PlantRegMap/PlantTFDB v5.0
Plant Transcription Factor Database
Transcription Factor Information
Basic Information | Signature Domain | Sequence | 
Basic Information? help Back to Top
TF ID AT5G61850.1
Common NameLFY, LFY3, MAC9.18
Taxonomic ID
Taxonomic Lineage
cellular organisms; Eukaryota; Viridiplantae; Streptophyta; Streptophytina; Embryophyta; Tracheophyta; Euphyllophyta; Spermatophyta; Magnoliophyta; Mesangiospermae; eudicotyledons; Gunneridae; Pentapetalae; rosids; malvids; Brassicales; Brassicaceae; Camelineae; Arabidopsis
Family LFY
Protein Properties Length: 420aa    MW: 46582.3 Da    PI: 7.1121
Description floral meristem identity control protein LEAFY (LFY)
Gene Model
Gene Model ID Type Source Coding Sequence
AT5G61850.1genomeTAIRView CDS
Signature Domain? help Back to Top
Signature Domain
No. Domain Score E-value Start End HMM Start HMM End
      FLO_LFY   1 mdpeafsaslfkwdpraaaaapparlleeaavseapleaaaaaaarklreleelfkayGvryltvakiaelGftvstLvdmkdeelddlmkslseifr 98 
                  mdpe f++ lf+w+p  a +++p  + +  +  ++p++ ++aa  ++l +le lf  yG+r++t+akiaelGft+stLv+mkdeel+++m+sls+ifr
                  9*************77777666666655554..4444567778888899************************************************* PP

      FLO_LFY  99 ldllvGeryGikaavraerrrlee..eeaekkrrkll.....sedeetaldalsqeglseepvqeekeaagsggeglgeaelvaaeekkseeekkkas 189
                  ++llvGeryGikaavraerrrl+e  ee++++rr+ll      + +++aldalsqeglseepvq++ ++ ++g++g g ++   a +    + kk++ 
                  **********************99544456778887778844344556****************97776666666655666665553...2233333. PP

      FLO_LFY 190 kkkqkrkkkkelkseededeeeeededeegsgedge....erqrehPfivtepgevargkknGLDYLfdLyeqCrefLlqvqkiakerGekcPtkvtn 283
                   ++++rkk   ++ e+ded +e ed+d++++g++g+    erqrehPfivtepgevargkknGLDYLf+LyeqCrefLlqvq+iak+rGekcPtkvtn
                  .233333444445556666666666666665555444455********************************************************** PP

      FLO_LFY 284 qvfryakkagasyinkPkmrhYvhCYalhcLdeeasnalrrafkergenvGawrqacykplvaiaarqgwdidavfnahprLsiWYvPtkLrqLChle 381
                  qvfryakk+gasyinkPkmrhYvhCYalhcLdeeasnalrrafkergenvG+wrqacykplv+ia r+gwdidavfnahprLsiWYvPtkLrqLChle
                  ************************************************************************************************** PP

      FLO_LFY 382 rskas 386
  AT5G61850.1 386 RNNAV 390
                  *9975 PP

Protein Features ? help Back to Top
3D Structure
Database Entry ID E-value Start End InterPro ID Description
PfamPF016988.2E-2021389IPR002910Floricaula/leafy protein
Gene Ontology ? help Back to Top
GO Term GO Category GO Description
GO:0006355Biological Processregulation of transcription, DNA-templated
GO:0009740Biological Processgibberellic acid mediated signaling pathway
GO:0010077Biological Processmaintenance of inflorescence meristem identity
GO:0010582Biological Processfloral meristem determinacy
GO:0030154Biological Processcell differentiation
GO:0005634Cellular Componentnucleus
GO:0003700Molecular Functiontranscription factor activity, sequence-specific DNA binding
GO:0031490Molecular Functionchromatin DNA binding
GO:0042803Molecular Functionprotein homodimerization activity
GO:0043565Molecular Functionsequence-specific DNA binding
GO:0043621Molecular Functionprotein self-association
Plant Ontology ? help Back to Top
PO Term PO Category PO Description
PO:0000037anatomyshoot apex
PO:0009009anatomyplant embryo
PO:0025022anatomycollective leaf structure
PO:0001078developmental stageplant embryo cotyledonary stage
PO:0001081developmental stagemature plant embryo stage
PO:0004507developmental stageplant embryo bilateral stage
PO:0007600developmental stagefloral organ differentiation stage
PO:0007601developmental stagefloral organ meristem development stage
PO:0007611developmental stagepetal differentiation and expansion stage
PO:0007616developmental stageflowering stage
Sequence ? help Back to Top
Protein Sequence    Length: 420 aa     Download sequence    Send to blast
3D Structure ? help Back to Top
PDB ID Evalue Query Start Query End Hit Start Hit End Description
2vy1_A1e-1452274201194PROTEIN LEAFY
2vy2_A1e-1452274201194PROTEIN LEAFY
Search in ModeBase
Expression -- Microarray ? help Back to Top
Source ID E-value
Expression AtlasAT5G61850-
Expression -- Description ? help Back to Top
Source Description
UniprotDEVELOPMENTAL STAGE: Expressed at an early stage of floral initiation.
UniprotTISSUE SPECIFICITY: Expressed uniformly throughout the young floral primordia.
Functional Description ? help Back to Top
Source Description
TAIREncodes transcriptional regulator that promotes the transition to flowering.Involved in floral meristem development. LFY is involved in the regulation of AP3 expression, and appears to bring the F-box protein UFO to the AP3 promoter.
UniProtProbable transcription factor that promotes early floral meristem identity in synergy with APETALA1. Is required subsequently for the transition of an inflorescence meristem into a floral meristem, by an immediate upstream regulation of the ABC classes of floral homeotic genes. Activates directly APETALA1, CAULIFLOWER and AGAMOUS, and indirectly APETALA3 and PISTILLATA with the cooperation of UFO. {ECO:0000269|PubMed:8565821, ECO:0000269|PubMed:9783581, ECO:0000269|Ref.6}.
Function -- GeneRIF ? help Back to Top
  1. LEAFY activates the expression of floral organ identity genes APETALA3, AGAMOUS and APETALA1
    [PMID: 9783581]
  2. FT regulates SOC1 expression, and SOC1 regulates LFY expression
    [PMID: 15695467]
  3. The transcription factor LFY controls the switch from vegetative to reproductive development.
    [PMID: 16554366]
  4. Mustard plsnt LcrLFY has diverged from A. thaliana in both the cis-regulatory and protein-coding regions which contribute to the evolution of rossette flowering.
    [PMID: 16915521]
  5. GA(4) is the active GA in the regulation of LFY transcription and Arabidopsis flowering time under short-day conditions.
    [PMID: 16920780]
  6. Activation of the LFY transcriptrion factor is required.
    [PMID: 18287201]
  7. Interaction with AGL24 relocates SOC1 to the nucleus, where SOC1 regulates leafy expression by binding to the LFY promoter.
    [PMID: 18466303]
  8. Results report crystal structures for the DNA-binding domain of Arabidopsis thaliana LEAFY bound to two target promoter elements.
    [PMID: 18784751]
  9. LFY and AGL15 are involved in the regulation of AtMYB17 in early inflorescence development and seed germination.
    [PMID: 19232308]
  10. Data show that LEAFY, FRUITFULL, and APETALA1 are directly activated by the microRNA-targeted transcription factor SQUAMOSA PROMOTER BINDING PROTEIN-LIKE 3 (SPL3) to control the timing of flower formation.
    [PMID: 19686687]
  11. The motif analyses reveal a possible mechanism for stage-specific LFY recruitment and suggest a role for LFY in overcoming polycomb repression.
    [PMID: 21497757]
  12. A biophysical model describing LFY DNA binding specificity in vitro was built that accurately predicts in vivo LFY binding sites in the Arabidopsis thaliana genome.
    [PMID: 21515819]
  13. LEAFY binding site is essential for proper photoperiodic activation of APETALA1
    [PMID: 21623976]
  14. Data show that the direct LEAFY target LATE MERISTEM IDENTITY2 (LMI2) has a role in the meristem identity transition, and acts together with LEAFY to activate APETALA1.
    [PMID: 21750030]
  15. LFY activity affects adaxial pedicel identity and cell elongation. LFY mutation suppresses the crm1 pedicel length and orientation phenotypes.
    [PMID: 22050454]
  16. The SWI2/SNF2 ATPases physically interact with two direct transcriptional activators of class B and class C gene expression, LEAFY (LFY) and SEPALLATA3 (SEP3).
    [PMID: 22323601]
  17. Studies indicate that LEAFY is a master regulator of flowering.
    [PMID: 22451042]
  18. must act in complexes that contain at least two LFY molecules; the N-terminus is essential for stabilization
    [PMID: 22507399]
  19. these three transcription factors LFY, ANT and AIL6/PLT3 are redundantly required for flower primordium initiation.
    [PMID: 23375585]
  20. A LFY allele with reduced floral function revealed its ability to stimulate axillary meristem growth. This role requires the ability of LFY to bind DNA, and is mediated by direct induction of REGULATOR OF AXILLARY MERISTEMS1 (RAX1) by LFY.
    [PMID: 23445516]
  21. LEAFY controls auxin response pathways in floral primordium formation.
    [PMID: 23572147]
  22. The ULT1 and LFY pathways act separately in regulating identity and determinacy at the floral meristem. In particular, they independently induce AG expression in the centre of the flower to terminate meristem activity.
    [PMID: 25288633]
  23. Data suggest that helix-turn-helix transcription factor LEAFY (LFY) and the MADS box transcription factor APETALA1 (AP1)together orchestrate the switch to flower formation and morphogenesis by altering transcriptional programs.
    [PMID: 26096587]
  24. ANT and AIL6 directly induce LFY expression in response to auxin to promote the onset of flower formation.
    [PMID: 26537561]
  25. WRKY71 activity hastens flowering via the direct activation of FT and LFY.
    [PMID: 26643131]
  26. data suggest that transcriptional regulation of LFY at the chromatin level by PKL may at least partially account for the late-flowering phenotype of pkl mutants
    [PMID: 27056257]
  27. A SAM oligomerization domain shapes the genomic binding landscape of the LEAFY transcription factor.
    [PMID: 27097556]
  28. LFY and AP1 are conserved floral regulators that act nonredundantly in C. hirsuta, such that LFY has more obvious roles in floral and leaf development in C. hirsuta than in A. thaliana.
    [PMID: 28098947]
  29. LFY and AP1/CAL act as part of an incoherent feed-forward loop, a network motif where two interconnected pathways or transcription factors act in opposite directions on a target gene, to control the establishment of a stable developmental program for the formation of flowers.
    [PMID: 28385730]
Binding Motif ? help Back to Top
Motif ID Method Source Motif file
Motif logo
Cis-element ? help Back to Top
Regulation -- Description ? help Back to Top
Source Description
UniProtINDUCTION: Positively regulated by CAULIFLOWER and APETALA1. Down-regulated by TFL1.
Regulation -- PlantRegMap ? help Back to Top
Source Upstream Regulator Target Gene
Regulation -- ATRM (Manually Curated Upstream Regulators) ? help Back to Top
Source Upstream Regulator (A: Activate/R: Repress)
ATRM AT1G14920 (A), AT1G26310 (A), AT1G52880 (A), AT1G69120 (A), AT1G71692 (A), AT1G76420 (A), AT2G22630 (A), AT2G27990 (A), AT2G33810 (A), AT2G45660 (A), AT4G02560 (A), AT4G24540 (A), AT4G37750 (A), AT5G02030 (A), AT5G06100 (A), AT5G15840 (A), AT5G18560 (A), AT5G60910 (A)
Regulation -- ATRM (Manually Curated Target Genes) ? help Back to Top
Source Target Gene (A: Activate/R: Repress)
ATRM AT1G26310(A), AT1G52880(A), AT1G68480(R), AT1G69120(A), AT1G69180(A), AT1G76420(A), AT3G23130(A), AT3G54340(A), AT3G61250(A), AT4G18960(A), AT4G24540(R), AT5G03790(A), AT5G03840(R), AT5G11530(R), AT5G20240(A), AT5G51600(A)
Regulation -- Hormone ? help Back to Top
Source Hormone
Interaction -- BIND ? help Back to Top
Source Intact With Description
BINDAT1G69120LFY interacts with AP1 promoter.
Interaction ? help Back to Top
Source Intact With
IntActSearch Q00958
Phenotype -- Mutation ? help Back to Top
Source ID
T-DNA ExpressAT5G61850
Annotation -- Nucleotide ? help Back to Top
Source Hit ID E-value Description
GenBankDQ4471030.0DQ447103.1 Arabidopsis thaliana clone pENTR221-At5g61850 floral meristem identity control protein LEAFY (At5g61850) mRNA, complete cds.
Annotation -- Protein ? help Back to Top
Source Hit ID E-value Description
RefseqNP_200993.10.0floral meristem identity control protein LEAFY (LFY)
SwissprotQ009580.0LFY_ARATH; Protein LEAFY
TrEMBLA0A023T4L80.0A0A023T4L8_ARATH; Protein leafy
STRINGAT5G61850.10.0(Arabidopsis thaliana)
Orthologous Group ? help Back to Top
LineageOrthologous Group IDTaxa NumberGene Number
Representative plantOGRP70181619
Publications ? help Back to Top
  1. Ratcliffe OJ,Bradley DJ,Coen ES
    Separation of shoot and floral identity in Arabidopsis.
    Development, 1999. 126(6): p. 1109-20
  2. Page T,Macknight R,Yang CH,Dean C
    Genetic interactions of the Arabidopsis flowering time gene FCA, with genes regulating floral initiation.
    Plant J., 1999. 17(3): p. 231-9
  3. Aukerman MJ,Lee I,Weigel D,Amasino RM
    The Arabidopsis flowering-time gene LUMINIDEPENDENS is expressed primarily in regions of cell proliferation and encodes a nuclear protein that regulates LEAFY expression.
    Plant J., 1999. 18(2): p. 195-203
  4. Liljegren SJ,Gustafson-Brown C,Pinyopich A,Ditta GS,Yanofsky MF
    Interactions among APETALA1, LEAFY, and TERMINAL FLOWER1 specify meristem fate.
    Plant Cell, 1999. 11(6): p. 1007-18
  5. Brunel D,Froger N,Pelletier G
    Development of amplified consensus genetic markers (ACGM) in Brassica napus from Arabidopsis thaliana sequences of known biological function.
    Genome, 1999. 42(3): p. 387-402
  6. Melzer S,Kampmann G,Chandler J,Apel K
    FPF1 modulates the competence to flowering in Arabidopsis.
    Plant J., 1999. 18(4): p. 395-405
  7. Wagner D,Sablowski RW,Meyerowitz EM
    Transcriptional activation of APETALA1 by LEAFY.
    Science, 1999. 285(5427): p. 582-4
  8. Busch MA,Bomblies K,Weigel D
    Activation of a floral homeotic gene in Arabidopsis.
    Science, 1999. 285(5427): p. 585-7
  9. Bl
    Independent regulation of flowering by phytochrome B and gibberellins in Arabidopsis.
    Plant Physiol., 1999. 120(4): p. 1025-32
  10. Amaya I,Ratcliffe OJ,Bradley DJ
    Expression of CENTRORADIALIS (CEN) and CEN-like genes in tobacco reveals a conserved mechanism controlling phase change in diverse species.
    Plant Cell, 1999. 11(8): p. 1405-18
  11. Mendoza L,Thieffry D,Alvarez-Buylla ER
    Genetic control of flower morphogenesis in Arabidopsis thaliana: a logical analysis.
    Bioinformatics, 1999 Jul-Aug. 15(7-8): p. 593-606
  12. Kobayashi Y,Kaya H,Goto K,Iwabuchi M,Araki T
    A pair of related genes with antagonistic roles in mediating flowering signals.
    Science, 1999. 286(5446): p. 1960-2
  13. Kardailsky I, et al.
    Activation tagging of the floral inducer FT.
    Science, 1999. 286(5446): p. 1962-5
  14. Bomblies K,Dagenais N,Weigel D
    Redundant enhancers mediate transcriptional repression of AGAMOUS by APETALA2.
    Dev. Biol., 1999. 216(1): p. 260-4
  15. Samach A, et al.
    The UNUSUAL FLORAL ORGANS gene of Arabidopsis thaliana is an F-box protein required for normal patterning and growth in the floral meristem.
    Plant J., 1999. 20(4): p. 433-45
  16. Ezhova TA
    [Arabidopsis thaliana (L.) Heynh. as a model object for studying genetic control of morphogenesis].
    Genetika, 1999. 35(11): p. 1522-37
  17. Hempel FD,Welch DR,Feldman LJ
    Floral induction and determination: where is flowering controlled?
    Trends Plant Sci., 2000. 5(1): p. 17-21
  18. Ferrándiz C,Gu Q,Martienssen R,Yanofsky MF
    Redundant regulation of meristem identity and plant architecture by FRUITFULL, APETALA1 and CAULIFLOWER.
    Development, 2000. 127(4): p. 725-34
  19. Molinero-Rosales N, et al.
    FALSIFLORA, the tomato orthologue of FLORICAULA and LEAFY, controls flowering time and floral meristem identity.
    Plant J., 1999. 20(6): p. 685-93
  20. Honma T,Goto K
    The Arabidopsis floral homeotic gene PISTILLATA is regulated by discrete cis-elements responsive to induction and maintenance signals.
    Development, 2000. 127(10): p. 2021-30
  21. Bl
    Integration of floral inductive signals in Arabidopsis.
    Nature, 2000. 404(6780): p. 889-92
  22. Shu G,Amaral W,Hileman LC,Baum DA
    LEAFY and the evolution of rosette flowering in violet cress (Jonopsidium acaule, Brassicaceae).
    Am. J. Bot., 2000. 87(5): p. 634-41
  23. Rottmann WH, et al.
    Diverse effects of overexpression of LEAFY and PTLF, a poplar (Populus) homolog of LEAFY/FLORICAULA, in transgenic poplar and Arabidopsis.
    Plant J., 2000. 22(3): p. 235-45
  24. Onouchi H,Ige
    Mutagenesis of plants overexpressing CONSTANS demonstrates novel interactions among Arabidopsis flowering-time genes.
    Plant Cell, 2000. 12(6): p. 885-900
  25. Sessions A,Yanofsky MF,Weigel D
    Cell-cell signaling and movement by the floral transcription factors LEAFY and APETALA1.
    Science, 2000. 289(5480): p. 779-82
  26. Lee H, et al.
    The AGAMOUS-LIKE 20 MADS domain protein integrates floral inductive pathways in Arabidopsis.
    Genes Dev., 2000. 14(18): p. 2366-76
  27. Sakai H,Krizek BA,Jacobsen SE,Meyerowitz EM
    Regulation of SUP expression identifies multiple regulators involved in arabidopsis floral meristem development.
    Plant Cell, 2000. 12(9): p. 1607-18
  28. Deyholos MK,Sieburth LE
    Separable whorl-specific expression and negative regulation by enhancer elements within the AGAMOUS second intron.
    Plant Cell, 2000. 12(10): p. 1799-810
  29. Juenger T,Purugganan M,Mackay TF
    Quantitative trait loci for floral morphology in Arabidopsis thaliana.
    Genetics, 2000. 156(3): p. 1379-92
  30. Pe
    Constitutive expression of Arabidopsis LEAFY or APETALA1 genes in citrus reduces their generation time.
    Nat. Biotechnol., 2001. 19(3): p. 263-7
  31. Ng M,Yanofsky MF
    Activation of the Arabidopsis B class homeotic genes by APETALA1.
    Plant Cell, 2001. 13(4): p. 739-53
  32. Gocal GF, et al.
    Evolution of floral meristem identity genes. Analysis of Lolium temulentum genes related to APETALA1 and LEAFY of Arabidopsis.
    Plant Physiol., 2001. 125(4): p. 1788-801
  33. G
    early bolting in short days: an Arabidopsis mutation that causes early flowering and partially suppresses the floral phenotype of leafy.
    Plant Cell, 2001. 13(5): p. 1011-24
  34. Chou ML,Haung MD,Yang CH
    EMF genes interact with late-flowering genes in regulating floral initiation genes during shoot development in Arabidopsis thaliana.
    Plant Cell Physiol., 2001. 42(5): p. 499-507
  35. Lohmann JU, et al.
    A molecular link between stem cell regulation and floral patterning in Arabidopsis.
    Cell, 2001. 105(6): p. 793-803
  36. Cremer F,L
    The delayed terminal flower phenotype is caused by a conditional mutation in the CENTRORADIALIS gene of snapdragon.
    Plant Physiol., 2001. 126(3): p. 1031-41
  37. Zhao D,Yu Q,Chen M,Ma H
    The ASK1 gene regulates B function gene expression in cooperation with UFO and LEAFY in Arabidopsis.
    Development, 2001. 128(14): p. 2735-46
  38. Ohto M, et al.
    Effects of sugar on vegetative development and floral transition in Arabidopsis.
    Plant Physiol., 2001. 127(1): p. 252-61
  39. Ahearn KP,Johnson HA,Weigel D,Wagner DR
    NFL1, a Nicotiana tabacum LEAFY-like gene, controls meristem initiation and floral structure.
    Plant Cell Physiol., 2001. 42(10): p. 1130-9
  40. Himi S, et al.
    Evolution of MADS-box gene induction by FLO/LFY genes.
    J. Mol. Evol., 2001 Oct-Nov. 53(4-5): p. 387-93
  41. Baum SF,Eshed Y,Bowman JL
    The Arabidopsis nectary is an ABC-independent floral structure.
    Development, 2001. 128(22): p. 4657-67
  42. Gocal GF, et al.
    GAMYB-like genes, flowering, and gibberellin signaling in Arabidopsis.
    Plant Physiol., 2001. 127(4): p. 1682-93
  43. Wagner D,Meyerowitz EM
    SPLAYED, a novel SWI/SNF ATPase homolog, controls reproductive development in Arabidopsis.
    Curr. Biol., 2002. 12(2): p. 85-94
  44. Colucci G,Apone F,Alyeshmerni N,Chalmers D,Chrispeels MJ
    GCR1, the putative Arabidopsis G protein-coupled receptor gene is cell cycle-regulated, and its overexpression abolishes seed dormancy and shortens time to flowering.
    Proc. Natl. Acad. Sci. U.S.A., 2002. 99(7): p. 4736-41
  45. Lamb RS,Hill TA,Tan QK,Irish VF
    Regulation of APETALA3 floral homeotic gene expression by meristem identity genes.
    Development, 2002. 129(9): p. 2079-86
  46. Parcy F,Bomblies K,Weigel D
    Interaction of LEAFY, AGAMOUS and TERMINAL FLOWER1 in maintaining floral meristem identity in Arabidopsis.
    Development, 2002. 129(10): p. 2519-27
  47. Olsen KM,Womack A,Garrett AR,Suddith JI,Purugganan MD
    Contrasting evolutionary forces in the Arabidopsis thaliana floral developmental pathway.
    Genetics, 2002. 160(4): p. 1641-50
  48. Nakajima K,Benfey PN
    Signaling in and out: control of cell division and differentiation in the shoot and root.
    Plant Cell, 2002. 14 Suppl: p. S265-76
  49. Wada M,Cao QF,Kotoda N,Soejima J,Masuda T
    Apple has two orthologues of FLORICAULA/LEAFY involved in flowering.
    Plant Mol. Biol., 2002. 49(6): p. 567-77
  50. Albert VA,Oppenheimer DG,Lindqvist C
    Pleiotropy, redundancy and the evolution of flowers.
    Trends Plant Sci., 2002. 7(7): p. 297-301
  51. Nakagawa M,Shimamoto K,Kyozuka J
    Overexpression of RCN1 and RCN2, rice TERMINAL FLOWER 1/CENTRORADIALIS homologs, confers delay of phase transition and altered panicle morphology in rice.
    Plant J., 2002. 29(6): p. 743-50
  52. Carmona MJ,Cubas P,Martínez-Zapater JM
    VFL, the grapevine FLORICAULA/LEAFY ortholog, is expressed in meristematic regions independently of their fate.
    Plant Physiol., 2002. 130(1): p. 68-77
  53. Shannon S,Meeks-Wagner DR
    Genetic Interactions That Regulate Inflorescence Development in Arabidopsis.
    Plant Cell, 1993. 5(6): p. 639-655
  54. Huala E,Sussex IM
    LEAFY Interacts with Floral Homeotic Genes to Regulate Arabidopsis Floral Development.
    Plant Cell, 1992. 4(8): p. 901-913
  55. Schultz EA,Haughn GW
    LEAFY, a Homeotic Gene That Regulates Inflorescence Development in Arabidopsis.
    Plant Cell, 1991. 3(8): p. 771-781
  56. Yu H,Xu Y,Tan EL,Kumar PP
    AGAMOUS-LIKE 24, a dosage-dependent mediator of the flowering signals.
    Proc. Natl. Acad. Sci. U.S.A., 2002. 99(25): p. 16336-41
  57. Moon YH, et al.
    EMF genes maintain vegetative development by repressing the flower program in Arabidopsis.
    Plant Cell, 2003. 15(3): p. 681-93
  58. Wu X, et al.
    Modes of intercellular transcription factor movement in the Arabidopsis apex.
    Development, 2003. 130(16): p. 3735-45
  59. Li J,Chen X
    PAUSED, a putative exportin-t, acts pleiotropically in Arabidopsis development but is dispensable for viability.
    Plant Physiol., 2003. 132(4): p. 1913-24
  60. Moon J, et al.
    The SOC1 MADS-box gene integrates vernalization and gibberellin signals for flowering in Arabidopsis.
    Plant J., 2003. 35(5): p. 613-23
  61. Weigel D,Alvarez J,Smyth DR,Yanofsky MF,Meyerowitz EM
    LEAFY controls floral meristem identity in Arabidopsis.
    Cell, 1992. 69(5): p. 843-59
  62. Mandel MA,Gustafson-Brown C,Savidge B,Yanofsky MF
    Molecular characterization of the Arabidopsis floral homeotic gene APETALA1.
    Nature, 1992. 360(6401): p. 273-7
  63. Schmid M, et al.
    Dissection of floral induction pathways using global expression analysis.
    Development, 2003. 130(24): p. 6001-12
  64. Chujo A,Zhang Z,Kishino H,Shimamoto K,Kyozuka J
    Partial conservation of LFY function between rice and Arabidopsis.
    Plant Cell Physiol., 2003. 44(12): p. 1311-9
  65. Yu H,Ito T,Wellmer F,Meyerowitz EM
    Repression of AGAMOUS-LIKE 24 is a crucial step in promoting flower development.
    Nat. Genet., 2004. 36(2): p. 157-61
  66. William DA, et al.
    Genomic identification of direct target genes of LEAFY.
    Proc. Natl. Acad. Sci. U.S.A., 2004. 101(6): p. 1775-80
  67. Wang CN,M
    Altered expression of GFLO, the Gesneriaceae homologue of FLORICAULA/LEAFY, is associated with the transition to bulbil formation in Titanotrichum oldhamii.
    Dev. Genes Evol., 2004. 214(3): p. 122-7
  68. Ohno CK,Reddy GV,Heisler MG,Meyerowitz EM
    The Arabidopsis JAGGED gene encodes a zinc finger protein that promotes leaf tissue development.
    Development, 2004. 131(5): p. 1111-22
  69. Gallois JL,Nora FR,Mizukami Y,Sablowski R
    WUSCHEL induces shoot stem cell activity and developmental plasticity in the root meristem.
    Genes Dev., 2004. 18(4): p. 375-80
  70. Jack T
    Molecular and genetic mechanisms of floral control.
    Plant Cell, 2004. 16 Suppl: p. S1-17
  71. Baum DA,Day CD
    Cryptic bracts exposed: insights into the regulation of leaf expansion.
    Dev. Cell, 2004. 6(3): p. 318-9
  72. Boss PK,Bastow RM,Mylne JS,Dean C
    Multiple pathways in the decision to flower: enabling, promoting, and resetting.
    Plant Cell, 2004. 16 Suppl: p. S18-31
  73. Maizel A,Weigel D
    Temporally and spatially controlled induction of gene expression in Arabidopsis thaliana.
    Plant J., 2004. 38(1): p. 164-71
  74. Sreekantan L, et al.
    Flowering genes in Metrosideros fit a broad herbaceous model encompassing Arabidopsis and Antirrhinum.
    Physiol Plant, 2004. 121(1): p. 163-173
  75. Yoon HS,Baum DA
    Transgenic study of parallelism in plant morphological evolution.
    Proc. Natl. Acad. Sci. U.S.A., 2004. 101(17): p. 6524-9
  76. Smith HM,Campbell BC,Hake S
    Competence to respond to floral inductive signals requires the homeobox genes PENNYWISE and POUND-FOOLISH.
    Curr. Biol., 2004. 14(9): p. 812-7
  77. Yu H, et al.
    Floral homeotic genes are targets of gibberellin signaling in flower development.
    Proc. Natl. Acad. Sci. U.S.A., 2004. 101(20): p. 7827-32
  78. Montieri S,Gaudio L,Aceto S
    Isolation of the LFY/FLO homologue in Orchis italica and evolutionary analysis in some European orchids.
    Gene, 2004. 333: p. 101-9
  79. Cnops G, et al.
    The rotunda2 mutants identify a role for the LEUNIG gene in vegetative leaf morphogenesis.
    J. Exp. Bot., 2004. 55(402): p. 1529-39
  80. Wagner D, et al.
    Floral induction in tissue culture: a system for the analysis of LEAFY-dependent gene regulation.
    Plant J., 2004. 39(2): p. 273-82
  81. Achard P,Herr A,Baulcombe DC,Harberd NP
    Modulation of floral development by a gibberellin-regulated microRNA.
    Development, 2004. 131(14): p. 3357-65
  82. Pillitteri LJ,Lovatt CJ,Walling LL
    Isolation and characterization of a TERMINAL FLOWER homolog and its correlation with juvenility in citrus.
    Plant Physiol., 2004. 135(3): p. 1540-51
  83. Liu X,Ma L,Zhang JF,Lu YT
    Determination of single-cell gene expression in Arabidopsis by capillary electrophoresis with laser induced fluorescence detection.
    J. Chromatogr. B Analyt. Technol. Biomed. Life Sci., 2004. 808(2): p. 241-7
  84. Veit J,Wagner E,Albrechtov
    Isolation of a FLORICAULA/LEAFY putative orthologue from Chenopodium rubrum and its expression during photoperiodic flower induction.
    Plant Physiol. Biochem., 2004 Jul-Aug. 42(7-8): p. 573-8
  85. Parfitt D,Herbert RJ,Rogers HJ,Francis D
    Differential expression of putative floral genes in Pharbitis nil shoot apices cultured on glucose compared with sucrose.
    J. Exp. Bot., 2004. 55(406): p. 2169-77
  86. Espinosa-Soto C,Padilla-Longoria P,Alvarez-Buylla ER
    A gene regulatory network model for cell-fate determination during Arabidopsis thaliana flower development that is robust and recovers experimental gene expression profiles.
    Plant Cell, 2004. 16(11): p. 2923-39
  87. Carlsbecker A,Tandre K,Johanson U,Englund M,Engstr
    The MADS-box gene DAL1 is a potential mediator of the juvenile-to-adult transition in Norway spruce (Picea abies).
    Plant J., 2004. 40(4): p. 546-57
  88. Constantin GD, et al.
    Virus-induced gene silencing as a tool for functional genomics in a legume species.
    Plant J., 2004. 40(4): p. 622-31
  89. Lee JY, et al.
    Activation of CRABS CLAW in the Nectaries and Carpels of Arabidopsis.
    Plant Cell, 2005. 17(1): p. 25-36
  90. Smyth DR
    Morphogenesis of flowers--our evolving view.
    Plant Cell, 2005. 17(2): p. 330-41
  91. Moon J,Lee H,Kim M,Lee I
    Analysis of flowering pathway integrators in Arabidopsis.
    Plant Cell Physiol., 2005. 46(2): p. 292-9
  92. Tanahashi T,Sumikawa N,Kato M,Hasebe M
    Diversification of gene function: homologs of the floral regulator FLO/LFY control the first zygotic cell division in the moss Physcomitrella patens.
    Development, 2005. 132(7): p. 1727-36
  93. Norberg M,Holmlund M,Nilsson O
    The BLADE ON PETIOLE genes act redundantly to control the growth and development of lateral organs.
    Development, 2005. 132(9): p. 2203-13
  94. Maizel A, et al.
    The floral regulator LEAFY evolves by substitutions in the DNA binding domain.
    Science, 2005. 308(5719): p. 260-3
  95. Kidner CA,Martienssen RA
    The role of ARGONAUTE1 (AGO1) in meristem formation and identity.
    Dev. Biol., 2005. 280(2): p. 504-17
  96. Lebedeva OV,Ondar UN,Penin AA,Ezhova TA
    [Effect of the ABRUPTUS/PINOID gene on expression of the LEAFY gene in Arabidopsis thaliana].
    Genetika, 2005. 41(4): p. 559-65
  97. Dornelas MC,Rodriguez AP
    The rubber tree (Hevea brasiliensis Muell. Arg.) homologue of the LEAFY/FLORICAULA gene is preferentially expressed in both male and female floral meristems.
    J. Exp. Bot., 2005. 56(417): p. 1965-74
  98. Teixeira RT,Farbos I,Glimelius K
    Expression levels of meristem identity and homeotic genes are modified by nuclear-mitochondrial interactions in alloplasmic male-sterile lines of Brassica napus.
    Plant J., 2005. 42(5): p. 731-42
  99. Yamaguchi A,Kobayashi Y,Goto K,Abe M,Araki T
    TWIN SISTER OF FT (TSF) acts as a floral pathway integrator redundantly with FT.
    Plant Cell Physiol., 2005. 46(8): p. 1175-89
  100. Douglas SJ,Riggs CD
    Pedicel development in Arabidopsis thaliana: contribution of vascular positioning and the role of the BREVIPEDICELLUS and ERECTA genes.
    Dev. Biol., 2005. 284(2): p. 451-63
  101. Parcy F
    Flowering: a time for integration.
    Int. J. Dev. Biol., 2005. 49(5-6): p. 585-93
  102. Castillejo C,Romera-Branchat M,Pelaz S
    A new role of the Arabidopsis SEPALLATA3 gene revealed by its constitutive expression.
    Plant J., 2005. 43(4): p. 586-96
  103. Yu Q,Moore PH,Albert HH,Roader AH,Ming R
    Cloning and characterization of a FLORICAULA/LEAFY ortholog, PFL, in polygamous papaya.
    Cell Res., 2005. 15(8): p. 576-84
  104. Nakahigashi K,Jasencakova Z,Schubert I,Goto K
    The Arabidopsis heterochromatin protein1 homolog (TERMINAL FLOWER2) silences genes within the euchromatic region but not genes positioned in heterochromatin.
    Plant Cell Physiol., 2005. 46(11): p. 1747-56
  105. Tooke F,Ordidge M,Chiurugwi T,Battey N
    Mechanisms and function of flower and inflorescence reversion.
    J. Exp. Bot., 2005. 56(420): p. 2587-99
  106. Dornelas MC,Rodriguez AP
    The tropical cedar tree (Cedrela fissilis Vell., Meliaceae) homolog of the Arabidopsis LEAFY gene is expressed in reproductive tissues and can complement Arabidopsis leafy mutants.
    Planta, 2006. 223(2): p. 306-14
  107. Hepworth SR,Klenz JE,Haughn GW
    UFO in the Arabidopsis inflorescence apex is required for floral-meristem identity and bract suppression.
    Planta, 2006. 223(4): p. 769-78
  108. Ordidge M,Chiurugwi T,Tooke F,Battey NH
    LEAFY, TERMINAL FLOWER1 and AGAMOUS are functionally conserved but do not regulate terminal flowering and floral determinacy in Impatiens balsamina.
    Plant J., 2005. 44(6): p. 985-1000
  109. Saddic LA, et al.
    The LEAFY target LMI1 is a meristem identity regulator and acts together with LEAFY to regulate expression of CAULIFLOWER.
    Development, 2006. 133(9): p. 1673-82
  110. Shitsukawa N,Takagishi A,Ikari C,Takumi S,Murai K
    WFL, a wheat FLORICAULA/LEAFY ortholog, is associated with spikelet formation as lateral branch of the inflorescence meristem.
    Genes Genet. Syst., 2006. 81(1): p. 13-20
  111. Schönrock N, et al.
    Polycomb-group proteins repress the floral activator AGL19 in the FLC-independent vernalization pathway.
    Genes Dev., 2006. 20(12): p. 1667-78
  112. Megraw M, et al.
    MicroRNA promoter element discovery in Arabidopsis.
    RNA, 2006. 12(9): p. 1612-9
  113. Sliwinski MK,White MA,Maizel A,Weigel D,Baum DA
    Evolutionary divergence of LFY function in the mustards Arabidopsis thaliana and Leavenworthia crassa.
    Plant Mol. Biol., 2006. 62(1-2): p. 279-89
  114. Eriksson S,Böhlenius H,Moritz T,Nilsson O
    GA4 is the active gibberellin in the regulation of LEAFY transcription and Arabidopsis floral initiation.
    Plant Cell, 2006. 18(9): p. 2172-81
  115. Adjie B,Masuyama S,Ishikawa H,Watano Y
    Independent origins of tetraploid cryptic species in the fern Ceratopteris thalictroides.
    J. Plant Res., 2007. 120(1): p. 129-38
  116. Kellogg EA
    Progress and challenges in studies of the evolution of development.
    J. Exp. Bot., 2006. 57(13): p. 3505-16
  117. Attolico AD,De Tullio MC
    Increased ascorbate content delays flowering in long-day grown Arabidopsis thaliana (L.) Heynh.
    Plant Physiol. Biochem., 2006 Jul-Sep. 44(7-9): p. 462-6
  118. Underwood BA,Vanderhaeghen R,Whitford R,Town CD,Hilson P
    Simultaneous high-throughput recombinational cloning of open reading frames in closed and open configurations.
    Plant Biotechnol. J., 2006. 4(3): p. 317-24
  119. Mitsuda N, et al.
    Efficient production of male and female sterile plants by expression of a chimeric repressor in Arabidopsis and rice.
    Plant Biotechnol. J., 2006. 4(3): p. 325-32
  120. Suzuki M,Wang HH,McCarty DR
    Repression of the LEAFY COTYLEDON 1/B3 regulatory network in plant embryo development by VP1/ABSCISIC ACID INSENSITIVE 3-LIKE B3 genes.
    Plant Physiol., 2007. 143(2): p. 902-11
  121. Bernier G,P
    A physiological overview of the genetics of flowering time control.
    Plant Biotechnol. J., 2005. 3(1): p. 3-16
  122. Sablowski R
    Flowering and determinacy in Arabidopsis.
    J. Exp. Bot., 2007. 58(5): p. 899-907
  123. Conti L,Bradley D
    TERMINAL FLOWER1 is a mobile signal controlling Arabidopsis architecture.
    Plant Cell, 2007. 19(3): p. 767-78
  124. Achard P, et al.
    The plant stress hormone ethylene controls floral transition via DELLA-dependent regulation of floral meristem-identity genes.
    Proc. Natl. Acad. Sci. U.S.A., 2007. 104(15): p. 6484-9
  125. Liu C, et al.
    Specification of Arabidopsis floral meristem identity by repression of flowering time genes.
    Development, 2007. 134(10): p. 1901-10
  126. Scofield S,Dewitte W,Murray JA
    The KNOX gene SHOOT MERISTEMLESS is required for the development of reproductive meristematic tissues in Arabidopsis.
    Plant J., 2007. 50(5): p. 767-81
  127. Penin AA,Budaev RA,Ezhova TA
    [Interaction of the BRACTEA gene with the TERMINAL FLOWER1, LEAFY, and APETALA1 genes during inflorescence and flower development in Arabidopsis thaliana].
    Genetika, 2007. 43(3): p. 370-6
  128. Allnutt GV,Rogers HJ,Francis D,Herbert RJ
    A LEAFY-like gene in the long-day plant, Silene coeli-rosa is dramatically up-regulated in evoked shoot apical meristems but does not complement the Arabidopsis lfy mutant.
    J. Exp. Bot., 2007. 58(8): p. 2249-59
  129. Sliwinski MK,Bosch JA,Yoon HS,Balthazar Mv,Baum DA
    The role of two LEAFY paralogs from Idahoa scapigera (Brassicaceae) in the evolution of a derived plant architecture.
    Plant J., 2007. 51(2): p. 211-9
  130. Ikeda K,Ito M,Nagasawa N,Kyozuka J,Nagato Y
    Rice ABERRANT PANICLE ORGANIZATION 1, encoding an F-box protein, regulates meristem fate.
    Plant J., 2007. 51(6): p. 1030-40
  131. Fan J,Li W,Dong X,Guo W,Shu H
    Ectopic expression of a hyacinth AGL6 homolog caused earlier flowering and homeotic conversion in Arabidopsis.
    Sci. China, C, Life Sci., 2007. 50(5): p. 676-89
  132. Zentella R, et al.
    Global analysis of della direct targets in early gibberellin signaling in Arabidopsis.
    Plant Cell, 2007. 19(10): p. 3037-57
  133. Xia GQ,Zhu JY,He QW,Zhao SY,Wang CH
    Late-bolting transgenic Chinese cabbage obtained by RNA interference technique.
    Zhi Wu Sheng Li Yu Fen Zi Sheng Wu Xue Xue Bao, 2007. 33(5): p. 411-6
  134. Ma YP,Fang XH,Chen F,Dai SL
    DFL, a FLORICAULA/LEAFY homologue gene from Dendranthema lavandulifolium is expressed both in the vegetative and reproductive tissues.
    Plant Cell Rep., 2008. 27(4): p. 647-54
  135. Tapia-López R, et al.
    An AGAMOUS-related MADS-box gene, XAL1 (AGL12), regulates root meristem cell proliferation and flowering transition in Arabidopsis.
    Plant Physiol., 2008. 146(3): p. 1182-92
  136. Chae E,Tan QK,Hill TA,Irish VF
    An Arabidopsis F-box protein acts as a transcriptional co-factor to regulate floral development.
    Development, 2008. 135(7): p. 1235-45
  137. Wang H, et al.
    Control of compound leaf development by FLORICAULA/LEAFY ortholog SINGLE LEAFLET1 in Medicago truncatula.
    Plant Physiol., 2008. 146(4): p. 1759-72
  138. Kanrar S,Bhattacharya M,Arthur B,Courtier J,Smith HM
    Regulatory networks that function to specify flower meristems require the function of homeobox genes PENNYWISE and POUND-FOOLISH in Arabidopsis.
    Plant J., 2008. 54(5): p. 924-37
  139. Rao NN,Prasad K,Kumar PR,Vijayraghavan U
    Distinct regulatory role for RFL, the rice LFY homolog, in determining flowering time and plant architecture.
    Proc. Natl. Acad. Sci. U.S.A., 2008. 105(9): p. 3646-51
  140. Han P,García-Ponce B,Fonseca-Salazar G,Alvarez-Buylla ER,Yu H
    AGAMOUS-LIKE 17, a novel flowering promoter, acts in a FT-independent photoperiod pathway.
    Plant J., 2008. 55(2): p. 253-65
  141. Lee J,Oh M,Park H,Lee I
    SOC1 translocated to the nucleus by interaction with AGL24 directly regulates leafy.
    Plant J., 2008. 55(5): p. 832-43
  142. Gregis V,Sessa A,Colombo L,Kater MM
    AGAMOUS-LIKE24 and SHORT VEGETATIVE PHASE determine floral meristem identity in Arabidopsis.
    Plant J., 2008. 56(6): p. 891-902
  143. Wang X, et al.
    Overexpression of PGA37/MYB118 and MYB115 promotes vegetative-to-embryonic transition in Arabidopsis.
    Cell Res., 2009. 19(2): p. 224-35
  144. Souer E, et al.
    Patterning of inflorescences and flowers by the F-Box protein DOUBLE TOP and the LEAFY homolog ABERRANT LEAF AND FLOWER of petunia.
    Plant Cell, 2008. 20(8): p. 2033-48
  145. Hamès C, et al.
    Structural basis for LEAFY floral switch function and similarity with helix-turn-helix proteins.
    EMBO J., 2008. 27(19): p. 2628-37
  146. Causier B,Bradley D,Cook H,Davies B
    Conserved intragenic elements were critical for the evolution of the floral C-function.
    Plant J., 2009. 58(1): p. 41-52
  147. Yu L,Patibanda V,Smith HM
    A novel role of BELL1-like homeobox genes, PENNYWISE and POUND-FOOLISH, in floral patterning.
    Planta, 2009. 229(3): p. 693-707
  148. Blein T, et al.
    A conserved molecular framework for compound leaf development.
    Science, 2008. 322(5909): p. 1835-9
  149. Jackson SD
    Plant responses to photoperiod.
    New Phytol., 2009. 181(3): p. 517-31
  150. Zhang S,Yang C,Peng J,Sun S,Wang X
    GASA5, a regulator of flowering time and stem growth in Arabidopsis thaliana.
    Plant Mol. Biol., 2009. 69(6): p. 745-59
  151. Zhang Y,Cao G,Qu LJ,Gu H
    Characterization of Arabidopsis MYB transcription factor gene AtMYB17 and its possible regulation by LEAFY and AGL15.
    J Genet Genomics, 2009. 36(2): p. 99-107
  152. Mutasa-G
    Gibberellin as a factor in floral regulatory networks.
    J. Exp. Bot., 2009. 60(7): p. 1979-89
  153. Melzer R,Theissen G
    Reconstitution of 'floral quartets' in vitro involving class B and class E floral homeotic proteins.
    Nucleic Acids Res., 2009. 37(8): p. 2723-36
  154. Skinner DJ,Gasser CS
    Expression-based discovery of candidate ovule development regulators through transcriptional profiling of ovule mutants.
    BMC Plant Biol., 2009. 9: p. 29
  155. Liu C,Xi W,Shen L,Tan C,Yu H
    Regulation of floral patterning by flowering time genes.
    Dev. Cell, 2009. 16(5): p. 711-22
  156. D'Aloia M, et al.
    Gene activation cascade triggered by a single photoperiodic cycle inducing flowering in Sinapis alba.
    Plant J., 2009. 59(6): p. 962-73
  157. Bertoni G
    PUCHI and floral meristem identity.
    Plant Cell, 2009. 21(5): p. 1327
  158. Karim MR,Hirota A,Kwiatkowska D,Tasaka M,Aida M
    A role for Arabidopsis PUCHI in floral meristem identity and bract suppression.
    Plant Cell, 2009. 21(5): p. 1360-72
  159. Almada R,Cabrera N,Casaretto JA,Ruiz-Lara S,Gonz
    VvCO and VvCOL1, two CONSTANS homologous genes, are regulated during flower induction and dormancy in grapevine buds.
    Plant Cell Rep., 2009. 28(8): p. 1193-203
  160. Krizek B
    AINTEGUMENTA and AINTEGUMENTA-LIKE6 act redundantly to regulate Arabidopsis floral growth and patterning.
    Plant Physiol., 2009. 150(4): p. 1916-29
  161. Mosquna A, et al.
    Regulation of stem cell maintenance by the Polycomb protein FIE has been conserved during land plant evolution.
    Development, 2009. 136(14): p. 2433-44
  162. Baud S, et al.
    Regulation of HSD1 in seeds of Arabidopsis thaliana.
    Plant Cell Physiol., 2009. 50(8): p. 1463-78
  163. Nozawa A, et al.
    Construction of a protein library of Arabidopsis transcription factors using a wheat cell-free protein production system and its application for DNA binding analysis.
    Biosci. Biotechnol. Biochem., 2009. 73(7): p. 1661-4
  164. Yamaguchi A, et al.
    The microRNA-regulated SBP-Box transcription factor SPL3 is a direct upstream activator of LEAFY, FRUITFULL, and APETALA1.
    Dev. Cell, 2009. 17(2): p. 268-78
  165. Rao NN,Prasad K,Vijayraghavan U
    The making of a bushy grass with a branched flowering stem: Key rice plant architecture traits regulated by RFL the rice LFY homolog.
    Plant Signal Behav, 2008. 3(11): p. 981-3
  166. Cohen R, et al.
    The histone acetyltransferase GCN5 affects the inflorescence meristem and stamen development in Arabidopsis.
    Planta, 2009. 230(6): p. 1207-21
  167. Mouhu K, et al.
    Identification of flowering genes in strawberry, a perennial SD plant.
    BMC Plant Biol., 2009. 9: p. 122
  168. Krupkov
    Developmental consequences of the tumorous shoot development1 mutation, a novel allele of the cellulose-synthesizing KORRIGAN1 gene.
    Plant Mol. Biol., 2009. 71(6): p. 641-55
  169. Flachowsky H,H
    Overexpression of LEAFY in apple leads to a columnar phenotype with shorter internodes.
    Planta, 2010. 231(2): p. 251-63
  170. Andrianov V, et al.
    Tobacco as a production platform for biofuel: overexpression of Arabidopsis DGAT and LEC2 genes increases accumulation and shifts the composition of lipids in green biomass.
    Plant Biotechnol. J., 2010. 8(3): p. 277-87
  171. McCullough E, et al.
    Photoperiod-dependent floral reversion in the natural allopolyploid Arabidopsis suecica.
    New Phytol., 2010. 186(1): p. 239-50
  172. Preston JC,Hileman LC
    SQUAMOSA-PROMOTER BINDING PROTEIN 1 initiates flowering in Antirrhinum majus through the activation of meristem identity genes.
    Plant J., 2010. 62(4): p. 704-12
  173. Eklund DM, et al.
    Homologues of the Arabidopsis thaliana SHI/STY/LRP1 genes control auxin biosynthesis and affect growth and development in the moss Physcomitrella patens.
    Development, 2010. 137(8): p. 1275-84
  174. Koo SC, et al.
    Control of lateral organ development and flowering time by the Arabidopsis thaliana MADS-box Gene AGAMOUS-LIKE6.
    Plant J., 2010. 62(5): p. 807-16
  175. Le BH, et al.
    Global analysis of gene activity during Arabidopsis seed development and identification of seed-specific transcription factors.
    Proc. Natl. Acad. Sci. U.S.A., 2010. 107(18): p. 8063-70
  176. Yoo SJ, et al.
    BROTHER OF FT AND TFL1 (BFT) has TFL1-like activity and functions redundantly with TFL1 in inflorescence meristem development in Arabidopsis.
    Plant J., 2010. 63(2): p. 241-53
  177. Irish VF
    The flowering of Arabidopsis flower development.
    Plant J., 2010. 61(6): p. 1014-28
  178. Moyroud E,Kusters E,Monniaux M,Koes R,Parcy F
    LEAFY blossoms.
    Trends Plant Sci., 2010. 15(6): p. 346-52
  179. McKim S,Hay A
    Patterning and evolution of floral structures - marking time.
    Curr. Opin. Genet. Dev., 2010. 20(4): p. 448-53
  180. Chen J, et al.
    Control of dissected leaf morphology by a Cys(2)His(2) zinc finger transcription factor in the model legume Medicago truncatula.
    Proc. Natl. Acad. Sci. U.S.A., 2010. 107(23): p. 10754-9
  181. Cheng ZJ,Zhu SS,Gao XQ,Zhang XS
    Cytokinin and auxin regulates WUS induction and inflorescence regeneration in vitro in Arabidopsis.
    Plant Cell Rep., 2010. 29(8): p. 927-33
  182. Xu M, et al.
    Arabidopsis BLADE-ON-PETIOLE1 and 2 promote floral meristem fate and determinacy in a previously undefined pathway targeting APETALA1 and AGAMOUS-LIKE24.
    Plant J., 2010. 63(6): p. 974-89
  183. Banasiak A
    Putative dual pathway of auxin transport in organogenesis of Arabidopsis.
    Planta, 2011. 233(1): p. 49-61
  184. Smith HM,Ung N,Lal S,Courtier J
    Specification of reproductive meristems requires the combined function of SHOOT MERISTEMLESS and floral integrators FLOWERING LOCUS T and FD during Arabidopsis inflorescence development.
    J. Exp. Bot., 2011. 62(2): p. 583-93
  185. Prenner G,Cacho NI,Baum D,Rudall PJ
    Is LEAFY a useful marker gene for the flower-inflorescence boundary in the Euphorbia cyathium?
    J. Exp. Bot., 2011. 62(1): p. 345-50
  186. Winter CM, et al.
    LEAFY target genes reveal floral regulatory logic, cis motifs, and a link to biotic stimulus response.
    Dev. Cell, 2011. 20(4): p. 430-43
  187. Wang R, et al.
    Aa TFL1 confers an age-dependent response to vernalization in perennial Arabis alpina.
    Plant Cell, 2011. 23(4): p. 1307-21
  188. Moyroud E, et al.
    Prediction of regulatory interactions from genome sequences using a biophysical model for the Arabidopsis LEAFY transcription factor.
    Plant Cell, 2011. 23(4): p. 1293-306
  189. Mai YX,Wang L,Yang HQ
    A gain-of-function mutation in IAA7/AXR2 confers late flowering under short-day light in Arabidopsis.
    J Integr Plant Biol, 2011. 53(6): p. 480-92
  190. Benlloch R, et al.
    Integrating long-day flowering signals: a LEAFY binding site is essential for proper photoperiodic activation of APETALA1.
    Plant J., 2011. 67(6): p. 1094-102
  191. Keller SR,Levsen N,Ingvarsson PK,Olson MS,Tiffin P
    Local selection across a latitudinal gradient shapes nucleotide diversity in balsam poplar, Populus balsamifera L.
    Genetics, 2011. 188(4): p. 941-52
  192. Bai F,Demason DA
    Hormone interactions and regulation of PsPK2::GUS compared with DR5::GUS and PID::GUS in Arabidopsis thaliana.
    Am. J. Bot., 2008. 95(2): p. 133-45
  193. Angeles-N
    Mutation of the transcription factor LEAFY COTYLEDON 2 alters the chemical composition of Arabidopsis seeds, decreasing oil and protein content, while maintaining high levels of starch and sucrose in mature seeds.
    J. Plant Physiol., 2011. 168(16): p. 1891-900
  194. Zhou C, et al.
    Developmental analysis of a Medicago truncatula smooth leaf margin1 mutant reveals context-dependent effects on compound leaf development.
    Plant Cell, 2011. 23(6): p. 2106-24
  195. Pastore JJ, et al.
    LATE MERISTEM IDENTITY2 acts together with LEAFY to activate APETALA1.
    Development, 2011. 138(15): p. 3189-98
  196. Kawanabe T,Fujimoto R
    Inflorescence abnormalities occur with overexpression of Arabidopsis lyrata FT in the fwa mutant of Arabidopsis thaliana.
    Plant Sci., 2011. 181(4): p. 496-503
  197. Shan H, et al.
    Heterologous expression of the chrysanthemum R2R3-MYB transcription factor CmMYB2 enhances drought and salinity tolerance, increases hypersensitivity to ABA and delays flowering in Arabidopsis thaliana.
    Mol. Biotechnol., 2012. 51(2): p. 160-73
  198. Ikeda-Kawakatsu K,Maekawa M,Izawa T,Itoh J,Nagato Y
    ABERRANT PANICLE ORGANIZATION 2/RFL, the rice ortholog of Arabidopsis LEAFY, suppresses the transition from inflorescence meristem to floral meristem through interaction with APO1.
    Plant J., 2012. 69(1): p. 168-80
  199. Grandi V,Gregis V,Kater MM
    Uncovering genetic and molecular interactions among floral meristem identity genes in Arabidopsis thaliana.
    Plant J., 2012. 69(5): p. 881-93
  200. Yamaguchi N,Yamaguchi A,Abe M,Wagner D,Komeda Y
    LEAFY controls Arabidopsis pedicel length and orientation by affecting adaxial-abaxial cell fate.
    Plant J., 2012. 69(5): p. 844-56
  201. Berger N,Dubreucq B,Roudier F,Dubos C,Lepiniec L
    Transcriptional regulation of Arabidopsis LEAFY COTYLEDON2 involves RLE, a cis-element that regulates trimethylation of histone H3 at lysine-27.
    Plant Cell, 2011. 23(11): p. 4065-78
  202. Shi HT, et al.
    Increasing nitric oxide content in Arabidopsis thaliana by expressing rat neuronal nitric oxide synthase resulted in enhanced stress tolerance.
    Plant Cell Physiol., 2012. 53(2): p. 344-57
  203. Wu MF, et al.
    SWI2/SNF2 chromatin remodeling ATPases overcome polycomb repression and control floral organ identity with the LEAFY and SEPALLATA3 transcription factors.
    Proc. Natl. Acad. Sci. U.S.A., 2012. 109(9): p. 3576-81
  204. Thouet J,Quinet M,Lutts S,Kinet JM,P
    Repression of floral meristem fate is crucial in shaping tomato inflorescence.
    PLoS ONE, 2012. 7(2): p. e31096
  205. Siriwardana NS,Lamb RS
    The poetry of reproduction: the role of LEAFY in Arabidopsis thaliana flower formation.
    Int. J. Dev. Biol., 2012. 56(4): p. 207-21
  206. Zhang H,Bishop B,Ringenberg W,Muir WM,Ogas J
    The CHD3 remodeler PICKLE associates with genes enriched for trimethylation of histone H3 lysine 27.
    Plant Physiol., 2012. 159(1): p. 418-32
  207. Siriwardana NS,Lamb RS
    A conserved domain in the N-terminus is important for LEAFY dimerization and function in Arabidopsis thaliana.
    Plant J., 2012. 71(5): p. 736-49
  208. Wagner D,Meyerowitz EM
    Switching on Flowers: Transient LEAFY Induction Reveals Novel Aspects of the Regulation of Reproductive Development in Arabidopsis.
    Front Plant Sci, 2011. 2: p. 60
  209. Duan Y, et al.
    Dwarf and deformed flower 1, encoding an F-box protein, is critical for vegetative and floral development in rice (Oryza sativa L.).
    Plant J., 2012. 72(5): p. 829-42
  210. Chao WS,Doğramaci M,Foley ME,Horvath DP,Anderson JV
    Selection and validation of endogenous reference genes for qRT-PCR analysis in leafy spurge (Euphorbia esula).
    PLoS ONE, 2012. 7(8): p. e42839
  211. Goldberg-Moeller R, et al.
    Effects of gibberellin treatment during flowering induction period on global gene expression and the transcription of flowering-control genes in Citrus buds.
    Plant Sci., 2013. 198: p. 46-57
  212. Salemme M,Sica M,Gaudio L,Aceto S
    The OitaAG and OitaSTK genes of the orchid Orchis italica: a comparative analysis with other C- and D-class MADS-box genes.
    Mol. Biol. Rep., 2013. 40(5): p. 3523-35
  213. Wang F,Perry SE
    Identification of direct targets of FUSCA3, a key regulator of Arabidopsis seed development.
    Plant Physiol., 2013. 161(3): p. 1251-64
  214. Wang Z, et al.
    Multiple components are integrated to determine leaf complexity in Lotus japonicus.
    J Integr Plant Biol, 2013. 55(5): p. 419-33
  215. Yamaguchi N, et al.
    A molecular framework for auxin-mediated initiation of flower primordia.
    Dev. Cell, 2013. 24(3): p. 271-82
  216. Ding L,Wang Y,Yu H
    Overexpression of DOSOC1, an ortholog of Arabidopsis SOC1, promotes flowering in the orchid Dendrobium Chao Parya Smile.
    Plant Cell Physiol., 2013. 54(4): p. 595-608
  217. Kim HS,Abbasi N,Choi SB
    Bruno-like proteins modulate flowering time via 3' UTR-dependent decay of SOC1 mRNA.
    New Phytol., 2013. 198(3): p. 747-56
  218. Chahtane H, et al.
    A variant of LEAFY reveals its capacity to stimulate meristem development by inducing RAX1.
    Plant J., 2013. 74(4): p. 678-89
  219. Jaeger KE,Pullen N,Lamzin S,Morris RJ,Wigge PA
    Interlocking feedback loops govern the dynamic behavior of the floral transition in Arabidopsis.
    Plant Cell, 2013. 25(3): p. 820-33
  220. Li W, et al.
    LEAFY controls auxin response pathways in floral primordium formation.
    Sci Signal, 2013. 6(270): p. ra23
  221. Kumar A,Sharma V,Khan M,Hindala MR,Kumar S
    Auxin transport inhibitor induced low complexity petiolated leaves and sessile leaf-like stipules and architectures of heritable leaf and stipule mutants in Pisum sativum suggest that its simple lobed stipules and compound leaf represent ancestral forms in angiosperms.
    J. Genet., 2013. 92(1): p. 25-61
  222. Zhang T,Chao Y,Kang J,Ding W,Yang Q
    Molecular cloning and characterization of a gene regulating flowering time from Alfalfa (Medicago sativa L.).
    Mol. Biol. Rep., 2013. 40(7): p. 4597-603
  223. Yang C, et al.
    VAL- and AtBMI1-mediated H2Aub initiate the switch from embryonic to postgerminative growth in Arabidopsis.
    Curr. Biol., 2013. 23(14): p. 1324-9
  224. Lei HJ, et al.
    Identification and characterization of FaSOC1, a homolog of SUPPRESSOR OF OVEREXPRESSION OF CONSTANS1 from strawberry.
    Gene, 2013. 531(2): p. 158-67
  225. Yu Y, et al.
    MlWRKY12, a novel Miscanthus transcription factor, participates in pith secondary cell wall formation and promotes flowering.
    Plant Sci., 2013. 212: p. 1-9
  226. Niwa M,Endo M,Araki T
    Florigen is involved in axillary bud development at multiple stages in Arabidopsis.
    Plant Signal Behav, 2013. 8(11): p. e27167
  227. Fu J, et al.
    Photoperiodic control of FT-like gene ClFT initiates flowering in Chrysanthemum lavandulifolium.
    Plant Physiol. Biochem., 2014. 74: p. 230-8
  228. Risseeuw E, et al.
    An activated form of UFO alters leaf development and produces ectopic floral and inflorescence meristems.
    PLoS ONE, 2013. 8(12): p. e83807
  229. Yang Z, et al.
    Analyses of sequence polymorphism and haplotype diversity of LEAFY genes revealed post-domestication selection in the Chinese elite maize inbred lines.
    Mol. Biol. Rep., 2014. 41(2): p. 1117-25
  230. Chandler JW,Werr W
    Arabidopsis floral phytomer development: auxin response relative to biphasic modes of organ initiation.
    J. Exp. Bot., 2014. 65(12): p. 3097-110
  231. Yamaguchi N, et al.
    Gibberellin acts positively then negatively to control onset of flower formation in Arabidopsis.
    Science, 2014. 344(6184): p. 638-41
  232. Engelhorn J,Moreau F,Fletcher JC,Carles CC
    ULTRAPETALA1 and LEAFY pathways function independently in specifying identity and determinacy at the Arabidopsis floral meristem.
    Ann. Bot., 2014. 114(7): p. 1497-505
  233. Leal Valentim F, et al.
    A quantitative and dynamic model of the Arabidopsis flowering time gene regulatory network.
    PLoS ONE, 2015. 10(2): p. e0116973
  234. Jin J, et al.
    An Arabidopsis Transcriptional Regulatory Map Reveals Distinct Functional and Evolutionary Features of Novel Transcription Factors.
    Mol. Biol. Evol., 2015. 32(7): p. 1767-73
  235. Chen Z, et al.
    Overexpression of AtAP1M3 regulates flowering time and floral development in Arabidopsis and effects key flowering-related genes in poplar.
    Transgenic Res., 2015. 24(4): p. 705-15
  236. Müller-Xing R,Schubert D,Goodrich J
    Non-inductive conditions expose the cryptic bract of flower phytomeres in Arabidopsis thaliana.
    Plant Signal Behav, 2015. 10(4): p. e1010868
  237. Ma X, et al.
    CYCLIN-DEPENDENT KINASE G2 regulates salinity stress response and salt mediated flowering in Arabidopsis thaliana.
    Plant Mol. Biol., 2015. 88(3): p. 287-99
  238. Winter CM,Yamaguchi N,Wu MF,Wagner D
    Transcriptional programs regulated by both LEAFY and APETALA1 at the time of flower formation.
    Physiol Plant, 2015. 155(1): p. 55-73
  239. Wang C,Dehesh K
    From retrograde signaling to flowering time.
    Plant Signal Behav, 2015. 10(6): p. e1022012
  240. Kusters E,Della Pina S,Castel R,Souer E,Koes R
    Changes in cis-regulatory elements of a key floral regulator are associated with divergence of inflorescence architectures.
    Development, 2015. 142(16): p. 2822-31
  241. Andrés F, et al.
    Floral Induction in Arabidopsis by FLOWERING LOCUS T Requires Direct Repression of BLADE-ON-PETIOLE Genes by the Homeodomain Protein PENNYWISE.
    Plant Physiol., 2015. 169(3): p. 2187-99
  242. Yamaguchi N,Jeong CW,Nole-Wilson S,Krizek BA,Wagner D
    AINTEGUMENTA and AINTEGUMENTA-LIKE6/PLETHORA3 Induce LEAFY Expression in Response to Auxin to Promote the Onset of Flower Formation in Arabidopsis.
    Plant Physiol., 2016. 170(1): p. 283-93
  243. Yu Y, et al.
    WRKY71 accelerates flowering via the direct activation of FLOWERING LOCUS T and LEAFY in Arabidopsis thaliana.
    Plant J., 2016. 85(1): p. 96-106
  244. Fu X, et al.
    CHD3 chromatin-remodeling factor PICKLE regulates floral transition partially via modulating LEAFY expression at the chromatin level in Arabidopsis.
    Sci China Life Sci, 2016. 59(5): p. 516-28
  245. Sayou C, et al.
    A SAM oligomerization domain shapes the genomic binding landscape of the LEAFY transcription factor.
    Nat Commun, 2016. 7: p. 11222
  246. Yamaguchi N,Wu MF,Winter CM,Wagner D
    LEAFY and Polar Auxin Transport Coordinately Regulate Arabidopsis Flower Development.
    Plants (Basel), 2014. 3(2): p. 251-65
  247. Xu C,Yu Y,Zhang Y,Li Y,Wei S
    Gibberellins are involved in effect of near-null magnetic field on Arabidopsis flowering.
    Bioelectromagnetics, 2017. 38(1): p. 1-10
  248. Tang M, et al.
    An ortholog of LEAFY in Jatropha curcas regulates flowering time and floral organ development.
    Sci Rep, 2016. 6: p. 37306
  249. Wendell M, et al.
    Thermoperiodic Control of Floral Induction Involves Modulation of the Diurnal FLOWERING LOCUS T Expression Pattern.
    Plant Cell Physiol., 2017. 58(3): p. 466-477
  250. Monniaux M, et al.
    Conservation vs divergence in LEAFY and APETALA1 functions between Arabidopsis thaliana and Cardamine hirsuta.
    New Phytol., 2017. 216(2): p. 549-561
  251. Guo WY,Cui YM,Wang TT,Yu DY,Huang F
    Functional analysis of flower development related gene GsLFY from Glycine soja.
    Yi Chuan, 2017. 39(1): p. 56-65
  252. Dhakate P,Tyagi S,Singh A,Singh A
    Functional characterization of a novel Brassica LEAFY homolog from Indian mustard: Expression pattern and gain-of-function studies.
    Plant Sci., 2017. 258: p. 29-44
  253. Yang T,Du MF,Guo YH,Liu X
    Two LEAFY homologs ILFY1 and ILFY2 control reproductive and vegetative developments in Isoetes L.
    Sci Rep, 2017. 7(1): p. 225
  254. Goslin K, et al.
    Transcription Factor Interplay between LEAFY and APETALA1/CAULIFLOWER during Floral Initiation.
    Plant Physiol., 2017. 174(2): p. 1097-1109
  255. Serrano-Mislata A, et al.
    Regulatory interplay between LEAFY, APETALA1/CAULIFLOWER and TERMINAL FLOWER1: New insights into an old relationship.
    Plant Signal Behav, 2017. 12(10): p. e1370164
  256. Zhang GZ, et al.
    Ectopic expression of UGT84A2 delayed flowering by indole-3-butyric acid-mediated transcriptional repression of ARF6 and ARF8 genes in Arabidopsis.
    Plant Cell Rep., 2017. 36(12): p. 1995-2006
  257. Zhao W, et al.
    CsLFY is required for shoot meristem maintenance via interaction with WUSCHEL in cucumber (Cucumis sativus).
    New Phytol., 2018. 218(1): p. 344-356
  258. Dotto M,Gómez MS,Soto MS,Casati P
    UV-B radiation delays flowering time through changes in the PRC2 complex activity and miR156 levels in Arabidopsis thaliana.
    Plant Cell Environ., 2018. 41(6): p. 1394-1406
  259. Kumar A,Singh A,Panigrahy M,Sahoo PK,Panigrahi KCS
    Carbon nanoparticles influence photomorphogenesis and flowering time in Arabidopsis thaliana.
    Plant Cell Rep., 2018. 37(6): p. 901-912
  260. Weigel D,Nilsson O
    A developmental switch sufficient for flower initiation in diverse plants.
    Nature, 1995. 377(6549): p. 495-500
  261. Kelly AJ,Bonnlander MB,Meeks-Wagner DR
    NFL, the tobacco homolog of FLORICAULA and LEAFY, is transcriptionally expressed in both vegetative and floral meristems.
    Plant Cell, 1995. 7(2): p. 225-34
  262. Yang CH,Chen LJ,Sung ZR
    Genetic regulation of shoot development in Arabidopsis: role of the EMF genes.
    Dev. Biol., 1995. 169(2): p. 421-35
  263. Anthony RG,James PE,Jordan BR
    Cloning and sequence analysis of a flo/lfy homologue isolated from cauliflower (Brassica oleracea L. var. botrytis).
    Plant Mol. Biol., 1993. 22(6): p. 1163-6
  264. Krizek BA,Meyerowitz EM
    The Arabidopsis homeotic genes APETALA3 and PISTILLATA are sufficient to provide the B class organ identity function.
    Development, 1996. 122(1): p. 11-22
  265. Simon R,Ige
    Activation of floral meristem identity genes in Arabidopsis.
    Nature, 1996. 384(6604): p. 59-62
  266. Liljegren SJ,Yanofsky MF
    Genetic control of shoot and flower meristem behavior.
    Curr. Opin. Cell Biol., 1996. 8(6): p. 865-9
  267. Okamuro JK,den Boer BG,Lotys-Prass C,Szeto W,Jofuku KD
    Flowers into shoots: photo and hormonal control of a meristem identity switch in Arabidopsis.
    Proc. Natl. Acad. Sci. U.S.A., 1996. 93(24): p. 13831-6
  268. Lee I,Wolfe DS,Nilsson O,Weigel D
    A LEAFY co-regulator encoded by UNUSUAL FLORAL ORGANS.
    Curr. Biol., 1997. 7(2): p. 95-104
  269. Huang H,Ma H
    FON1, an Arabidopsis gene that terminates floral meristem activity and controls flower organ number.
    Plant Cell, 1997. 9(2): p. 115-34
  270. Mizukami Y,Ma H
    Determination of Arabidopsis floral meristem identity by AGAMOUS.
    Plant Cell, 1997. 9(3): p. 393-408
  271. Bl
    Illuminating flowers: CONSTANS induces LEAFY expression.
    Bioessays, 1997. 19(4): p. 277-9
  272. Hofer J, et al.
    UNIFOLIATA regulates leaf and flower morphogenesis in pea.
    Curr. Biol., 1997. 7(8): p. 581-7
  273. Bl
    LEAFY expression and flower initiation in Arabidopsis.
    Development, 1997. 124(19): p. 3835-44
  274. Hempel FD, et al.
    Floral determination and expression of floral regulatory genes in Arabidopsis.
    Development, 1997. 124(19): p. 3845-53
  275. Ruiz-García L, et al.
    Different roles of flowering-time genes in the activation of floral initiation genes in Arabidopsis.
    Plant Cell, 1997. 9(11): p. 1921-34
  276. Chen L,Cheng JC,Castle L,Sung ZR
    EMF genes regulate Arabidopsis inflorescence development.
    Plant Cell, 1997. 9(11): p. 2011-24
  277. Kyozuka J,Konishi S,Nemoto K,Izawa T,Shimamoto K
    Down-regulation of RFL, the FLO/LFY homolog of rice, accompanied with panicle branch initiation.
    Proc. Natl. Acad. Sci. U.S.A., 1998. 95(5): p. 1979-82
  278. Ratcliffe OJ, et al.
    A common mechanism controls the life cycle and architecture of plants.
    Development, 1998. 125(9): p. 1609-15
  279. Telfer A,Poethig RS
    HASTY: a gene that regulates the timing of shoot maturation in Arabidopsis thaliana.
    Development, 1998. 125(10): p. 1889-98
  280. Blazquez MA,Green R,Nilsson O,Sussman MR,Weigel D
    Gibberellins promote flowering of arabidopsis by activating the LEAFY promoter
    Plant Cell, 1998. 10(5): p. 791-800
  281. Mouradov A, et al.
    NEEDLY, a Pinus radiata ortholog of FLORICAULA/LEAFY genes, expressed in both reproductive and vegetative meristems.
    Proc. Natl. Acad. Sci. U.S.A., 1998. 95(11): p. 6537-42
  282. Levin JZ,Fletcher JC,Chen X,Meyerowitz EM
    A genetic screen for modifiers of UFO meristem activity identifies three novel FUSED FLORAL ORGANS genes required for early flower development in Arabidopsis.
    Genetics, 1998. 149(2): p. 579-95
  283. Larsson AS,Landberg K,Meeks-Wagner DR
    The TERMINAL FLOWER2 (TFL2) gene controls the reproductive transition and meristem identity in Arabidopsis thaliana.
    Genetics, 1998. 149(2): p. 597-605
  284. Haung MD,Yang CH
    EMF genes interact with late-flowering genes to regulate Arabidopsis shoot development.
    Plant Cell Physiol., 1998. 39(4): p. 382-93
  285. Southerton SG, et al.
    Eucalyptus has a functional equivalent of the Arabidopsis floral meristem identity gene LEAFY.
    Plant Mol. Biol., 1998. 37(6): p. 897-910
  286. Chou ML,Yang CH
    FLD interacts with genes that affect different developmental phase transitions to regulate Arabidopsis shoot development.
    Plant J., 1998. 15(2): p. 231-42
  287. Nilsson O,Lee I,Bl
    Flowering-time genes modulate the response to LEAFY activity.
    Genetics, 1998. 150(1): p. 403-10
  288. Parcy F,Nilsson O,Busch MA,Lee I,Weigel D
    A genetic framework for floral patterning.
    Nature, 1998. 395(6702): p. 561-6
  289. Nilsson O,Wu E,Wolfe DS,Weigel D
    Genetic ablation of flowers in transgenic Arabidopsis.
    Plant J., 1998. 15(6): p. 799-804
  290. Levy YY, Dean C
    The transition to flowering
    Plant Cell, 1998. 10(12): p. 1973-90
  291. Sawa S,Ito T,Shimura Y,Okada K
    FILAMENTOUS FLOWER controls the formation and development of arabidopsis inflorescences and floral meristems.
    Plant Cell, 1999. 11(1): p. 69-86