PlantRegMap/PlantTFDB v5.0
Plant Transcription Factor Database
Transcription Factor Information
Basic Information | Signature Domain | Sequence | 
Basic Information? help Back to Top
TF ID AT5G47230.1
Common NameATERF5, ATERF-5, AtMACD1, ERF102, ERF5, ERF-5, MQL5_9
Taxonomic ID
Taxonomic Lineage
cellular organisms; Eukaryota; Viridiplantae; Streptophyta; Streptophytina; Embryophyta; Tracheophyta; Euphyllophyta; Spermatophyta; Magnoliophyta; Mesangiospermae; eudicotyledons; Gunneridae; Pentapetalae; rosids; malvids; Brassicales; Brassicaceae; Camelineae; Arabidopsis
Family ERF
Protein Properties Length: 300aa    MW: 33809.9 Da    PI: 4.7948
Description ethylene responsive element binding factor 5
Gene Model
Gene Model ID Type Source Coding Sequence
AT5G47230.1genomeTAIRView CDS
Signature Domain? help Back to Top
Signature Domain
No. Domain Score E-value Start End HMM Start HMM End
          AP2   2 gykGVrwdkkrgrWvAeIrdpsengkrkrfslgkfgtaeeAakaaiaarkkleg 55 
                  +y+GVr+++ +g+++AeIrdp+++g   r++lg+f+ta eAa+a+++a+ +l+g
                  8********.**********96655..*************************98 PP

Protein Features ? help Back to Top
3D Structure
Database Entry ID E-value Start End InterPro ID Description
CDDcd000187.55E-33154213No hitNo description
Gene3DG3DSA:3.30.730.102.5E-33154214IPR001471AP2/ERF domain
SuperFamilySSF541718.5E-23155215IPR016177DNA-binding domain
SMARTSM003801.8E-37155219IPR001471AP2/ERF domain
PROSITE profilePS5103224.434155213IPR001471AP2/ERF domain
PfamPF008474.3E-15155205IPR001471AP2/ERF domain
PRINTSPR003671.1E-10156167IPR001471AP2/ERF domain
PRINTSPR003671.1E-10179195IPR001471AP2/ERF domain
Gene Ontology ? help Back to Top
GO Term GO Category GO Description
GO:0006952Biological Processdefense response
GO:0009409Biological Processresponse to cold
GO:0009873Biological Processethylene-activated signaling pathway
GO:0010200Biological Processresponse to chitin
GO:0045893Biological Processpositive regulation of transcription, DNA-templated
GO:0005634Cellular Componentnucleus
GO:0003677Molecular FunctionDNA binding
GO:0003700Molecular Functiontranscription factor activity, sequence-specific DNA binding
Plant Ontology ? help Back to Top
PO Term PO Category PO Description
PO:0000037anatomyshoot apex
PO:0000230anatomyinflorescence meristem
PO:0000293anatomyguard cell
PO:0008019anatomyleaf lamina base
PO:0009009anatomyplant embryo
PO:0009025anatomyvascular leaf
PO:0009052anatomyflower pedicel
PO:0020137anatomyleaf apex
PO:0025022anatomycollective leaf structure
PO:0001078developmental stageplant embryo cotyledonary stage
PO:0004507developmental stageplant embryo bilateral stage
PO:0007064developmental stageLP.12 twelve leaves visible stage
PO:0007095developmental stageLP.08 eight leaves visible stage
PO:0007098developmental stageLP.02 two leaves visible stage
PO:0007103developmental stageLP.10 ten leaves visible stage
PO:0007115developmental stageLP.04 four leaves visible stage
PO:0007123developmental stageLP.06 six leaves visible stage
PO:0007611developmental stagepetal differentiation and expansion stage
PO:0007616developmental stageflowering stage
Sequence ? help Back to Top
Protein Sequence    Length: 300 aa     Download sequence    Send to blast
3D Structure ? help Back to Top
PDB ID Evalue Query Start Query End Hit Start Hit End Description
Search in ModeBase
Expression -- UniGene ? help Back to Top
UniGene ID E-value Expressed in
At.95120.0root| seed
Expression -- Microarray ? help Back to Top
Source ID E-value
Expression AtlasAT5G47230-
Functional Description ? help Back to Top
Source Description
TAIRencodes a member of the ERF (ethylene response factor) subfamily B-3 of ERF/AP2 transcription factor family (ATERF-5). The protein contains one AP2 domain. There are 18 members in this subfamily including ATERF-1, ATERF-2, AND ATERF-5.
UniProtActs as a transcriptional activator. Binds to the GCC-box pathogenesis-related promoter element. Involved in the regulation of gene expression by stress factors and by components of stress signal transduction pathways. {ECO:0000269|PubMed:10715325, ECO:0000269|PubMed:9756931}.
Function -- GeneRIF ? help Back to Top
  1. ERF5 may play an important role in plant innate immunity, likely through coordinating chitin and other defense pathways in plants in response to different pathogens.
    [PMID: 21936663]
  2. Reduced inducibilty in ERF5 constitutive overexepressors was consistent with suppression of SA-mediated signalling, as was an increased susceptibility to avirulent Pseudomonas syringae.
    [PMID: 22563431]
  3. ERF5 and ERF6 form a missing link between the previously observed stress-induced 1-aminocyclopropane-1-carboxylic acid accumulation and DELLA-mediated cell cycle exit and execute a dual role by regulating both stress tolerance and growth inhibition.
    [PMID: 23553636]
Binding Motif ? help Back to Top
Motif ID Method Source Motif file
Motif logo
Cis-element ? help Back to Top
Regulation -- Description ? help Back to Top
Source Description
UniProtINDUCTION: Ethylene induction is completely dependent on a functional ETHYLENE-INSENSITIVE2 (EIN2). Wounding as well as cold stress induction does not require EIN2. Transcripts accumulate strongly in cycloheximide-treated plants, a protein synthesis inhibitor. Seems to not be influenced by jasmonate, Alternaria brassicicola, exogenous abscisic acid (ABA), cold, heat, NaCl or drought stress. {ECO:0000269|PubMed:10715325}.
Regulation -- PlantRegMap ? help Back to Top
Source Upstream Regulator Target Gene
Regulation -- ATRM (Manually Curated Upstream Regulators) ? help Back to Top
Source Upstream Regulator (A: Activate/R: Repress)
ATRM AT3G20770 (A)
Regulation -- Hormone ? help Back to Top
Source Hormone
Phenotype -- Mutation ? help Back to Top
Source ID
T-DNA ExpressAT5G47230
Annotation -- Nucleotide ? help Back to Top
Source Hit ID E-value Description
GenBankAB0081070.0AB008107.1 Arabidopsis thaliana AtERF-5 mRNA for ethylene responsive element binding factor 5, complete cds.
GenBankAB0181170.0AB018117.1 Arabidopsis thaliana genomic DNA, chromosome 5, P1 clone:MQL5.
GenBankAF3857090.0AF385709.1 Arabidopsis thaliana AT5g47230/MQL5_9 mRNA, complete cds.
GenBankAK1175680.0AK117568.1 Arabidopsis thaliana At5g47230 mRNA for putative ethylene responsive element binding factor 5 (ATERF5), complete cds, clone: RAFL17-21-N19.
GenBankAY0780140.0AY078014.1 Arabidopsis thaliana AT5g47230/MQL5_9 mRNA, complete cds.
GenBankCP0026880.0CP002688.1 Arabidopsis thaliana chromosome 5 sequence.
Annotation -- Protein ? help Back to Top
Source Hit ID E-value Description
RefseqNP_568679.10.0ethylene responsive element binding factor 5
SwissprotO803410.0EF102_ARATH; Ethylene-responsive transcription factor 5
STRINGAT5G47230.10.0(Arabidopsis thaliana)
Orthologous Group ? help Back to Top
LineageOrthologous Group IDTaxa NumberGene Number
Representative plantOGRP6161718
Publications ? help Back to Top
  1. Fujimoto SY,Ohta M,Usui A,Shinshi H,Ohme-Takagi M
    Arabidopsis ethylene-responsive element binding factors act as transcriptional activators or repressors of GCC box-mediated gene expression.
    Plant Cell, 2000. 12(3): p. 393-404
  2. Furutani I, et al.
    The SPIRAL genes are required for directional control of cell elongation in Aarabidopsis thaliana.
    Development, 2000. 127(20): p. 4443-53
  3. Riechmann JL, et al.
    Arabidopsis transcription factors: genome-wide comparative analysis among eukaryotes.
    Science, 2000. 290(5499): p. 2105-10
  4. Seki M, et al.
    Functional annotation of a full-length Arabidopsis cDNA collection.
    Science, 2002. 296(5565): p. 141-5
  5. Brown RL,Kazan K,McGrath KC,Maclean DJ,Manners JM
    A role for the GCC-box in jasmonate-mediated activation of the PDF1.2 gene of Arabidopsis.
    Plant Physiol., 2003. 132(2): p. 1020-32
  6. M
    Brassinosteroids promote root growth in Arabidopsis.
    Plant Physiol., 2003. 133(3): p. 1261-71
  7. Yamada K, et al.
    Empirical analysis of transcriptional activity in the Arabidopsis genome.
    Science, 2003. 302(5646): p. 842-6
  8. Catala R, et al.
    Mutations in the Ca2+/H+ transporter CAX1 increase CBF/DREB1 expression and the cold-acclimation response in Arabidopsis.
    Plant Cell, 2003. 15(12): p. 2940-51
  9. Navarro L, et al.
    The transcriptional innate immune response to flg22. Interplay and overlap with Avr gene-dependent defense responses and bacterial pathogenesis.
    Plant Physiol., 2004. 135(2): p. 1113-28
  10. Guan Y,Nothnagel EA
    Binding of arabinogalactan proteins by Yariv phenylglycoside triggers wound-like responses in Arabidopsis cell cultures.
    Plant Physiol., 2004. 135(3): p. 1346-66
  11. Scheible WR, et al.
    Genome-wide reprogramming of primary and secondary metabolism, protein synthesis, cellular growth processes, and the regulatory infrastructure of Arabidopsis in response to nitrogen.
    Plant Physiol., 2004. 136(1): p. 2483-99
  12. Miao Y,Laun T,Zimmermann P,Zentgraf U
    Targets of the WRKY53 transcription factor and its role during leaf senescence in Arabidopsis.
    Plant Mol. Biol., 2004. 55(6): p. 853-67
  13. Danon A,Miersch O,Felix G,Camp RG,Apel K
    Concurrent activation of cell death-regulating signaling pathways by singlet oxygen in Arabidopsis thaliana.
    Plant J., 2005. 41(1): p. 68-80
  14. Stanley Kim H, et al.
    Transcriptional divergence of the duplicated oxidative stress-responsive genes in the Arabidopsis genome.
    Plant J., 2005. 41(2): p. 212-20
  15. Devoto A, et al.
    Expression profiling reveals COI1 to be a key regulator of genes involved in wound- and methyl jasmonate-induced secondary metabolism, defence, and hormone interactions.
    Plant Mol. Biol., 2005. 58(4): p. 497-513
  16. Lee BH,Henderson DA,Zhu JK
    The Arabidopsis cold-responsive transcriptome and its regulation by ICE1.
    Plant Cell, 2005. 17(11): p. 3155-75
  17. Suzuki N, et al.
    Enhanced tolerance to environmental stress in transgenic plants expressing the transcriptional coactivator multiprotein bridging factor 1c.
    Plant Physiol., 2005. 139(3): p. 1313-22
  18. Vergnolle C, et al.
    The cold-induced early activation of phospholipase C and D pathways determines the response of two distinct clusters of genes in Arabidopsis cell suspensions.
    Plant Physiol., 2005. 139(3): p. 1217-33
  19. Taki N, et al.
    12-oxo-phytodienoic acid triggers expression of a distinct set of genes and plays a role in wound-induced gene expression in Arabidopsis.
    Plant Physiol., 2005. 139(3): p. 1268-83
  20. Duarte JM, et al.
    Expression pattern shifts following duplication indicative of subfunctionalization and neofunctionalization in regulatory genes of Arabidopsis.
    Mol. Biol. Evol., 2006. 23(2): p. 469-78
  21. Babula D, et al.
    Genes involved in biosynthesis and signalisation of ethylene in Brassica oleracea and Arabidopsis thaliana: identification and genome comparative mapping of specific gene homologues.
    Theor. Appl. Genet., 2006. 112(3): p. 410-20
  22. Nakano T,Suzuki K,Fujimura T,Shinshi H
    Genome-wide analysis of the ERF gene family in Arabidopsis and rice.
    Plant Physiol., 2006. 140(2): p. 411-32
  23. Town CD, et al.
    Comparative genomics of Brassica oleracea and Arabidopsis thaliana reveal gene loss, fragmentation, and dispersal after polyploidy.
    Plant Cell, 2006. 18(6): p. 1348-59
  24. AbuQamar S, et al.
    Expression profiling and mutant analysis reveals complex regulatory networks involved in Arabidopsis response to Botrytis infection.
    Plant J., 2006. 48(1): p. 28-44
  25. Jung J, et al.
    The barley ERF-type transcription factor HvRAF confers enhanced pathogen resistance and salt tolerance in Arabidopsis.
    Planta, 2007. 225(3): p. 575-88
  26. Zhu Y, et al.
    Arabidopsis NRP1 and NRP2 encode histone chaperones and are required for maintaining postembryonic root growth.
    Plant Cell, 2006. 18(11): p. 2879-92
  27. Qutob D, et al.
    Phytotoxicity and innate immune responses induced by Nep1-like proteins.
    Plant Cell, 2006. 18(12): p. 3721-44
  28. Xin Z,Mandaokar A,Chen J,Last RL,Browse J
    Arabidopsis ESK1 encodes a novel regulator of freezing tolerance.
    Plant J., 2007. 49(5): p. 786-99
  29. Ma S,Bohnert HJ
    Integration of Arabidopsis thaliana stress-related transcript profiles, promoter structures, and cell-specific expression.
    Genome Biol., 2007. 8(4): p. R49
  30. Hectors K,Prinsen E,De Coen W,Jansen MA,Guisez Y
    Arabidopsis thaliana plants acclimated to low dose rates of ultraviolet B radiation show specific changes in morphology and gene expression in the absence of stress symptoms.
    New Phytol., 2007. 175(2): p. 255-70
  31. Dombrecht B, et al.
    MYC2 differentially modulates diverse jasmonate-dependent functions in Arabidopsis.
    Plant Cell, 2007. 19(7): p. 2225-45
  32. Libault M,Wan J,Czechowski T,Udvardi M,Stacey G
    Identification of 118 Arabidopsis transcription factor and 30 ubiquitin-ligase genes responding to chitin, a plant-defense elicitor.
    Mol. Plant Microbe Interact., 2007. 20(8): p. 900-11
  33. Chawade A,Br
    Putative cold acclimation pathways in Arabidopsis thaliana identified by a combined analysis of mRNA co-expression patterns, promoter motifs and transcription factors.
    BMC Genomics, 2007. 8: p. 304
  34. Walley JW, et al.
    Mechanical stress induces biotic and abiotic stress responses via a novel cis-element.
    PLoS Genet., 2007. 3(10): p. 1800-12
  35. Yoo SD,Cho YH,Tena G,Xiong Y,Sheen J
    Dual control of nuclear EIN3 by bifurcate MAPK cascades in C2H4 signalling.
    Nature, 2008. 451(7180): p. 789-95
  36. Giraud E, et al.
    The absence of ALTERNATIVE OXIDASE1a in Arabidopsis results in acute sensitivity to combined light and drought stress.
    Plant Physiol., 2008. 147(2): p. 595-610
  37. Ribot C,Zimmerli C,Farmer EE,Reymond P,Poirier Y
    Induction of the Arabidopsis PHO1;H10 gene by 12-oxo-phytodienoic acid but not jasmonic acid via a CORONATINE INSENSITIVE1-dependent pathway.
    Plant Physiol., 2008. 147(2): p. 696-706
  38. Veyres N, et al.
    The Arabidopsis sweetie mutant is affected in carbohydrate metabolism and defective in the control of growth, development and senescence.
    Plant J., 2008. 55(4): p. 665-86
  39. Xu J, et al.
    Activation of MAPK kinase 9 induces ethylene and camalexin biosynthesis and enhances sensitivity to salt stress in Arabidopsis.
    J. Biol. Chem., 2008. 283(40): p. 26996-7006
  40. Gong W, et al.
    The development of protein microarrays and their applications in DNA-protein and protein-protein interaction analyses of Arabidopsis transcription factors.
    Mol Plant, 2008. 1(1): p. 27-41
  41. Son GH, et al.
    Ethylene-responsive element-binding factor 5, ERF5, is involved in chitin-induced innate immunity response.
    Mol. Plant Microbe Interact., 2012. 25(1): p. 48-60
  42. Wathugala DL, et al.
    The Mediator subunit SFR6/MED16 controls defence gene expression mediated by salicylic acid and jasmonate responsive pathways.
    New Phytol., 2012. 195(1): p. 217-30
  43. Moffat CS, et al.
    ERF5 and ERF6 play redundant roles as positive regulators of JA/Et-mediated defense against Botrytis cinerea in Arabidopsis.
    PLoS ONE, 2012. 7(4): p. e35995
  44. Efroni I, et al.
    Regulation of leaf maturation by chromatin-mediated modulation of cytokinin responses.
    Dev. Cell, 2013. 24(4): p. 438-45
  45. Dubois M, et al.
    Ethylene Response Factor6 acts as a central regulator of leaf growth under water-limiting conditions in Arabidopsis.
    Plant Physiol., 2013. 162(1): p. 319-32
  46. Mase K, et al.
    Ethylene-responsive AP2/ERF transcription factor MACD1 participates in phytotoxin-triggered programmed cell death.
    Mol. Plant Microbe Interact., 2013. 26(8): p. 868-79
  47. Jin J, et al.
    An Arabidopsis Transcriptional Regulatory Map Reveals Distinct Functional and Evolutionary Features of Novel Transcription Factors.
    Mol. Biol. Evol., 2015. 32(7): p. 1767-73
  48. Riechmann JL,Meyerowitz EM
    The AP2/EREBP family of plant transcription factors.
    Biol. Chem., 1998. 379(6): p. 633-46
  49. Hao D,Ohme-Takagi M,Sarai A
    Unique mode of GCC box recognition by the DNA-binding domain of ethylene-responsive element-binding factor (ERF domain) in plant.
    J. Biol. Chem., 1998. 273(41): p. 26857-61