmonate-induction of anthocyanin accumulation in Arabidopsis.
    J. Exp. Bot., 2009. 60(13): p. 3849-60
  42. Feyissa DN,Løvdal T,Olsen KM,Slimestad R,Lillo C
    The endogenous GL3, but not EGL3, gene is necessary for anthocyanin accumulation as induced by nitrogen depletion in Arabidopsis rosette stage leaves.
    Planta, 2009. 230(4): p. 747-54
  43. Zhu HF,Fitzsimmons K,Khandelwal A,Kranz RG
    CPC, a single-repeat R3 MYB, is a negative regulator of anthocyanin biosynthesis in Arabidopsis.
    Mol Plant, 2009. 2(4): p. 790-802
  44. Hsieh LC, et al.
    Uncovering small RNA-mediated responses to phosphate deficiency in Arabidopsis by deep sequencing.
    Plant Physiol., 2009. 151(4): p. 2120-32
  45. Rubin G,Tohge T,Matsuda F,Saito K,Scheible WR
    Members of the LBD family of transcription factors repress anthocyanin synthesis and affect additional nitrogen responses in Arabidopsis.
    Plant Cell, 2009. 21(11): p. 3567-84
  46. Li X,Gao MJ,Pan HY,Cui DJ,Gruber MY
    Purple canola: Arabidopsis PAP1 increases antioxidants and phenolics in Brassica napus leaves.
    J. Agric. Food Chem., 2010. 58(3): p. 1639-45
  47. Shi MZ,Xie DY
    Features of anthocyanin biosynthesis in pap1-D and wild-type Arabidopsis thaliana plants grown in different light intensity and culture media conditions.
    Planta, 2010. 231(6): p. 1385-400
  48. Pantelides IS,Tjamos SE,Paplomatas EJ
    Ethylene perception via ETR1 is required in Arabidopsis infection by Verticillium dahliae.
    Mol. Plant Pathol., 2010. 11(2): p. 191-202
  49. Kwon Y, et al.
    The ethylene signaling pathway has a negative impact on sucrose-induced anthocyanin accumulation in Arabidopsis.
    J. Plant Res., 2011. 124(1): p. 193-200
  50. Hanada K, et al.
    Functional compensation of primary and secondary metabolites by duplicate genes in Arabidopsis thaliana.
    Mol. Biol. Evol., 2011. 28(1): p. 377-82
  51. Bhargava A,Mansfield SD,Hall HC,Douglas CJ,Ellis BE
    MYB75 functions in regulation of secondary cell wall formation in the Arabidopsis inflorescence stem.
    Plant Physiol., 2010. 154(3): p. 1428-38
  52. Jeong SW, et al.
    Ethylene suppression of sugar-induced anthocyanin pigmentation in Arabidopsis.
    Plant Physiol., 2010. 154(3): p. 1514-31
  53. Zhang Y,Yan YP,Wang ZZ
    The Arabidopsis PAP1 transcription factor plays an important role in the enrichment of phenolic acids in Salvia miltiorrhiza.
    J. Agric. Food Chem., 2010. 58(23): p. 12168-75
  54. Shi MZ,Xie DY
    Engineering of red cells of Arabidopsis thaliana and comparative genome-wide gene expression analysis of red cells versus wild-type cells.
    Planta, 2011. 233(4): p. 787-805
  55. Feng Y, et al.
    A three-component gene expression system and its application for inducible flavonoid overproduction in transgenic Arabidopsis thaliana.
    PLoS ONE, 2011. 6(3): p. e17603
  56. Lewis DR, et al.
    Auxin and ethylene induce flavonol accumulation through distinct transcriptional networks.
    Plant Physiol., 2011. 156(1): p. 144-64
  57. Appelhagen I, et al.
    TRANSPARENT TESTA1 interacts with R2R3-MYB factors and affects early and late steps of flavonoid biosynthesis in the endothelium of Arabidopsis thaliana seeds.
    Plant J., 2011. 67(3): p. 406-19
  58. Luo QJ,Mittal A,Jia F,Rock CD
    An autoregulatory feedback loop involving PAP1 and TAS4 in response to sugars in Arabidopsis.
    Plant Mol. Biol., 2012. 80(1): p. 117-29
  59. Peng Z, et al.
    Brassinosteroid enhances jasmonate-induced anthocyanin accumulation in Arabidopsis seedlings.
    J Integr Plant Biol, 2011. 53(8): p. 632-40
  60. Qi T, et al.
    The Jasmonate-ZIM-domain proteins interact with the WD-Repeat/bHLH/MYB complexes to regulate Jasmonate-mediated anthocyanin accumulation and trichome initiation in Arabidopsis thaliana.
    Plant Cell, 2011. 23(5): p. 1795-814
  61. Page M,Sultana N,Paszkiewicz K,Florance H,Smirnoff N
    The influence of ascorbate on anthocyanin accumulation during high light acclimation in Arabidopsis thaliana: further evidence for redox control of anthocyanin synthesis.
    Plant Cell Environ., 2012. 35(2): p. 388-404
  62. Hok S, et al.
    An Arabidopsis (malectin-like) leucine-rich repeat receptor-like kinase contributes to downy mildew disease.
    Plant Cell Environ., 2011. 34(11): p. 1944-57
  63. Gatica-Arias A, et al.
    Flavonoid production in transgenic hop (Humulus lupulus L.) altered by PAP1/MYB75 from Arabidopsis thaliana L.
    Plant Cell Rep., 2012. 31(1): p. 111-9
  64. Xie DY,Shi MZ
    Differentiation of programmed Arabidopsis cells.
    Bioeng Bugs, 2012. 3(1): p. 54-9
  65. Bonawitz ND, et al.
    REF4 and RFR1, subunits of the transcriptional coregulatory complex mediator, are required for phenylpropanoid homeostasis in Arabidopsis.
    J. Biol. Chem., 2012. 287(8): p. 5434-45
  66. Zhou LL,Shi MZ,Xie DY
    Regulation of anthocyanin biosynthesis by nitrogen in TTG1-GL3/TT8-PAP1-programmed red cells of Arabidopsis thaliana.
    Planta, 2012. 236(3): p. 825-37
  67. Das PK, et al.
    Cytokinins enhance sugar-induced anthocyanin biosynthesis in Arabidopsis.
    Mol. Cells, 2012. 34(1): p. 93-101
  68. Meinke DW
    A survey of dominant mutations in Arabidopsis thaliana.
    Trends Plant Sci., 2013. 18(2): p. 84-91
  69. Bhargava A, et al.
    The interacting MYB75 and KNAT7 transcription factors modulate secondary cell wall deposition both in stems and seed coat in Arabidopsis.
    Planta, 2013. 237(5): p. 1199-211
  70. Maier A, et al.
    Light and the E3 ubiquitin ligase COP1/SPA control the protein stability of the MYB transcription factors PAP1 and PAP2 involved in anthocyanin accumulation in Arabidopsis.
    Plant J., 2013. 74(4): p. 638-51
  71. Su L,Li A,Li H,Chu C,Qiu JL
    Direct modulation of protein level in Arabidopsis.
    Mol Plant, 2013. 6(5): p. 1711-4
  72. Shin DH, et al.
    HY5 regulates anthocyanin biosynthesis by inducing the transcriptional activation of the MYB75/PAP1 transcription factor in Arabidopsis.
    FEBS Lett., 2013. 587(10): p. 1543-7
  73. Qi T,Song S,Xie D
    Modified bimolecular fluorescence complementation assay to study the inhibition of transcription complex formation by JAZ proteins.
    Methods Mol. Biol., 2013. 1011: p. 187-97
  74. Ferr
    Arabidopsis TRANSCURVATA1 encodes NUP58, a component of the nucleopore central channel.
    PLoS ONE, 2013. 8(6): p. e67661
  75. Li S,Zachgo S
    TCP3 interacts with R2R3-MYB proteins, promotes flavonoid biosynthesis and negatively regulates the auxin response in Arabidopsis thaliana.
    Plant J., 2013. 76(6): p. 901-13
  76. Zhang Y, et al.
    Pathway engineering for phenolic acid accumulations in Salvia miltiorrhiza by combinational genetic manipulation.
    Metab. Eng., 2014. 21: p. 71-80
  77. Nakabayashi R, et al.
    Enhancement of oxidative and drought tolerance in Arabidopsis by overaccumulation of antioxidant flavonoids.
    Plant J., 2014. 77(3): p. 367-79
  78. Schnaubelt D, et al.
    Low glutathione regulates gene expression and the redox potentials of the nucleus and cytosol in Arabidopsis thaliana.
    Plant Cell Environ., 2015. 38(2): p. 266-79
  79. Liu W, et al.
    Synthetic TAL effectors for targeted enhancement of transgene expression in plants.
    Plant Biotechnol. J., 2014. 12(4): p. 436-46
  80. Ding Y, et al.
    Four distinct types of dehydration stress memory genes in Arabidopsis thaliana.
    BMC Plant Biol., 2013. 13: p. 229
  81. Qiu J, et al.
    Arabidopsis AtPAP1 transcription factor induces anthocyanin production in transgenic Taraxacum brevicorniculatum.
    Plant Cell Rep., 2014. 33(4): p. 669-80
  82. Onkokesung N, et al.
    Modulation of flavonoid metabolites in Arabidopsis thaliana through overexpression of the MYB75 transcription factor: role of kaempferol-3,7-dirhamnoside in resistance to the specialist insect herbivore Pieris brassicae.
    J. Exp. Bot., 2014. 65(8): p. 2203-17
  83. Jones AM, et al.
    Border control--a membrane-linked interactome of Arabidopsis.
    Science, 2014. 344(6185): p. 711-6
  84. Cna'ani A, et al.
    Plant Cell Environ., 2015. 38(7): p. 1333-46
  85. Ilk N,Ding J,Ihnatowicz A,Koornneef M,Reymond M
    Natural variation for anthocyanin accumulation under high-light and low-temperature stress is attributable to the ENHANCER OF AG-4 2 (HUA2) locus in combination with PRODUCTION OF ANTHOCYANIN PIGMENT1 (PAP1) and PAP2.
    New Phytol., 2015. 206(1): p. 422-35
  86. Li T, et al.
    Jasmonic acid enhancement of anthocyanin accumulation is dependent on phytochrome A signaling pathway under far-red light in Arabidopsis.
    Biochem. Biophys. Res. Commun., 2014. 454(1): p. 78-83
  87. Shin DH, et al.
    Identification of genes that may regulate the expression of the transcription factor production of anthocyanin pigment 1 (PAP1)/MYB75 involved in Arabidopsis anthocyanin biosynthesis.
    Plant Cell Rep., 2015. 34(5): p. 805-15
  88. Tian J, et al.
    McMYB10 regulates coloration via activating McF3'H and later structural genes in ever-red leaf crabapple.
    Plant Biotechnol. J., 2015. 13(7): p. 948-61
  89. Jin J, et al.
    An Arabidopsis Transcriptional Regulatory Map Reveals Distinct Functional and Evolutionary Features of Novel Transcription Factors.
    Mol. Biol. Evol., 2015. 32(7): p. 1767-73
  90. Wang L,ZengJ HQ,Song J,Feng SJ,Yang ZM
    miRNA778 and SUVH6 are involved in phosphate homeostasis in Arabidopsis.
    Plant Sci., 2015. 238: p. 273-85
  91. Lotkowska ME, et al.
    The Arabidopsis Transcription Factor MYB112 Promotes Anthocyanin Formation during Salinity and under High Light Stress.
    Plant Physiol., 2015. 169(3): p. 1862-80
  92. Boter M, et al.
    FILAMENTOUS FLOWER Is a Direct Target of JAZ3 and Modulates Responses to Jasmonate.
    Plant Cell, 2015. 27(11): p. 3160-74
  93. He X,Li Y,Lawson D,Xie DY
    Metabolic engineering of anthocyanins in dark tobacco varieties.
    Physiol Plant, 2017. 159(1): p. 2-12
  94. Broeckling BE,Watson RA,Steinwand B,Bush DR
    Intronic Sequence Regulates Sugar-Dependent Expression of Arabidopsis thaliana Production of Anthocyanin Pigment-1/MYB75.
    PLoS ONE, 2016. 11(6): p. e0156673
  95. Li Y, et al.
    Two IIIf Clade-bHLHs from Freesia hybrida Play Divergent Roles in Flavonoid Biosynthesis and Trichome Formation when Ectopically Expressed in Arabidopsis.
    Sci Rep, 2016. 6: p. 30514
  96. Lee WJ, et al.
    Drastic anthocyanin increase in response to PAP1 overexpression in fls1 knockout mutant confers enhanced osmotic stress tolerance in Arabidopsis thaliana.
    Plant Cell Rep., 2016. 35(11): p. 2369-2379
  97. Khare D, et al.
    Root avoidance of toxic metals requires the GeBP-LIKE 4 transcription factor in Arabidopsis thaliana.
    New Phytol., 2017. 213(3): p. 1257-1273
  98. Li S, et al.
    MYB75 Phosphorylation by MPK4 Is Required for Light-Induced Anthocyanin Accumulation in Arabidopsis.
    Plant Cell, 2016. 28(11): p. 2866-2883
  99. Sawano H, et al.
    Double-stranded RNA-binding protein DRB3 negatively regulates anthocyanin biosynthesis by modulating PAP1 expression in Arabidopsis thaliana.
    J. Plant Res., 2017. 130(1): p. 45-55
  100. Zou B, et al.
    Calmodulin-binding protein CBP60g functions as a negative regulator in Arabidopsis anthocyanin accumulation.
    PLoS ONE, 2017. 12(3): p. e0173129
  101. Zhang Y, et al.
    GA-DELLA pathway is involved in regulation of nitrogen deficiency-induced anthocyanin accumulation.
    Plant Cell Rep., 2017. 36(4): p. 557-569
  102. Mondal SK,Roy S
    Genome-wide sequential, evolutionary, organizational and expression analyses of phenylpropanoid biosynthesis associated MYB domain transcription factors in Arabidopsis.
    J. Biomol. Struct. Dyn., 2018. 36(6): p. 1577-1601
  103. Xu Z,Mahmood K,Rothstein SJ
    ROS Induces Anthocyanin Production Via Late Biosynthetic Genes and Anthocyanin Deficiency Confers the Hypersensitivity to ROS-Generating Stresses in Arabidopsis.
    Plant Cell Physiol., 2017. 58(8): p. 1364-1377
  104. Park JJ,Dempewolf E,Zhang W,Wang ZY
    RNA-guided transcriptional activation via CRISPR/dCas9 mimics overexpression phenotypes in Arabidopsis.
    PLoS ONE, 2017. 12(6): p. e0179410
  105. Lowder LG,Paul JW,Qi Y
    Multiplexed Transcriptional Activation or Repression in Plants Using CRISPR-dCas9-Based Systems.
    Methods Mol. Biol., 2017. 1629: p. 167-184
  106. Kataya ARA, et al.
    PLATINUM SENSITIVE 2 LIKE impacts growth, root morphology, seed set, and stress responses.
    PLoS ONE, 2017. 12(7): p. e0180478
  107. Duan S, et al.
    Functional characterization of a heterologously expressed Brassica napus WRKY41-1 transcription factor in regulating anthocyanin biosynthesis in Arabidopsis thaliana.
    Plant Sci., 2018. 268: p. 47-53
  108. Kranz HD, et al.
    Towards functional characterisation of the members of the R2R3-MYB gene family from Arabidopsis thaliana.
    Plant J., 1998. 16(2): p. 263-76