PlantRegMap/PlantTFDB v5.0
Plant Transcription Factor Database
Transcription Factor Information
Basic Information | Signature Domain | Sequence | 
Basic Information? help Back to Top
TF ID AT5G13080.1
Common NameATWRKY75, T19L5.40, WRKY75
Taxonomic ID
Taxonomic Lineage
cellular organisms; Eukaryota; Viridiplantae; Streptophyta; Streptophytina; Embryophyta; Tracheophyta; Euphyllophyta; Spermatophyta; Magnoliophyta; Mesangiospermae; eudicotyledons; Gunneridae; Pentapetalae; rosids; malvids; Brassicales; Brassicaceae; Camelineae; Arabidopsis
Family WRKY
Protein Properties Length: 145aa    MW: 16801.8 Da    PI: 9.5932
Description WRKY DNA-binding protein 75
Gene Model
Gene Model ID Type Source Coding Sequence
AT5G13080.1genomeTAIRView CDS
Signature Domain? help Back to Top
Signature Domain
No. Domain Score E-value Start End HMM Start HMM End
         WRKY   1 ldDgynWrKYGqKevkgsefprsYYrCtsagCpvkkkversaedpkvveitYegeHnhe 59 
                  ldDgy+WrKYGqK vk+++fprsYYrCt+ gC+vkk+v+r + d++vv++tYeg H h+
                  59********************************************************7 PP

Protein Features ? help Back to Top
3D Structure
Database Entry ID E-value Start End InterPro ID Description
Gene3DG3DSA: domain
SuperFamilySSF1182906.93E-2958125IPR003657WRKY domain
PROSITE profilePS5081129.76961126IPR003657WRKY domain
SMARTSM007741.9E-3766125IPR003657WRKY domain
PfamPF031063.0E-2667124IPR003657WRKY domain
Gene Ontology ? help Back to Top
GO Term GO Category GO Description
GO:0000122Biological Processnegative regulation of transcription from RNA polymerase II promoter
GO:0010055Biological Processatrichoblast differentiation
GO:0032107Biological Processregulation of response to nutrient levels
GO:0043620Biological Processregulation of DNA-templated transcription in response to stress
GO:0048527Biological Processlateral root development
GO:0005634Cellular Componentnucleus
GO:0001046Molecular Functioncore promoter sequence-specific DNA binding
GO:0003700Molecular Functiontranscription factor activity, sequence-specific DNA binding
Plant Ontology ? help Back to Top
PO Term PO Category PO Description
PO:0007616developmental stageflowering stage
Sequence ? help Back to Top
Protein Sequence    Length: 145 aa     Download sequence    Send to blast
3D Structure ? help Back to Top
PDB ID Evalue Query Start Query End Hit Start Hit End Description
1wj2_A2e-2856125776Probable WRKY transcription factor 4
2lex_A2e-2856125776Probable WRKY transcription factor 4
Search in ModeBase
Expression -- UniGene ? help Back to Top
UniGene ID E-value Expressed in
Expression -- Microarray ? help Back to Top
Source ID E-value
Expression AtlasAT5G13080-
Functional Description ? help Back to Top
Source Description
TAIRWRKY75 is one of several transcription factors induced during Pi deprivation. It is nuclear localized and regulated differentially during Pi starvation. RNAi mediated suppression of WRKY75 made the plants more susceptible to Pi stress as indicated by the higher accumulation of anthocyanin during Pi starvation.
UniProtTranscription factor. Interacts specifically with the W box (5'-(T)TGAC[CT]-3'), a frequently occurring elicitor-responsive cis-acting element (By similarity). {ECO:0000250}.
Function -- GeneRIF ? help Back to Top
  1. WRKY75 act as positive regulators of disease defence.
    [PMID: 19470657]
  2. positive regulator of leaf senescence
    [PMID: 22709441]
  3. Transgenic lines overexpressing AtWRKY28 and AtWRKY75 showed enhanced resistance to oxalic acid and S. sclerotiorum, demonstrating that both AtWRKY28 and AtWRKY75 are novel positive regulators in Arabidopsis defense responses.
    [PMID: 23749099]
  4. WRKY75 suppresses root hair development in nonroot hair files and that it represses the expression of TRIPTYCHON and CAPRICE.
    [PMID: 24676857]
  5. Knockdown or knockout of WRKY75 delayed age-dependent leaf senescence, while overexpression of WRKY75 accelerated this process.
    [PMID: 29061866]
  6. WRKY75 may function as a new component of the gibberellic acid-mediated signaling pathway to positively regulate flowering in Arabidopsis.
    [PMID: 29133369]
Binding Motif ? help Back to Top
Motif ID Method Source Motif file
Motif logo
Cis-element ? help Back to Top
Regulation -- PlantRegMap ? help Back to Top
Source Upstream Regulator Target Gene
Interaction ? help Back to Top
Source Intact With
IntActSearch Q9FYA2
Phenotype -- Mutation ? help Back to Top
Source ID
T-DNA ExpressAT5G13080
Annotation -- Nucleotide ? help Back to Top
Source Hit ID E-value Description
GenBankAF4521740.0AF452174.1 Arabidopsis thaliana WRKY transcription factor 75 (WRKY75) mRNA, complete cds.
Annotation -- Protein ? help Back to Top
Source Hit ID E-value Description
RefseqNP_196812.11e-105WRKY DNA-binding protein 75
SwissprotQ9FYA21e-106WRK75_ARATH; Probable WRKY transcription factor 75
STRINGAT5G13080.11e-104(Arabidopsis thaliana)
Orthologous Group ? help Back to Top
LineageOrthologous Group IDTaxa NumberGene Number
Representative plantOGRP1417875
Publications ? help Back to Top
  1. Eulgem T,Rushton PJ,Robatzek S,Somssich IE
    The WRKY superfamily of plant transcription factors.
    Trends Plant Sci., 2000. 5(5): p. 199-206
  2. Riechmann JL, et al.
    Arabidopsis transcription factors: genome-wide comparative analysis among eukaryotes.
    Science, 2000. 290(5499): p. 2105-10
  3. Yamada K, et al.
    Empirical analysis of transcriptional activity in the Arabidopsis genome.
    Science, 2003. 302(5646): p. 842-6
  4. Guan Y,Nothnagel EA
    Binding of arabinogalactan proteins by Yariv phenylglycoside triggers wound-like responses in Arabidopsis cell cultures.
    Plant Physiol., 2004. 135(3): p. 1346-66
  5. Hass C, et al.
    The response regulator 2 mediates ethylene signalling and hormone signal integration in Arabidopsis.
    EMBO J., 2004. 23(16): p. 3290-302
  6. Zanetti ME,Chang IF,Gong F,Galbraith DW,Bailey-Serres J
    Immunopurification of polyribosomal complexes of Arabidopsis for global analysis of gene expression.
    Plant Physiol., 2005. 138(2): p. 624-35
  7. Branco-Price C,Kawaguchi R,Ferreira RB,Bailey-Serres J
    Genome-wide analysis of transcript abundance and translation in Arabidopsis seedlings subjected to oxygen deprivation.
    Ann. Bot., 2005. 96(4): p. 647-60
  8. Vanderauwera S, et al.
    Genome-wide analysis of hydrogen peroxide-regulated gene expression in Arabidopsis reveals a high light-induced transcriptional cluster involved in anthocyanin biosynthesis.
    Plant Physiol., 2005. 139(2): p. 806-21
  9. Pajerowska KM,Parker JE,Gebhardt C
    Potato homologs of Arabidopsis thaliana genes functional in defense signaling--identification, genetic mapping, and molecular cloning.
    Mol. Plant Microbe Interact., 2005. 18(10): p. 1107-19
  10. Truman W,de Zabala MT,Grant M
    Type III effectors orchestrate a complex interplay between transcriptional networks to modify basal defence responses during pathogenesis and resistance.
    Plant J., 2006. 46(1): p. 14-33
  11. Thilmony R,Underwood W,He SY
    Genome-wide transcriptional analysis of the Arabidopsis thaliana interaction with the plant pathogen Pseudomonas syringae pv. tomato DC3000 and the human pathogen Escherichia coli O157:H7.
    Plant J., 2006. 46(1): p. 34-53
  12. Tosti N, et al.
    Gene expression profiles of O3-treated Arabidopsis plants.
    Plant Cell Environ., 2006. 29(9): p. 1686-702
  13. Michel K,Abderhalden O,Bruggmann R,Dudler R
    Transcriptional changes in powdery mildew infected wheat and Arabidopsis leaves undergoing syringolin-triggered hypersensitive cell death at infection sites.
    Plant Mol. Biol., 2006. 62(4-5): p. 561-78
  14. Osuna D, et al.
    Temporal responses of transcripts, enzyme activities and metabolites after adding sucrose to carbon-deprived Arabidopsis seedlings.
    Plant J., 2007. 49(3): p. 463-91
  15. Devaiah BN,Karthikeyan AS,Raghothama KG
    WRKY75 transcription factor is a modulator of phosphate acquisition and root development in Arabidopsis.
    Plant Physiol., 2007. 143(4): p. 1789-801
  16. Zhao J, et al.
    Analysis of gene expression profiles in response to Sclerotinia sclerotiorum in Brassica napus.
    Planta, 2007. 227(1): p. 13-24
  17. Zhang Z, et al.
    Dual regulation role of GH3.5 in salicylic acid and auxin signaling during Arabidopsis-Pseudomonas syringae interaction.
    Plant Physiol., 2007. 145(2): p. 450-64
  18. Ramel F, et al.
    Genome-wide interacting effects of sucrose and herbicide-mediated stress in Arabidopsis thaliana: novel insights into atrazine toxicity and sucrose-induced tolerance.
    BMC Genomics, 2007. 8: p. 450
  19. Usadel B, et al.
    Global transcript levels respond to small changes of the carbon status during progressive exhaustion of carbohydrates in Arabidopsis rosettes.
    Plant Physiol., 2008. 146(4): p. 1834-61
  20. Price AM, et al.
    A comparison of leaf and petal senescence in wallflower reveals common and distinct patterns of gene expression and physiology.
    Plant Physiol., 2008. 147(4): p. 1898-912
  21. Ascencio-Ib
    Global analysis of Arabidopsis gene expression uncovers a complex array of changes impacting pathogen response and cell cycle during geminivirus infection.
    Plant Physiol., 2008. 148(1): p. 436-54
  22. Vald
    Transcriptional regulation and signaling in phosphorus starvation: what about legumes?
    J Integr Plant Biol, 2008. 50(10): p. 1213-22
  23. Encinas-Villarejo S, et al.
    Evidence for a positive regulatory role of strawberry (Fragaria x ananassa) Fa WRKY1 and Arabidopsis At WRKY75 proteins in resistance.
    J. Exp. Bot., 2009. 60(11): p. 3043-65
  24. Yu S,Ligang C,Liping Z,Diqiu Y
    Overexpression of OsWRKY72 gene interferes in the abscisic acid signal and auxin transport pathway of Arabidopsis.
    J. Biosci., 2010. 35(3): p. 459-71
  25. Brand LH,Kirchler T,Hummel S,Chaban C,Wanke D
    DPI-ELISA: a fast and versatile method to specify the binding of plant transcription factors to DNA in vitro.
    Plant Methods, 2010. 6: p. 25
  26. Inz
    A subcellular localization compendium of hydrogen peroxide-induced proteins.
    Plant Cell Environ., 2012. 35(2): p. 308-20
  27. Arabidopsis Interactome Mapping Consortium
    Evidence for network evolution in an Arabidopsis interactome map.
    Science, 2011. 333(6042): p. 601-7
  28. Li Z,Peng J,Wen X,Guo H
    Gene network analysis and functional studies of senescence-associated genes reveal novel regulators of Arabidopsis leaf senescence.
    J Integr Plant Biol, 2012. 54(8): p. 526-39
  29. Xu L, et al.
    Overexpression of GbWRKY1 positively regulates the Pi starvation response by alteration of auxin sensitivity in Arabidopsis.
    Plant Cell Rep., 2012. 31(12): p. 2177-88
  30. Koyama T, et al.
    A regulatory cascade involving class II ETHYLENE RESPONSE FACTOR transcriptional repressors operates in the progression of leaf senescence.
    Plant Physiol., 2013. 162(2): p. 991-1005
  31. Chen X, et al.
    Overexpression of AtWRKY28 and AtWRKY75 in Arabidopsis enhances resistance to oxalic acid and Sclerotinia sclerotiorum.
    Plant Cell Rep., 2013. 32(10): p. 1589-99
  32. Ding Y, et al.
    Four distinct types of dehydration stress memory genes in Arabidopsis thaliana.
    BMC Plant Biol., 2013. 13: p. 229
  33. Rishmawi L, et al.
    Non-cell-autonomous regulation of root hair patterning genes by WRKY75 in Arabidopsis.
    Plant Physiol., 2014. 165(1): p. 186-95
  34. Schmiesing A,Emonet A,Gouhier-Darimont C,Reymond P
    Arabidopsis MYC Transcription Factors Are the Target of Hormonal Salicylic Acid/Jasmonic Acid Cross Talk in Response to Pieris brassicae Egg Extract.
    Plant Physiol., 2016. 170(4): p. 2432-43
  35. Velasco VM, et al.
    Acclimation of the crucifer Eutrema salsugineum to phosphate limitation is associated with constitutively high expression of phosphate-starvation genes.
    Plant Cell Environ., 2016. 39(8): p. 1818-34
  36. Hossain MA, et al.
    Identification of Novel Components of the Unfolded Protein Response in Arabidopsis.
    Front Plant Sci, 2016. 7: p. 650
  37. Zhang H,Huang L,Hong Y,Song F
    BOTRYTIS-INDUCED KINASE1, a plasma membrane-localized receptor-like protein kinase, is a negative regulator of phosphate homeostasis in Arabidopsis thaliana.
    BMC Plant Biol., 2016. 16(1): p. 152
  38. Zhang S, et al.
    The Arabidopsis Mitochondrial Protease FtSH4 Is Involved in Leaf Senescence via Regulation of WRKY-Dependent Salicylic Acid Accumulation and Signaling.
    Plant Physiol., 2017. 173(4): p. 2294-2307
  39. Guo P, et al.
    A Tripartite Amplification Loop Involving the Transcription Factor WRKY75, Salicylic Acid, and Reactive Oxygen Species Accelerates Leaf Senescence.
    Plant Cell, 2017. 29(11): p. 2854-2870
  40. Zhang L,Chen L,Yu D
    Transcription Factor WRKY75 Interacts with DELLA Proteins to Affect Flowering.
    Plant Physiol., 2018. 176(1): p. 790-803