PlantRegMap/PlantTFDB v5.0
Plant Transcription Factor Database
Transcription Factor Information
Basic Information | Signature Domain | Sequence | 
Basic Information? help Back to Top
TF ID Ote100152630091
Taxonomic ID
Taxonomic Lineage
cellular organisms; Eukaryota; Viridiplantae; Streptophyta; Streptophytina; Embryophyta; Tracheophyta; Euphyllophyta; Spermatophyta; Magnoliophyta; Mesangiospermae; eudicotyledons; Gunneridae; Pentapetalae; asterids; lamiids; Lamiales; Lamiaceae; Nepetoideae; Ocimeae; Ocimum
Family bZIP
Protein Properties Length: 211aa    MW: 23930.6 Da    PI: 10.4059
Description bZIP family protein
Gene Model
Gene Model ID Type Source Coding Sequence
Signature Domain? help Back to Top
Signature Domain
No. Domain Score E-value Start End HMM Start HMM End
                        bZIP_1   5 krerrkqkNReAArrsRqRKkaeieeLeekvkeLeaeNkaLkkeleelk 53 
                                   +r+rr++kNRe+A rsR+RK+a++ eLe +  +L++eN +Lk+ l el+
                                   79****************************************9999886 PP

Protein Features ? help Back to Top
3D Structure
Database Entry ID E-value Start End InterPro ID Description
SMARTSM003385.4E-12115179IPR004827Basic-leucine zipper domain
PROSITE profilePS5021711.702117169IPR004827Basic-leucine zipper domain
CDDcd147071.77E-20119166No hitNo description
SuperFamilySSF579592.38E-11119166No hitNo description
PfamPF001704.1E-12119171IPR004827Basic-leucine zipper domain
Gene3DG3DSA: hitNo description
PROSITE patternPS000360122137IPR004827Basic-leucine zipper domain
Gene Ontology ? help Back to Top
GO Term GO Category GO Description
GO:0006355Biological Processregulation of transcription, DNA-templated
GO:0003700Molecular Functiontranscription factor activity, sequence-specific DNA binding
GO:0043565Molecular Functionsequence-specific DNA binding
Sequence ? help Back to Top
Protein Sequence    Length: 211 aa     Download sequence    Send to blast
Functional Description ? help Back to Top
Source Description
UniProtParticipates in ABA-regulated gene expression during seed development and subsequent vegetative stage by acting as the major mediator of ABA repression of growth. Binds to the embryo specification element and the ABA-responsive element (ABRE) of the Dc3 gene promoter and to the ABRE of the Em1 and Em6 genes promoters. Can also trans-activate its own promoter, suggesting that it is autoregulated. Plays a role in sugar-mediated senescence. {ECO:0000269|PubMed:11287670, ECO:0000269|PubMed:12000684, ECO:0000269|PubMed:12084834, ECO:0000269|PubMed:12177466, ECO:0000269|PubMed:12410810, ECO:0000269|PubMed:12434021, ECO:0000269|PubMed:15118859, ECO:0000269|PubMed:16247556, ECO:0000269|PubMed:16463099}.
Regulation -- Description ? help Back to Top
Source Description
UniProtINDUCTION: Up-regulated by drought, salt, abscisic acid (ABA) and glucose or 2-deoxy-glucose (2DG). Autoregulated. Positively regulated by the light-signaling component HY5. {ECO:0000269|PubMed:11287670, ECO:0000269|PubMed:12177466, ECO:0000269|PubMed:12376636, ECO:0000269|PubMed:12970489, ECO:0000269|PubMed:16463099, ECO:0000269|PubMed:18332440}.
Annotation -- Protein ? help Back to Top
Source Hit ID E-value Description
RefseqXP_011094355.14e-59protein ABSCISIC ACID-INSENSITIVE 5
RefseqXP_011094356.14e-59protein ABSCISIC ACID-INSENSITIVE 5
TrEMBLA0A4D8YVU92e-71A0A4D8YVU9_SALSN; ABA responsive element binding factor
STRINGXP_009586572.19e-52(Nicotiana tomentosiformis)
Orthologous Group ? help Back to Top
LineageOrthologous Group IDTaxa NumberGene Number
Publications ? help Back to Top
  1. Lin LL, et al.
    Identification of microRNA 395a in 24-epibrassinolide-regulated root growth of Arabidopsis thaliana using microRNA arrays.
    Int J Mol Sci, 2013. 14(7): p. 14270-86
  2. Duarte GT, et al.
    Involvement of microRNA-related regulatory pathways in the glucose-mediated control of Arabidopsis early seedling development.
    J. Exp. Bot., 2013. 64(14): p. 4301-12
  3. Kim DH,Xu ZY,Hwang I
    AtHSP17.8 overexpression in transgenic lettuce gives rise to dehydration and salt stress resistance phenotypes through modulation of ABA-mediated signaling.
    Plant Cell Rep., 2013. 32(12): p. 1953-63
  4. Lei GJ, et al.
    Abscisic acid alleviates iron deficiency by promoting root iron reutilization and transport from root to shoot in Arabidopsis.
    Plant Cell Environ., 2014. 37(4): p. 852-63
  5. Guo R, et al.
    Jasmonic acid and glucose synergistically modulate the accumulation of glucosinolates in Arabidopsis thaliana.
    J. Exp. Bot., 2013. 64(18): p. 5707-19
  6. Bu Q, et al.
    Regulation of drought tolerance by the F-box protein MAX2 in Arabidopsis.
    Plant Physiol., 2014. 164(1): p. 424-39
  7. Gao DY, et al.
    Functional analyses of an E3 ligase gene AIP2 from wheat in Arabidopsis revealed its roles in seed germination and pre-harvest sprouting.
    J Integr Plant Biol, 2014. 56(5): p. 480-91
  8. Ding Y, et al.
    Four distinct types of dehydration stress memory genes in Arabidopsis thaliana.
    BMC Plant Biol., 2013. 13: p. 229
  9. Qin Y,Tian Y,Han L,Yang X
    Constitutive expression of a salinity-induced wheat WRKY transcription factor enhances salinity and ionic stress tolerance in transgenic Arabidopsis thaliana.
    Biochem. Biophys. Res. Commun., 2013. 441(2): p. 476-81
  10. González-Grandío E,Cubas P
    Identification of gene functions associated to active and dormant buds in Arabidopsis.
    Plant Signal Behav, 2014. 9(2): p. e27994
  11. Seifert GJ,Xue H,Acet T
    The Arabidopsis thaliana FASCICLIN LIKE ARABINOGALACTAN PROTEIN 4 gene acts synergistically with abscisic acid signalling to control root growth.
    Ann. Bot., 2014. 114(6): p. 1125-33
  12. Joseph MP, et al.
    The Arabidopsis ZINC FINGER PROTEIN3 Interferes with Abscisic Acid and Light Signaling in Seed Germination and Plant Development.
    Plant Physiol., 2014. 165(3): p. 1203-1220
  13. Zhao H, et al.
    The Putative E3 Ubiquitin Ligase ECERIFERUM9 Regulates Abscisic Acid Biosynthesis and Response during Seed Germination and Postgermination Growth in Arabidopsis.
    Plant Physiol., 2014. 165(3): p. 1255-1268
  14. Mei C, et al.
    Arabidopsis pentatricopeptide repeat protein SOAR1 plays a critical role in abscisic acid signalling.
    J. Exp. Bot., 2014. 65(18): p. 5317-30
  15. Chen C, et al.
    ASCORBATE PEROXIDASE6 protects Arabidopsis desiccating and germinating seeds from stress and mediates cross talk between reactive oxygen species, abscisic acid, and auxin.
    Plant Physiol., 2014. 166(1): p. 370-83
  16. Kim EY,Seo YS,Park KY,Kim SJ,Kim WT
    Overexpression of CaDSR6 increases tolerance to drought and salt stresses in transgenic Arabidopsis plants.
    Gene, 2014. 552(1): p. 146-54
  17. Bello B, et al.
    Cloning of Gossypium hirsutum sucrose non-fermenting 1-related protein kinase 2 gene (GhSnRK2) and its overexpression in transgenic Arabidopsis escalates drought and low temperature tolerance.
    PLoS ONE, 2014. 9(11): p. e112269
  18. Chen C,Twito S,Miller G
    New cross talk between ROS, ABA and auxin controlling seed maturation and germination unraveled in APX6 deficient Arabidopsis seeds.
    Plant Signal Behav, 2014. 9(12): p. e976489
  19. Lu Y, et al.
    ABI1 regulates carbon/nitrogen-nutrient signal transduction independent of ABA biosynthesis and canonical ABA signalling pathways in Arabidopsis.
    J. Exp. Bot., 2015. 66(9): p. 2763-71
  20. Lee HN,Lee KH,Kim CS
    Abscisic acid receptor PYRABACTIN RESISTANCE-LIKE 8, PYL8, is involved in glucose response and dark-induced leaf senescence in Arabidopsis.
    Biochem. Biophys. Res. Commun., 2015 Jul 17-24. 463(1-2): p. 24-8
  21. Ibarra SE, et al.
    Molecular mechanisms underlying the entrance in secondary dormancy of Arabidopsis seeds.
    Plant Cell Environ., 2016. 39(1): p. 213-21
  22. Fernando VC,Schroeder DF
    Genetic interactions between DET1 and intermediate genes in Arabidopsis ABA signalling.
    Plant Sci., 2015. 239: p. 166-79
  23. Zhong C, et al.
    Gibberellic Acid-Stimulated Arabidopsis6 Serves as an Integrator of Gibberellin, Abscisic Acid, and Glucose Signaling during Seed Germination in Arabidopsis.
    Plant Physiol., 2015. 169(3): p. 2288-303
  24. Sakuraba Y,Han SH,Lee SH,Hörtensteiner S,Paek NC
    Arabidopsis NAC016 promotes chlorophyll breakdown by directly upregulating STAYGREEN1 transcription.
    Plant Cell Rep., 2016. 35(1): p. 155-66
  25. Zhang GZ, et al.
    Ectopic expression of UGT75D1, a glycosyltransferase preferring indole-3-butyric acid, modulates cotyledon development and stress tolerance in seed germination of Arabidopsis thaliana.
    Plant Mol. Biol., 2016. 90(1-2): p. 77-93
  26. Zhao W, et al.
    The Arabidopsis CROWDED NUCLEI genes regulate seed germination by modulating degradation of ABI5 protein.
    J Integr Plant Biol, 2016. 58(7): p. 669-78
  27. Wu J, et al.
    Gladiolus hybridus ABSCISIC ACID INSENSITIVE 5 (GhABI5) is an important transcription factor in ABA signaling that can enhance Gladiolus corm dormancy and Arabidopsis seed dormancy.
    Front Plant Sci, 2015. 6: p. 960
  28. Sun Y,Xu W,Jia Y,Wang M,Xia G
    The wheat TaGBF1 gene is involved in the blue-light response and salt tolerance.
    Plant J., 2015. 84(6): p. 1219-30
  29. Kim H, et al.
    ABA-HYPERSENSITIVE BTB/POZ PROTEIN 1 functions as a negative regulator in ABA-mediated inhibition of germination in Arabidopsis.
    Plant Mol. Biol., 2016. 90(3): p. 303-15
  30. Dekkers BJ, et al.
    The Arabidopsis DELAY OF GERMINATION 1 gene affects ABSCISIC ACID INSENSITIVE 5 (ABI5) expression and genetically interacts with ABI3 during Arabidopsis seed development.
    Plant J., 2016. 85(4): p. 451-65
  31. Qiao Z,Li CL,Zhang W
    WRKY1 regulates stomatal movement in drought-stressed Arabidopsis thaliana.
    Plant Mol. Biol., 2016. 91(1-2): p. 53-65
  32. Huang Y,Feng CZ,Ye Q,Wu WH,Chen YF
    Arabidopsis WRKY6 Transcription Factor Acts as a Positive Regulator of Abscisic Acid Signaling during Seed Germination and Early Seedling Development.
    PLoS Genet., 2016. 12(2): p. e1005833
  33. Yu Y, et al.
    Salt Stress and Ethylene Antagonistically Regulate Nucleocytoplasmic Partitioning of COP1 to Control Seed Germination.
    Plant Physiol., 2016. 170(4): p. 2340-50
  34. Dave A,Vaistij FE,Gilday AD,Penfield SD,Graham IA
    Regulation of Arabidopsis thaliana seed dormancy and germination by 12-oxo-phytodienoic acid.
    J. Exp. Bot., 2016. 67(8): p. 2277-84
  35. Mauri N, et al.
    GEM, a member of the GRAM domain family of proteins, is part of the ABA signaling pathway.
    Sci Rep, 2016. 6: p. 22660
  36. Su M, et al.
    The LEA protein, ABR, is regulated by ABI5 and involved in dark-induced leaf senescence in Arabidopsis thaliana.
    Plant Sci., 2016. 247: p. 93-103
  37. Yang X,Bai Y,Shang J,Xin R,Tang W
    The antagonistic regulation of abscisic acid-inhibited root growth by brassinosteroids is partially mediated via direct suppression of ABSCISIC ACID INSENSITIVE 5 expression by BRASSINAZOLE RESISTANT 1.
    Plant Cell Environ., 2016. 39(9): p. 1994-2003
  38. Kim J, et al.
    PIF1-Interacting Transcription Factors and Their Binding Sequence Elements Determine the in Vivo Targeting Sites of PIF1.
    Plant Cell, 2016. 28(6): p. 1388-405
  39. Liao CJ,Lai Z,Lee S,Yun DJ,Mengiste T
    Arabidopsis HOOKLESS1 Regulates Responses to Pathogens and Abscisic Acid through Interaction with MED18 and Acetylation of WRKY33 and ABI5 Chromatin.
    Plant Cell, 2016. 28(7): p. 1662-81
  40. Carrió-Seguí À,Romero P,Sanz A,Peñarrubia L
    Interaction Between ABA Signaling and Copper Homeostasis in Arabidopsis thaliana.
    Plant Cell Physiol., 2016. 57(7): p. 1568-1582
  41. Bai Y, et al.
    Genome-Wide Analysis of the bZIP Gene Family Identifies Two ABI5-Like bZIP Transcription Factors, BrABI5a and BrABI5b, as Positive Modulators of ABA Signalling in Chinese Cabbage.
    PLoS ONE, 2016. 11(7): p. e0158966
  42. Yu D, et al.
    RPN1a negatively regulates ABA signaling in Arabidopsis.
    Plant Physiol. Biochem., 2016. 108: p. 279-285
  43. Kazachkova Y, et al.
    Salt Induces Features of a Dormancy-Like State in Seeds of Eutrema (Thellungiella) salsugineum, a Halophytic Relative of Arabidopsis.
    Front Plant Sci, 2016. 7: p. 1071
  44. Miao H, et al.
    Glucose enhances indolic glucosinolate biosynthesis without reducing primary sulfur assimilation.
    Sci Rep, 2016. 6: p. 31854
  45. Liu X, et al.
    The NF-YC-RGL2 module integrates GA and ABA signalling to regulate seed germination in Arabidopsis.
    Nat Commun, 2016. 7: p. 12768
  46. Zhu Z, et al.
    Overexpression of AtEDT1/HDG11 in Chinese Kale (Brassica oleracea var. alboglabra) Enhances Drought and Osmotic Stress Tolerance.
    Front Plant Sci, 2016. 7: p. 1285
  47. Xie T, et al.
    Growing Slowly 1 locus encodes a PLS-type PPR protein required for RNA editing and plant development in Arabidopsis.
    J. Exp. Bot., 2016. 67(19): p. 5687-5698
  48. Gu L, et al.
    An RRM-containing mei2-like MCT1 plays a negative role in the seed germination and seedling growth of Arabidopsis thaliana in the presence of ABA.
    Plant Physiol. Biochem., 2016. 109: p. 273-279
  49. Chen YS, et al.
    Two MYB-related transcription factors play opposite roles in sugar signaling in Arabidopsis.
    Plant Mol. Biol., 2017. 93(3): p. 299-311
  50. Lynch TJ,Erickson BJ,Miller DR,Finkelstein RR
    ABI5-binding proteins (AFPs) alter transcription of ABA-induced genes via a variety of interactions with chromatin modifiers.
    Plant Mol. Biol., 2017. 93(4-5): p. 403-418
  51. Keren I,Citovsky V
    The histone deubiquitinase OTLD1 targets euchromatin to regulate plant growth.
    Sci Signal, 2016. 9(459): p. ra125
  52. Xu J, et al.
    A Novel RNA-Binding Protein Involves ABA Signaling by Post-transcriptionally Repressing ABI2.
    Front Plant Sci, 2017. 8: p. 24
  53. Bi C, et al.
    Arabidopsis ABI5 plays a role in regulating ROS homeostasis by activating CATALASE 1 transcription in seed germination.
    Plant Mol. Biol., 2017. 94(1-2): p. 197-213
  54. Yu LH, et al.
    Arabidopsis MADS-Box Transcription Factor AGL21 Acts as Environmental Surveillance of Seed Germination by Regulating ABI5 Expression.
    Mol Plant, 2017. 10(6): p. 834-845
  55. Xiao X,Cheng X,Yin K,Li H,Qiu JL
    Abscisic acid negatively regulates post-penetration resistance of Arabidopsis to the biotrophic powdery mildew fungus.
    Sci China Life Sci, 2017. 60(8): p. 891-901
  56. Bi C,Ma Y,Wang XF,Zhang DP
    Overexpression of the transcription factor NF-YC9 confers abscisic acid hypersensitivity in Arabidopsis.
    Plant Mol. Biol., 2017. 95(4-5): p. 425-439
  57. Ueda M, et al.
    The Distinct Roles of Class I and II RPD3-Like Histone Deacetylases in Salinity Stress Response.
    Plant Physiol., 2017. 175(4): p. 1760-1773
  58. Ullah A,Sun H,Yang X,Zhang X
    A novel cotton WRKY gene, GhWRKY6-like, improves salt tolerance by activating the ABA signaling pathway and scavenging of reactive oxygen species.
    Physiol Plant, 2018. 162(4): p. 439-454
  59. Huang Y, et al.
    Abscisic Acid Modulates Seed Germination via ABA INSENSITIVE5-Mediated PHOSPHATE1.
    Plant Physiol., 2017. 175(4): p. 1661-1668
  60. Shi XP, et al.
    Overexpression of SDH confers tolerance to salt and osmotic stress, but decreases ABA sensitivity in Arabidopsis.
    Plant Biol (Stuttg), 2018. 20(2): p. 327-337
  61. Zhu T, et al.
    The Asparagine-Rich Protein NRP Facilitates the Degradation of the PP6-type Phosphatase FyPP3 to Promote ABA Response in Arabidopsis.
    Mol Plant, 2018. 11(2): p. 257-268
  62. Chang G, et al.
    AFP2 as the novel regulator breaks high-temperature-induced seeds secondary dormancy through ABI5 and SOM in Arabidopsis thaliana.
    Biochem. Biophys. Res. Commun., 2018. 501(1): p. 232-238