PlantTFDB
PlantRegMap/PlantTFDB v5.0
Plant Transcription Factor Database
Transcription Factor Information
Basic Information | Signature Domain | Sequence | 
Basic Information? help Back to Top
TF ID AT4G34590.1
Common NameATB2, AtbZIP11, BZIP11, GBF6, T4L20.170
Organism
Taxonomic ID
Taxonomic Lineage
cellular organisms; Eukaryota; Viridiplantae; Streptophyta; Streptophytina; Embryophyta; Tracheophyta; Euphyllophyta; Spermatophyta; Magnoliophyta; Mesangiospermae; eudicotyledons; Gunneridae; Pentapetalae; rosids; malvids; Brassicales; Brassicaceae; Camelineae; Arabidopsis
Family bZIP
Protein Properties Length: 159aa    MW: 18035.2 Da    PI: 5.2486
Description G-box binding factor 6
Gene Model
Gene Model ID Type Source Coding Sequence
AT4G34590.1genomeTAIRView CDS
Signature Domain? help Back to Top
Signature Domain
No. Domain Score E-value Start End HMM Start HMM End
1bZIP_138.72.2e-122768546
                 CHHHCHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHH CS
       bZIP_1  5 krerrkqkNReAArrsRqRKkaeieeLeekvkeLeaeNkaLk 46
                 ++ +r+ +NRe+ArrsR +K++ ++ L+  v  L++eN++  
  AT4G34590.1 27 RKRKRMLSNRESARRSRMKKQKLLDDLTAQVNHLKKENTEIV 68
                 7889**********************************9765 PP

Protein Features ? help Back to Top
3D Structure
Database Entry ID E-value Start End InterPro ID Description
Gene3DG3DSA:1.20.5.1703.5E-102168No hitNo description
SMARTSM003385.6E-182387IPR004827Basic-leucine zipper domain
PROSITE profilePS5021710.1052588IPR004827Basic-leucine zipper domain
PfamPF001701.6E-92667IPR004827Basic-leucine zipper domain
SuperFamilySSF579592.67E-122780No hitNo description
CDDcd147026.43E-172878No hitNo description
PROSITE patternPS0003603045IPR004827Basic-leucine zipper domain
Gene Ontology ? help Back to Top
GO Term GO Category GO Description
GO:0006355Biological Processregulation of transcription, DNA-templated
GO:0009744Biological Processresponse to sucrose
GO:0080149Biological Processsucrose induced translational repression
GO:0005634Cellular Componentnucleus
GO:0003700Molecular Functiontranscription factor activity, sequence-specific DNA binding
GO:0043565Molecular Functionsequence-specific DNA binding
GO:0046982Molecular Functionprotein heterodimerization activity
Plant Ontology ? help Back to Top
PO Term PO Category PO Description
PO:0000263anatomynon-hair root epidermal cell
PO:0000293anatomyguard cell
Sequence ? help Back to Top
Protein Sequence    Length: 159 aa     Download sequence    Send to blast
MESSSSGTTS STIQTSSGSE ESLMEQRKRK RMLSNRESAR RSRMKKQKLL DDLTAQVNHL  60
KKENTEIVTS VSITTQHYLT VEAENSVLRA QLDELNHRLQ SLNDIIEFLD SSNNNNNNNM  120
GMCSNPLVGL ECDDFFVNQM NMSYIMNQPL MASSDALMY
Nucleic Localization Signal ? help Back to Top
NLS
No. Start End Sequence
12647RKRKRMLSNRESARRSRMKKQK
Expression -- UniGene ? help Back to Top
UniGene ID E-value Expressed in
At.1350.0bud| floral meristem| flower| root| seed| silique
Expression -- Microarray ? help Back to Top
Source ID E-value
GEO425673930.0
Genevisible253245_at0.0
Expression AtlasAT4G34590-
AtGenExpressAT4G34590-
ATTED-IIAT4G34590-
Expression -- Description ? help Back to Top
Source Description
UniprotTISSUE SPECIFICITY: Highly expressed in stems and flowers (PubMed:9620274). Expressed in root tips, cotyledons, leaf vasculature, embryos, apical parts of siliques and funiculi (PubMed:9721683). {ECO:0000269|PubMed:9620274, ECO:0000269|PubMed:9721683}.
Functional Description ? help Back to Top
Source Description
TAIREncodes a basic domain leucine zipper (bZip) transcription factor bZIP11. Translation is repressed by sucrose. Directly regulates gene expression of ASN1 and ProDH2, which are enzyme-coding genes involved in amino acid metabolism.
UniProtTranscription factor that binds to the DNA sequence 5'-ACTCAT-3' in target gene promoters. Promotes POX1/PRODH1 expression in response to hypoosmolarity stress (PubMed:15047879). Positively regulates the expression of ASN1 and POX2/PRODH2 genes, which are involved in amino acid metabolism (PubMed:18088315). Regulates several metabolic pathways such as myo-inositol, raffinose and trehalose. Regulates several trehalose metabolism genes, including TRE1, TPP5 and TPP6 (PubMed:21534971). Mediates recruitment of the histone acetylation machinery to activate auxin-induced transcription. Interacts with ADA2B adapter protein to promote ADA2B-mediated recruitment of SAGA-like histone acetyltransferase complexes to specific auxin-responsive genes (PubMed:24861440). {ECO:0000269|PubMed:15047879, ECO:0000269|PubMed:18088315, ECO:0000269|PubMed:21534971, ECO:0000269|PubMed:24861440}.
Function -- GeneRIF ? help Back to Top
  1. bZIP11 target processes are identified using transiently increased nuclear bZIP11 levels and genome-wide expression analysis; the effect of bZIP11 on ASN1 and GBF6 are reported.
    [PMID: 18088315]
  2. The uORF2 element in the bZip11 mRNA encodes a sucrose control peptide that inhibits bZIP11 translation in response to high sucrose levels by stalling the ribosome on the mRNA.
    [PMID: 19403731]
  3. The bZIP11 induction leads to reduced contents of the prominent growth regulatory molecule trehalose 6-phosphate (T6P). The metabolic changes detected mimic in part those observed in carbon-starved plants.
    [PMID: 21534971]
  4. Arabidopsis bZIP11-related basic leucine zipper (bZIP) transcription factors interact via an amino-terminal activation domain with ADA2b adapter proteins to recruit the histone acetylation machinery to specific auxin-responsive genes.
    [PMID: 24861440]
  5. Based on ensuing molecular and biochemical analyses, we propose a mechanistic model, in which bZIP11-related TFs gain control over the root meristem by directly activating IAA3/SHY2 transcription. IAA3/SHY2 is a pivotal negative regulator of root growth, which has been demonstrated to efficiently repress transcription of major auxin transport facilitators of the PIN-FORMED (PIN) gene family, thereby restricting polar auxi
    [PMID: 28158182]
  6. Data show that bZIP11 uORF2 encodes a regulatory nascent peptide that functions to sense intracellular sucrose abundance.
    [PMID: 28369795]
Binding Motif ? help Back to Top
Motif ID Method Source Motif file
MP00470DAP27203113Download
Motif logo
Cis-element ? help Back to Top
SourceLink
PlantRegMapAT4G34590.1
Regulation -- Description ? help Back to Top
Source Description
UniProtINDUCTION: By light (PubMed:9620274). Induced by hypoosmolarity (PubMed:15047879). Repressed by sucrose (at protein level) (PubMed:9721683, PubMed:15208401). {ECO:0000269|PubMed:15047879, ECO:0000269|PubMed:15208401, ECO:0000269|PubMed:9620274, ECO:0000269|PubMed:9721683}.
Regulation -- PlantRegMap ? help Back to Top
Source Upstream Regulator Target Gene
PlantRegMapRetrieveRetrieve
Regulation -- ATRM (Manually Curated Target Genes) ? help Back to Top
Source Target Gene (A: Activate/R: Repress)
ATRM AT3G30775(A), AT3G47340(A)
Interaction ? help Back to Top
Source Intact With
BioGRIDAT4G34590, AT5G24800, AT5G28770, AT5G49450, AT1G13600
IntActSearch O65683
Phenotype -- Mutation ? help Back to Top
Source ID
T-DNA ExpressAT4G34590
Annotation -- Nucleotide ? help Back to Top
Source Hit ID E-value Description
GenBankAL0230940.0AL023094.2 Arabidopsis thaliana DNA chromosome 4, BAC clone T4L20 (ESSA project).
GenBankAL1615850.0AL161585.2 Arabidopsis thaliana DNA chromosome 4, contig fragment No. 81.
GenBankAY0639790.0AY063979.1 Arabidopsis thaliana putative bZIP transcription factor ATB2 (At4g34590) mRNA, complete cds.
GenBankAY0963960.0AY096396.1 Arabidopsis thaliana putative bZIP transcription factor ATB2 (At4g34590) mRNA, complete cds.
GenBankCP0026870.0CP002687.1 Arabidopsis thaliana chromosome 4 sequence.
Annotation -- Protein ? help Back to Top
Source Hit ID E-value Description
RefseqNP_195185.11e-113G-box binding factor 6
SwissprotO656831e-114BZP11_ARATH; bZIP transcription factor 11
TrEMBLA0A178UVA01e-112A0A178UVA0_ARATH; Uncharacterized protein
STRINGAT4G34590.11e-112(Arabidopsis thaliana)
Orthologous Group ? help Back to Top
LineageOrthologous Group IDTaxa NumberGene Number
MalvidsOGEM50128154
Representative plantOGRP5511678
Publications ? help Back to Top
  1. Riechmann JL, et al.
    Arabidopsis transcription factors: genome-wide comparative analysis among eukaryotes.
    Science, 2000. 290(5499): p. 2105-10
    [PMID:11118137]
  2. Jakoby M, et al.
    bZIP transcription factors in Arabidopsis.
    Trends Plant Sci., 2002. 7(3): p. 106-11
    [PMID:11906833]
  3. Yamada K, et al.
    Empirical analysis of transcriptional activity in the Arabidopsis genome.
    Science, 2003. 302(5646): p. 842-6
    [PMID:14593172]
  4. Satoh R,Fujita Y,Nakashima K,Shinozaki K,Yamaguchi-Shinozaki K
    A novel subgroup of bZIP proteins functions as transcriptional activators in hypoosmolarity-responsive expression of the ProDH gene in Arabidopsis.
    Plant Cell Physiol., 2004. 45(3): p. 309-17
    [PMID:15047879]
  5. Wiese A,Elzinga N,Wobbes B,Smeekens S
    A conserved upstream open reading frame mediates sucrose-induced repression of translation.
    Plant Cell, 2004. 16(7): p. 1717-29
    [PMID:15208401]
  6. Kim TH,Kim BH,Yahalom A,Chamovitz DA,von Arnim AG
    Translational regulation via 5' mRNA leader sequences revealed by mutational analysis of the Arabidopsis translation initiation factor subunit eIF3h.
    Plant Cell, 2004. 16(12): p. 3341-56
    [PMID:15548739]
  7. Wiese A,Elzinga N,Wobbes B,Smeekens S
    Sucrose-induced translational repression of plant bZIP-type transcription factors.
    Biochem. Soc. Trans., 2005. 33(Pt 1): p. 272-5
    [PMID:15667324]
  8. Ehlert A, et al.
    Two-hybrid protein-protein interaction analysis in Arabidopsis protoplasts: establishment of a heterodimerization map of group C and group S bZIP transcription factors.
    Plant J., 2006. 46(5): p. 890-900
    [PMID:16709202]
  9. Weltmeier F, et al.
    Combinatorial control of Arabidopsis proline dehydrogenase transcription by specific heterodimerisation of bZIP transcription factors.
    EMBO J., 2006. 25(13): p. 3133-43
    [PMID:16810321]
  10. Hanson J,Hanssen M,Wiese A,Hendriks MM,Smeekens S
    The sucrose regulated transcription factor bZIP11 affects amino acid metabolism by regulating the expression of ASPARAGINE SYNTHETASE1 and PROLINE DEHYDROGENASE2.
    Plant J., 2008. 53(6): p. 935-49
    [PMID:18088315]
  11. Adamiec M,Drath M,Jackowski G
    Redox state of plastoquinone pool regulates expression of Arabidopsis thaliana genes in response to elevated irradiance.
    Acta Biochim. Pol., 2008. 55(1): p. 161-73
    [PMID:18231654]
  12. Hummel M,Rahmani F,Smeekens S,Hanson J
    Sucrose-mediated translational control.
    Ann. Bot., 2009. 104(1): p. 1-7
    [PMID:19376782]
  13. Rahmani F, et al.
    Sucrose control of translation mediated by an upstream open reading frame-encoded peptide.
    Plant Physiol., 2009. 150(3): p. 1356-67
    [PMID:19403731]
  14. Roy B, et al.
    The h subunit of eIF3 promotes reinitiation competence during translation of mRNAs harboring upstream open reading frames.
    RNA, 2010. 16(4): p. 748-61
    [PMID:20179149]
  15. Zhou F,Roy B,von Arnim AG
    Translation reinitiation and development are compromised in similar ways by mutations in translation initiation factor eIF3h and the ribosomal protein RPL24.
    BMC Plant Biol., 2010. 10: p. 193
    [PMID:20799971]
  16. Brady SM, et al.
    A stele-enriched gene regulatory network in the Arabidopsis root.
    Mol. Syst. Biol., 2011. 7: p. 459
    [PMID:21245844]
  17. Ma J, et al.
    The sucrose-regulated Arabidopsis transcription factor bZIP11 reprograms metabolism and regulates trehalose metabolism.
    New Phytol., 2011. 191(3): p. 733-45
    [PMID:21534971]
  18. Delatte TL, et al.
    Growth arrest by trehalose-6-phosphate: an astonishing case of primary metabolite control over growth by way of the SnRK1 signaling pathway.
    Plant Physiol., 2011. 157(1): p. 160-74
    [PMID:21753116]
  19. Adamiec M,Luciński R,Jackowski G
    The irradiance dependent transcriptional regulation of AtCLPB3 expression.
    Plant Sci., 2011. 181(4): p. 449-56
    [PMID:21889051]
  20. Bruex A, et al.
    A gene regulatory network for root epidermis cell differentiation in Arabidopsis.
    PLoS Genet., 2012. 8(1): p. e1002446
    [PMID:22253603]
  21. Thalor SK, et al.
    Deregulation of sucrose-controlled translation of a bZIP-type transcription factor results in sucrose accumulation in leaves.
    PLoS ONE, 2012. 7(3): p. e33111
    [PMID:22457737]
  22. Iglesias-Fern
    Arabidopsis thaliana bZIP44: a transcription factor affecting seed germination and expression of the mannanase-encoding gene AtMAN7.
    Plant J., 2013. 74(5): p. 767-80
    [PMID:23461773]
  23. Nunes C, et al.
    The trehalose 6-phosphate/SnRK1 signaling pathway primes growth recovery following relief of sink limitation.
    Plant Physiol., 2013. 162(3): p. 1720-32
    [PMID:23735508]
  24. Weiste C,Dr
    The Arabidopsis transcription factor bZIP11 activates auxin-mediated transcription by recruiting the histone acetylation machinery.
    Nat Commun, 2014. 5: p. 3883
    [PMID:24861440]
  25. Jin J, et al.
    An Arabidopsis Transcriptional Regulatory Map Reveals Distinct Functional and Evolutionary Features of Novel Transcription Factors.
    Mol. Biol. Evol., 2015. 32(7): p. 1767-73
    [PMID:25750178]
  26. Mair A, et al.
    SnRK1-triggered switch of bZIP63 dimerization mediates the low-energy response in plants.
    Elife, 2016.
    [PMID:26263501]
  27. Sagor GH, et al.
    A novel strategy to produce sweeter tomato fruits with high sugar contents by fruit-specific expression of a single bZIP transcription factor gene.
    Plant Biotechnol. J., 2016. 14(4): p. 1116-26
    [PMID:26402509]
  28. Walper E,Weiste C,Mueller MJ,Hamberg M,Dröge-Laser W
    Screen Identifying Arabidopsis Transcription Factors Involved in the Response to 9-Lipoxygenase-Derived Oxylipins.
    PLoS ONE, 2016. 11(4): p. e0153216
    [PMID:27073862]
  29. Wang XY, et al.
    Metabolomic analysis reveals the relationship between AZI1 and sugar signaling in systemic acquired resistance of Arabidopsis.
    Plant Physiol. Biochem., 2016. 107: p. 273-287
    [PMID:27337039]
  30. Weiste C, et al.
    The Arabidopsis bZIP11 transcription factor links low-energy signalling to auxin-mediated control of primary root growth.
    PLoS Genet., 2017. 13(2): p. e1006607
    [PMID:28158182]
  31. Yamashita Y, et al.
    Sucrose sensing through nascent peptide-meditated ribosome stalling at the stop codon of Arabidopsis bZIP11 uORF2.
    FEBS Lett., 2017. 591(9): p. 1266-1277
    [PMID:28369795]
  32. Ezer D, et al.
    The G-Box Transcriptional Regulatory Code in Arabidopsis.
    Plant Physiol., 2017. 175(2): p. 628-640
    [PMID:28864470]
  33. Lee DH,Park SJ,Ahn CS,Pai HS
    MRF Family Genes Are Involved in Translation Control, Especially under Energy-Deficient Conditions, and Their Expression and Functions Are Modulated by the TOR Signaling Pathway.
    Plant Cell, 2017. 29(11): p. 2895-2920
    [PMID:29084871]
  34. Pedrotti L, et al.
    Snf1-RELATED KINASE1-Controlled C/S1-bZIP Signaling Activates Alternative Mitochondrial Metabolic Pathways to Ensure Plant Survival in Extended Darkness.
    Plant Cell, 2018. 30(2): p. 495-509
    [PMID:29348240]
  35. van Drunen CM, et al.
    Analysis of the chromatin domain organisation around the plastocyanin gene reveals an MAR-specific sequence element in Arabidopsis thaliana.
    Nucleic Acids Res., 1997. 25(19): p. 3904-11
    [PMID:9380515]
  36. Rook F,Weisbeek P,Smeekens S
    The light-regulated Arabidopsis bZIP transcription factor gene ATB2 encodes a protein with an unusually long leucine zipper domain.
    Plant Mol. Biol., 1998. 37(1): p. 171-8
    [PMID:9620274]
  37. Rook F, et al.
    Sucrose-specific signalling represses translation of the Arabidopsis ATB2 bZIP transcription factor gene.
    Plant J., 1998. 15(2): p. 253-63
    [PMID:9721683]