PlantTFDB
PlantRegMap/PlantTFDB v5.0
Plant Transcription Factor Database
Transcription Factor Information
Basic Information | Signature Domain | Sequence | 
Basic Information? help Back to Top
TF ID AT4G25480.1
Common NameATCBF3, CBF3, CRAP2, DREB1A, ERF072, M7J2.150
Organism
Taxonomic ID
Taxonomic Lineage
cellular organisms; Eukaryota; Viridiplantae; Streptophyta; Streptophytina; Embryophyta; Tracheophyta; Euphyllophyta; Spermatophyta; Magnoliophyta; Mesangiospermae; eudicotyledons; Gunneridae; Pentapetalae; rosids; malvids; Brassicales; Brassicaceae; Camelineae; Arabidopsis
Family ERF
Protein Properties Length: 216aa    MW: 24236.1 Da    PI: 4.8673
Description dehydration response element B1A
Gene Model
Gene Model ID Type Source Coding Sequence
AT4G25480.1genomeTAIRView CDS
Signature Domain? help Back to Top
Signature Domain
No. Domain Score E-value Start End HMM Start HMM End
1AP260.15e-195099255
          AP2  2 gykGVrwdkkrgrWvAeIrdpsengkrkrfslgkfgtaeeAakaaiaarkkleg 55
                  y+GVr++  +g+Wv+e+r+p   +k++r++lg+f tae+Aa+a++ a+++l+g
  AT4G25480.1 50 IYRGVRRRN-SGKWVCEVREP---NKKTRIWLGTFQTAEMAARAHDVAALALRG 99
                 69****888.8******9998...347*************************98 PP

Protein Features ? help Back to Top
3D Structure
Database Entry ID E-value Start End InterPro ID Description
PfamPF008473.7E-144999IPR001471AP2/ERF domain
CDDcd000186.69E-3349109No hitNo description
SuperFamilySSF541715.23E-2250109IPR016177DNA-binding domain
SMARTSM003802.1E-3150113IPR001471AP2/ERF domain
PROSITE profilePS5103222.58950107IPR001471AP2/ERF domain
Gene3DG3DSA:3.30.730.108.9E-3350109IPR001471AP2/ERF domain
PRINTSPR003671.4E-95162IPR001471AP2/ERF domain
PRINTSPR003671.4E-97389IPR001471AP2/ERF domain
Gene Ontology ? help Back to Top
GO Term GO Category GO Description
GO:0006355Biological Processregulation of transcription, DNA-templated
GO:0009414Biological Processresponse to water deprivation
GO:0009631Biological Processcold acclimation
GO:0005634Cellular Componentnucleus
GO:0003677Molecular FunctionDNA binding
GO:0003700Molecular Functiontranscription factor activity, sequence-specific DNA binding
Plant Ontology ? help Back to Top
PO Term PO Category PO Description
PO:0000013anatomycauline leaf
PO:0000037anatomyshoot apex
PO:0000230anatomyinflorescence meristem
PO:0000293anatomyguard cell
PO:0008019anatomyleaf lamina base
PO:0009001anatomyfruit
PO:0009005anatomyroot
PO:0009009anatomyplant embryo
PO:0009010anatomyseed
PO:0009025anatomyvascular leaf
PO:0009029anatomystamen
PO:0009030anatomycarpel
PO:0009031anatomysepal
PO:0009032anatomypetal
PO:0009046anatomyflower
PO:0009047anatomystem
PO:0009052anatomyflower pedicel
PO:0009062anatomygynoecium
PO:0020030anatomycotyledon
PO:0020038anatomypetiole
PO:0020100anatomyhypocotyl
PO:0020137anatomyleaf apex
PO:0025022anatomycollective leaf structure
PO:0025281anatomypollen
PO:0001054developmental stagevascular leaf senescent stage
PO:0001078developmental stageplant embryo cotyledonary stage
PO:0001081developmental stagemature plant embryo stage
PO:0001185developmental stageplant embryo globular stage
PO:0004507developmental stageplant embryo bilateral stage
PO:0007064developmental stageLP.12 twelve leaves visible stage
PO:0007095developmental stageLP.08 eight leaves visible stage
PO:0007098developmental stageLP.02 two leaves visible stage
PO:0007103developmental stageLP.10 ten leaves visible stage
PO:0007115developmental stageLP.04 four leaves visible stage
PO:0007123developmental stageLP.06 six leaves visible stage
PO:0007611developmental stagepetal differentiation and expansion stage
PO:0007616developmental stageflowering stage
Sequence ? help Back to Top
Protein Sequence    Length: 216 aa     Download sequence    Send to blast
MNSFSAFSEM FGSDYESSVS SGGDYIPTLA SSCPKKPAGR KKFRETRHPI YRGVRRRNSG  60
KWVCEVREPN KKTRIWLGTF QTAEMAARAH DVAALALRGR SACLNFADSA WRLRIPESTC  120
AKDIQKAAAE AALAFQDEMC DATTDHGFDM EETLVEAIYT AEQSENAFYM HDEAMFEMPS  180
LLANMAEGML LPLPSVQWNH NHEVDGDDDD VSLWSY
3D Structure ? help Back to Top
Structure
PDB ID Evalue Query Start Query End Hit Start Hit End Description
5wx9_A6e-15481061271Ethylene-responsive transcription factor ERF096
Search in ModeBase
Expression -- UniGene ? help Back to Top
UniGene ID E-value Expressed in
At.2310.0floral meristem| flower
Expression -- Microarray ? help Back to Top
Source ID E-value
GEO37382230.0
Genevisible254066_at0.0
Expression AtlasAT4G25480-
AtGenExpressAT4G25480-
ATTED-IIAT4G25480-
Functional Description ? help Back to Top
Source Description
TAIRencodes a member of the DREB subfamily A-1 of ERF/AP2 transcription factor family (CBF3). The protein contains one AP2 domain. There are six members in this subfamily, including CBF1, CBF2, and CBF3. This gene is involved in response to low temperature and abscisic acid.
UniProtTranscriptional activator that binds specifically to the DNA sequence 5'-[AG]CCGAC-3'. Binding to the C-repeat/DRE element mediates cold-inducible transcription. CBF/DREB1 factors play a key role in freezing tolerance and cold acclimation. {ECO:0000269|PubMed:11798174, ECO:0000269|PubMed:16244146}.
Function -- GeneRIF ? help Back to Top
  1. The recombinant DREB1A protein bound to A/GCCGACNT more efficiently than to A/GCCGACNA/G/C.
    [PMID: 15165189]
  2. We explored the regulation of CBF1-3 by the circadian clock.
    [PMID: 15728337]
  3. Makes transgenic plants more tolerant to stress conditions.
    [PMID: 15834008]
  4. Regulon genes repressed by siz1 did not affect expression of ICE1, which encodes a MYC transcription factor that controls CBF3/DREB1A.
    [PMID: 17416732]
  5. The freezing tolerance of 38 independent transgenic potato lines was tested in vitro using plantlets transgenic for the DREB1A gene under control of the rd29A promoter.
    [PMID: 17453213]
  6. CBF1 and CBF3, but not CBF2 have a concerted additive effect to induce the whole CBF regulon and the complete development of cold acclimation
    [PMID: 18093929]
  7. Important evolutionary changes in CBF1, -2, and -3 may have primarily occurred at the level of gene regulation as well as in protein function.
    [PMID: 18990244]
  8. Data show that increase in expression expression of the cold response genes, COR15A, RD29A, and CBF3, resulting in enhanced tolerance to freezing temperatures.
    [PMID: 19363684]
  9. Overexpression of DREB1A improves stress tolerance to both freezing and dehydration while overexpression of an active form of DREB2A results in significant stress tolerance to dehydration but only slight tolerance to freezing.
    [PMID: 19502356]
  10. SOC1 Directly Represses the Expression of CBF3 Genes.
    [PMID: 19825833]
  11. Overexpression of AtDREB1A in soybean appears to enhance drought tolerance.
    [PMID: 22033903]
  12. Stress-inducible over-expression of Arabidopsis CBF3 gene may have the potential to enhance abiotic stress tolerance in oat.
    [PMID: 22325896]
  13. The results suggested that AtDREB1A could cause dwarfism mediated by GA biosynthesis pathway in soybean.
    [PMID: 23029105]
  14. Studies indicate that DREB1A (CBF3), DREB1B (CBF1) and DREB1C (CBF2) play an important role in increasing stress tolerance.
    [PMID: 23271026]
  15. A major locus harboring three cold-responsive transcription factor genes CBF1, was identified.
    [PMID: 23721132]
  16. Jasmonate functions as a critical upstream signal of the ICE-CBF/DREB1 pathway to positively regulate Arabidopsis freezing tolerance.
    [PMID: 23933884]
  17. The physiological studies revealed that the expression of AtDREB1A was associated with an increased accumulation of the osmotic substance proline, maintenance of chlorophyll, increased relative water content and decreased ion leakage under drought stress.
    [PMID: 24398893]
  18. Potato plants ectopically expressing AtCBF3 exhibited enhanced tolerance to high temperature, which is associated with improved photosynthesis and antioxidant defence via induction of the expression of many stress-inducible genes.
    [PMID: 24811248]
  19. The results showed that the expression of the exogenous AtCBF3 and AtCOR15A could promote the cold adaptation process to protect eggplant plants from chilling stress.
    [PMID: 25103420]
  20. These results indicate the implicit influence of rd29A::DREB1A on mechanisms underlying water uptake, stomatal response, transpiration efficiency and rooting architecture in water-stressed plants.
    [PMID: 25326370]
  21. unified ICE-CBF pathway provides transcriptional feedback control of freezing tolerance during cold acclimation
    [PMID: 26311645]
  22. Data indicate that the C-repeat binding factor (CBF) locus includes three genes - CBF1, CBF2 and CBF3 (AT4G25480) - that are induced by low temperature and encode transcription factors.
    [PMID: 26369909]
  23. RDM4 is important for Pol II occupancy at the promoters of CBF2 and CBF3.
    [PMID: 26522658]
  24. the three CBF genes together are required for cold acclimation and freezing tolerance.
    [PMID: 27252305]
  25. This study reveals the essential functions of C-repeat binding factors (CBF) in chilling stress response and cold acclimation, as well as defines a set of genes as CBF regulon.
    [PMID: 27353960]
  26. The Arabidopsis thaliana gene DREB1A/CBF3, encoding a stress-inducible transcription factor. Ectopic expression of AtDREB1A in Salvia miltiorrhiza resulted in increased drought tolerance and increased photosynthetic rate when subjected to drought stress.
    [PMID: 27485523]
  27. CBFs play an important role in the trade-off between cold tolerance and plant growth through the precise regulation of COR genes in the complicated transcriptional network.
    [PMID: 28009483]
Binding Motif ? help Back to Top
Motif ID Method Source Motif file
MP00453DAP27203113Download
Motif logo
Cis-element ? help Back to Top
SourceLink
PlantRegMapAT4G25480.1
Regulation -- Description ? help Back to Top
Source Description
UniProtINDUCTION: By cold stress. Positively regulated by the transcription factor ICE1. Subject to degradation by the 26S proteasome pathway in freezing conditions (PubMed:28344081). {ECO:0000269|PubMed:28344081, ECO:0000269|PubMed:9707537, ECO:0000269|PubMed:9735350, ECO:0000269|PubMed:9952441}.
Regulation -- PlantRegMap ? help Back to Top
Source Upstream Regulator Target Gene
PlantRegMapRetrieveRetrieve
Regulation -- ATRM (Manually Curated Upstream Regulators) ? help Back to Top
Source Upstream Regulator (A: Activate/R: Repress)
ATRM AT3G23250 (R), AT3G26744 (A), AT4G25470 (R), AT5G59820 (R)
Regulation -- ATRM (Manually Curated Target Genes) ? help Back to Top
Source Target Gene (A: Activate/R: Repress)
ATRM AT1G09350(A), AT1G20440(A), AT1G20450(A), AT1G20620(A), AT1G43160(A), AT1G46768(A), AT2G15050(A), AT2G42530(A), AT2G42540(A), AT3G11410(A), AT3G12580(A), AT3G50970(A), AT5G15960(A), AT5G15970(A), AT5G17490(A), AT5G25610(A), AT5G52310(A)
Regulation -- Hormone ? help Back to Top
Source Hormone
AHDsalicylic acid
Interaction ? help Back to Top
Source Intact With
BioGRIDAT1G45249
Phenotype -- Mutation ? help Back to Top
Source ID
T-DNA ExpressAT4G25480
Annotation -- Nucleotide ? help Back to Top
Source Hit ID E-value Description
GenBankAF0629240.0AF062924.1 Arabidopsis thaliana transcriptional activator CBF1 homolog (CBF2) gene, complete cds.
GenBankAF0746020.0AF074602.1 Arabidopsis thaliana CRT/DRE binding factor 3 (CBF3) mRNA, complete cds.
GenBankAF0761550.0AF076155.1 Arabidopsis thaliana CRT/CRE binding factor 1 (CBF1), CRT/DRE binding factor 3 (CBF3), and CRT/DRE binding factor 2 (CBF2) genes, complete cds.
GenBankEF5231050.0EF523105.1 Arabidopsis thaliana ecotype Ag-0 C-repeat binding factor 3 (CBF3) mRNA, complete cds.
GenBankEF5231070.0EF523107.1 Arabidopsis thaliana ecotype Br-0 C-repeat binding factor 3 (CBF3) mRNA, complete cds.
GenBankEF5231140.0EF523114.1 Arabidopsis thaliana ecotype Lip-0 C-repeat binding factor 3 (CBF3) mRNA, complete cds.
GenBankEF5231150.0EF523115.1 Arabidopsis thaliana ecotype Pog-0 C-repeat binding factor 3 (CBF3) mRNA, complete cds.
GenBankEF5231180.0EF523118.1 Arabidopsis thaliana ecotype Litva C-repeat binding factor 3 (CBF3) mRNA, complete cds.
GenBankEF5231220.0EF523122.1 Arabidopsis thaliana ecotype Bur-0 C-repeat binding factor 3 (CBF3) mRNA, complete cds.
GenBankEF5231240.0EF523124.1 Arabidopsis thaliana ecotype Rsch-0 C-repeat binding factor 3 (CBF3) mRNA, complete cds.
GenBankEF5231250.0EF523125.1 Arabidopsis thaliana ecotype Sapporo-0 C-repeat binding factor 3 (CBF3) mRNA, complete cds.
GenBankFJ1692910.0FJ169291.1 Arabidopsis thaliana ecotype Ta-0 DRE/CRT-binding factor 3 (CBF3/DREB1a) gene, complete cds.
GenBankFJ1692920.0FJ169292.1 Arabidopsis thaliana ecotype Bor-1 DRE/CRT-binding factor 3 (CBF3/DREB1a) gene, complete cds.
GenBankFJ1692940.0FJ169294.1 Arabidopsis thaliana ecotype Mt-0 DRE/CRT-binding factor 3 (CBF3/DREB1a) gene, complete cds.
GenBankFJ1692950.0FJ169295.1 Arabidopsis thaliana ecotype Gie-0 DRE/CRT-binding factor 3 (CBF3/DREB1a) gene, complete cds.
GenBankFJ1692960.0FJ169296.1 Arabidopsis thaliana ecotype Po-0 DRE/CRT-binding factor 3 (CBF3/DREB1a) gene, complete cds.
GenBankFJ1692970.0FJ169297.1 Arabidopsis thaliana ecotype Spr1-2 DRE/CRT-binding factor 3 (CBF3/DREB1a) gene, complete cds.
GenBankFJ1692980.0FJ169298.1 Arabidopsis thaliana ecotype Lip-0 DRE/CRT-binding factor 3 (CBF3/DREB1a) gene, complete cds.
GenBankFJ1693000.0FJ169300.1 Arabidopsis thaliana ecotype Di-G DRE/CRT-binding factor 3 (CBF3/DREB1a) gene, complete cds.
GenBankFJ1693020.0FJ169302.1 Arabidopsis thaliana ecotype Nd-1 DRE/CRT-binding factor 3 (CBF3/DREB1a) gene, complete cds.
Annotation -- Protein ? help Back to Top
Source Hit ID E-value Description
RefseqNP_567720.11e-163dehydration response element B1A
SwissprotQ9M0L01e-164DRE1A_ARATH; Dehydration-responsive element-binding protein 1A
TrEMBLA0A384KFV81e-162A0A384KFV8_ARATH; DREB1A
TrEMBLB2BIZ31e-162B2BIZ3_ARATH; C-repeat binding factor 3
STRINGAT4G25480.11e-162(Arabidopsis thaliana)
Orthologous Group ? help Back to Top
LineageOrthologous Group IDTaxa NumberGene Number
MalvidsOGEM35528187
Representative plantOGRP6161718
Publications ? help Back to Top
  1. Kasuga M,Liu Q,Miura S,Yamaguchi-Shinozaki K,Shinozaki K
    Improving plant drought, salt, and freezing tolerance by gene transfer of a single stress-inducible transcription factor.
    Nat. Biotechnol., 1999. 17(3): p. 287-91
    [PMID:10096298]
  2. Lee H,Xiong L,Ishitani M,Stevenson B,Zhu JK
    Cold-regulated gene expression and freezing tolerance in an Arabidopsis thaliana mutant.
    Plant J., 1999. 17(3): p. 301-8
    [PMID:10097388]
  3. Knight H,Veale EL,Warren GJ,Knight MR
    The sfr6 mutation in Arabidopsis suppresses low-temperature induction of genes dependent on the CRT/DRE sequence motif.
    Plant Cell, 1999. 11(5): p. 875-86
    [PMID:10330472]
  4. Gilmour SJ,Sebolt AM,Salazar MP,Everard JD,Thomashow MF
    Overexpression of the Arabidopsis CBF3 transcriptional activator mimics multiple biochemical changes associated with cold acclimation.
    Plant Physiol., 2000. 124(4): p. 1854-65
    [PMID:11115899]
  5. Riechmann JL, et al.
    Arabidopsis transcription factors: genome-wide comparative analysis among eukaryotes.
    Science, 2000. 290(5499): p. 2105-10
    [PMID:11118137]
  6. Seki M, et al.
    Monitoring the expression pattern of 1300 Arabidopsis genes under drought and cold stresses by using a full-length cDNA microarray.
    Plant Cell, 2001. 13(1): p. 61-72
    [PMID:11158529]
  7. Park JM, et al.
    Overexpression of the tobacco Tsi1 gene encoding an EREBP/AP2-type transcription factor enhances resistance against pathogen attack and osmotic stress in tobacco.
    Plant Cell, 2001. 13(5): p. 1035-46
    [PMID:11340180]
  8. Yamaguchi-Shinozaki K,Shinozaki K
    Improving plant drought, salt and freezing tolerance by gene transfer of a single stress-inducible transcription factor.
    Novartis Found. Symp., 2001. 236: p. 176-86; discussion 186-9
    [PMID:11387979]
  9. Sakuma Y, et al.
    DNA-binding specificity of the ERF/AP2 domain of Arabidopsis DREBs, transcription factors involved in dehydration- and cold-inducible gene expression.
    Biochem. Biophys. Res. Commun., 2002. 290(3): p. 998-1009
    [PMID:11798174]
  10. Taji T, et al.
    Important roles of drought- and cold-inducible genes for galactinol synthase in stress tolerance in Arabidopsis thaliana.
    Plant J., 2002. 29(4): p. 417-26
    [PMID:11846875]
  11. Hao D,Yamasaki K,Sarai A,Ohme-Takagi M
    Determinants in the sequence specific binding of two plant transcription factors, CBF1 and NtERF2, to the DRE and GCC motifs.
    Biochemistry, 2002. 41(13): p. 4202-8
    [PMID:11914065]
  12. van Buuren ML,Salvi S,Morgante M,Serhani B,Tuberosa R
    Comparative genomic mapping between a 754 kb region flanking DREB1A in Arabidopsis thaliana and maize.
    Plant Mol. Biol., 2002 Mar-Apr. 48(5-6): p. 741-50
    [PMID:11999847]
  13. Guo Y,Xiong L,Ishitani M,Zhu JK
    An Arabidopsis mutation in translation elongation factor 2 causes superinduction of CBF/DREB1 transcription factor genes but blocks the induction of their downstream targets under low temperatures.
    Proc. Natl. Acad. Sci. U.S.A., 2002. 99(11): p. 7786-91
    [PMID:12032361]
  14. Cheong YH, et al.
    Transcriptional profiling reveals novel interactions between wounding, pathogen, abiotic stress, and hormonal responses in Arabidopsis.
    Plant Physiol., 2002. 129(2): p. 661-77
    [PMID:12068110]
  15. Hsieh TH, et al.
    Heterology expression of the Arabidopsis C-repeat/dehydration response element binding factor 1 gene confers elevated tolerance to chilling and oxidative stresses in transgenic tomato.
    Plant Physiol., 2002. 129(3): p. 1086-94
    [PMID:12114563]
  16. Seki M, et al.
    Monitoring the expression profiles of 7000 Arabidopsis genes under drought, cold and high-salinity stresses using a full-length cDNA microarray.
    Plant J., 2002. 31(3): p. 279-92
    [PMID:12164808]
  17. Gong Z, et al.
    RNA helicase-like protein as an early regulator of transcription factors for plant chilling and freezing tolerance.
    Proc. Natl. Acad. Sci. U.S.A., 2002. 99(17): p. 11507-12
    [PMID:12165572]
  18. Fowler S,Thomashow MF
    Arabidopsis transcriptome profiling indicates that multiple regulatory pathways are activated during cold acclimation in addition to the CBF cold response pathway.
    Plant Cell, 2002. 14(8): p. 1675-90
    [PMID:12172015]
  19. Choi DW,Rodriguez EM,Close TJ
    Barley Cbf3 gene identification, expression pattern, and map location.
    Plant Physiol., 2002. 129(4): p. 1781-7
    [PMID:12177491]
  20. Haake V, et al.
    Transcription factor CBF4 is a regulator of drought adaptation in Arabidopsis.
    Plant Physiol., 2002. 130(2): p. 639-48
    [PMID:12376631]
  21. Dubouzet JG, et al.
    OsDREB genes in rice, Oryza sativa L., encode transcription activators that function in drought-, high-salt- and cold-responsive gene expression.
    Plant J., 2003. 33(4): p. 751-63
    [PMID:12609047]
  22. Shen YG, et al.
    An EREBP/AP2-type protein in Triticum aestivum was a DRE-binding transcription factor induced by cold, dehydration and ABA stress.
    Theor. Appl. Genet., 2003. 106(5): p. 923-30
    [PMID:12647068]
  23. Chinnusamy V, et al.
    ICE1: a regulator of cold-induced transcriptome and freezing tolerance in Arabidopsis.
    Genes Dev., 2003. 17(8): p. 1043-54
    [PMID:12672693]
  24. V
    The cold-regulated transcriptional activator Cbf3 is linked to the frost-tolerance locus Fr-A2 on wheat chromosome 5A.
    Mol. Genet. Genomics, 2003. 269(1): p. 60-7
    [PMID:12715154]
  25. Boyce JM, et al.
    The sfr6 mutant of Arabidopsis is defective in transcriptional activation via CBF/DREB1 and DREB2 and shows sensitivity to osmotic stress.
    Plant J., 2003. 34(4): p. 395-406
    [PMID:12753580]
  26. Takagi T, et al.
    The leaf-order-dependent enhancement of freezing tolerance in cold-acclimated Arabidopsis rosettes is not correlated with the transcript levels of the cold-inducible transcription factors of CBF/DREB1.
    Plant Cell Physiol., 2003. 44(9): p. 922-31
    [PMID:14519774]
  27. Catala R, et al.
    Mutations in the Ca2+/H+ transporter CAX1 increase CBF/DREB1 expression and the cold-acclimation response in Arabidopsis.
    Plant Cell, 2003. 15(12): p. 2940-51
    [PMID:14630965]
  28. Seki M, et al.
    RIKEN Arabidopsis full-length (RAFL) cDNA and its applications for expression profiling under abiotic stress conditions.
    J. Exp. Bot., 2004. 55(395): p. 213-23
    [PMID:14673034]
  29. Chinnusamy V,Schumaker K,Zhu JK
    Molecular genetic perspectives on cross-talk and specificity in abiotic stress signalling in plants.
    J. Exp. Bot., 2004. 55(395): p. 225-36
    [PMID:14673035]
  30. Magome H,Yamaguchi S,Hanada A,Kamiya Y,Oda K
    dwarf and delayed-flowering 1, a novel Arabidopsis mutant deficient in gibberellin biosynthesis because of overexpression of a putative AP2 transcription factor.
    Plant J., 2004. 37(5): p. 720-9
    [PMID:14871311]
  31. Novillo F,Alonso JM,Ecker JR,Salinas J
    CBF2/DREB1C is a negative regulator of CBF1/DREB1B and CBF3/DREB1A expression and plays a central role in stress tolerance in Arabidopsis.
    Proc. Natl. Acad. Sci. U.S.A., 2004. 101(11): p. 3985-90
    [PMID:15004278]
  32. Kasuga M,Miura S,Shinozaki K,Yamaguchi-Shinozaki K
    A combination of the Arabidopsis DREB1A gene and stress-inducible rd29A promoter improved drought- and low-temperature stress tolerance in tobacco by gene transfer.
    Plant Cell Physiol., 2004. 45(3): p. 346-50
    [PMID:15047884]
  33. Maruyama K, et al.
    Identification of cold-inducible downstream genes of the Arabidopsis DREB1A/CBF3 transcriptional factor using two microarray systems.
    Plant J., 2004. 38(6): p. 982-93
    [PMID:15165189]
  34. Zhang JZ,Creelman RA,Zhu JK
    From laboratory to field. Using information from Arabidopsis to engineer salt, cold, and drought tolerance in crops.
    Plant Physiol., 2004. 135(2): p. 615-21
    [PMID:15173567]
  35. Pellegrineschi A, et al.
    Stress-induced expression in wheat of the Arabidopsis thaliana DREB1A gene delays water stress symptoms under greenhouse conditions.
    Genome, 2004. 47(3): p. 493-500
    [PMID:15190366]
  36. Knight H,Zarka DG,Okamoto H,Thomashow MF,Knight MR
    Abscisic acid induces CBF gene transcription and subsequent induction of cold-regulated genes via the CRT promoter element.
    Plant Physiol., 2004. 135(3): p. 1710-7
    [PMID:15247382]
  37. Qin F, et al.
    Cloning and functional analysis of a novel DREB1/CBF transcription factor involved in cold-responsive gene expression in Zea mays L.
    Plant Cell Physiol., 2004. 45(8): p. 1042-52
    [PMID:15356330]
  38. Gilmour SJ,Fowler SG,Thomashow MF
    Arabidopsis transcriptional activators CBF1, CBF2, and CBF3 have matching functional activities.
    Plant Mol. Biol., 2004. 54(5): p. 767-81
    [PMID:15356394]
  39. Vogel JT,Zarka DG,Van Buskirk HA,Fowler SG,Thomashow MF
    Roles of the CBF2 and ZAT12 transcription factors in configuring the low temperature transcriptome of Arabidopsis.
    Plant J., 2005. 41(2): p. 195-211
    [PMID:15634197]
  40. Fowler SG,Cook D,Thomashow MF
    Low temperature induction of Arabidopsis CBF1, 2, and 3 is gated by the circadian clock.
    Plant Physiol., 2005. 137(3): p. 961-8
    [PMID:15728337]
  41. Oh SJ, et al.
    Arabidopsis CBF3/DREB1A and ABF3 in transgenic rice increased tolerance to abiotic stress without stunting growth.
    Plant Physiol., 2005. 138(1): p. 341-51
    [PMID:15834008]
  42. Lee BH,Henderson DA,Zhu JK
    The Arabidopsis cold-responsive transcriptome and its regulation by ICE1.
    Plant Cell, 2005. 17(11): p. 3155-75
    [PMID:16214899]
  43. Cao S,Ye M,Jiang S
    Involvement of GIGANTEA gene in the regulation of the cold stress response in Arabidopsis.
    Plant Cell Rep., 2005. 24(11): p. 683-90
    [PMID:16231185]
  44. Alonso-Blanco C, et al.
    Genetic and molecular analyses of natural variation indicate CBF2 as a candidate gene for underlying a freezing tolerance quantitative trait locus in Arabidopsis.
    Plant Physiol., 2005. 139(3): p. 1304-12
    [PMID:16244146]
  45. Vergnolle C, et al.
    The cold-induced early activation of phospholipase C and D pathways determines the response of two distinct clusters of genes in Arabidopsis cell suspensions.
    Plant Physiol., 2005. 139(3): p. 1217-33
    [PMID:16258011]
  46. Ito Y, et al.
    Functional analysis of rice DREB1/CBF-type transcription factors involved in cold-responsive gene expression in transgenic rice.
    Plant Cell Physiol., 2006. 47(1): p. 141-53
    [PMID:16284406]
  47. Nakano T,Suzuki K,Fujimura T,Shinshi H
    Genome-wide analysis of the ERF gene family in Arabidopsis and rice.
    Plant Physiol., 2006. 140(2): p. 411-32
    [PMID:16407444]
  48. Zhao TJ, et al.
    Regulating the drought-responsive element (DRE)-mediated signaling pathway by synergic functions of trans-active and trans-inactive DRE binding factors in Brassica napus.
    J. Biol. Chem., 2006. 281(16): p. 10752-9
    [PMID:16497677]
  49. Xiong Y,Fei SZ
    Functional and phylogenetic analysis of a DREB/CBF-like gene in perennial ryegrass (Lolium perenne L.).
    Planta, 2006. 224(4): p. 878-88
    [PMID:16614820]
  50. Sakuma Y, et al.
    Functional analysis of an Arabidopsis transcription factor, DREB2A, involved in drought-responsive gene expression.
    Plant Cell, 2006. 18(5): p. 1292-309
    [PMID:16617101]
  51. Dong CH,Agarwal M,Zhang Y,Xie Q,Zhu JK
    The negative regulator of plant cold responses, HOS1, is a RING E3 ligase that mediates the ubiquitination and degradation of ICE1.
    Proc. Natl. Acad. Sci. U.S.A., 2006. 103(21): p. 8281-6
    [PMID:16702557]
  52. Hua ZM,Yang X,Fromm ME
    Activation of the NaCl- and drought-induced RD29A and RD29B promoters by constitutively active Arabidopsis MAPKK or MAPK proteins.
    Plant Cell Environ., 2006. 29(9): p. 1761-70
    [PMID:16913865]
  53. Agarwal M, et al.
    A R2R3 type MYB transcription factor is involved in the cold regulation of CBF genes and in acquired freezing tolerance.
    J. Biol. Chem., 2006. 281(49): p. 37636-45
    [PMID:17015446]
  54. Hong B, et al.
    Heterologous expression of the AtDREB1A gene in chrysanthemum increases drought and salt stress tolerance.
    Sci. China, C, Life Sci., 2006. 49(5): p. 436-45
    [PMID:17172050]
  55. Xin Z,Mandaokar A,Chen J,Last RL,Browse J
    Arabidopsis ESK1 encodes a novel regulator of freezing tolerance.
    Plant J., 2007. 49(5): p. 786-99
    [PMID:17316173]
  56. Qin F, et al.
    Regulation and functional analysis of ZmDREB2A in response to drought and heat stresses in Zea mays L.
    Plant J., 2007. 50(1): p. 54-69
    [PMID:17346263]
  57. Miura K, et al.
    SIZ1-mediated sumoylation of ICE1 controls CBF3/DREB1A expression and freezing tolerance in Arabidopsis.
    Plant Cell, 2007. 19(4): p. 1403-14
    [PMID:17416732]
  58. Behnam B, et al.
    Arabidopsis rd29A::DREB1A enhances freezing tolerance in transgenic potato.
    Plant Cell Rep., 2007. 26(8): p. 1275-82
    [PMID:17453213]
  59. Zhao J,Ren W,Zhi D,Wang L,Xia G
    Arabidopsis DREB1A/CBF3 bestowed transgenic tall fescue increased tolerance to drought stress.
    Plant Cell Rep., 2007. 26(9): p. 1521-8
    [PMID:17483953]
  60. Kant P,Kant S,Gordon M,Shaked R,Barak S
    STRESS RESPONSE SUPPRESSOR1 and STRESS RESPONSE SUPPRESSOR2, two DEAD-box RNA helicases that attenuate Arabidopsis responses to multiple abiotic stresses.
    Plant Physiol., 2007. 145(3): p. 814-30
    [PMID:17556511]
  61. Pino MT, et al.
    Use of a stress inducible promoter to drive ectopic AtCBF expression improves potato freezing tolerance while minimizing negative effects on tuber yield.
    Plant Biotechnol. J., 2007. 5(5): p. 591-604
    [PMID:17559519]
  62. Bhatnagar-Mathur P, et al.
    Stress-inducible expression of At DREB1A in transgenic peanut (Arachis hypogaea L.) increases transpiration efficiency under water-limiting conditions.
    Plant Cell Rep., 2007. 26(12): p. 2071-82
    [PMID:17653723]
  63. Li L,Ilarslan H,James MG,Myers AM,Wurtele ES
    Genome wide co-expression among the starch debranching enzyme genes AtISA1, AtISA2, and AtISA3 in Arabidopsis thaliana.
    J. Exp. Bot., 2007. 58(12): p. 3323-42
    [PMID:17890231]
  64. Franklin KA,Whitelam GC
    Light-quality regulation of freezing tolerance in Arabidopsis thaliana.
    Nat. Genet., 2007. 39(11): p. 1410-3
    [PMID:17965713]
  65. Chung S,Parish RW
    Combinatorial interactions of multiple cis-elements regulating the induction of the Arabidopsis XERO2 dehydrin gene by abscisic acid and cold.
    Plant J., 2008. 54(1): p. 15-29
    [PMID:18088305]
  66. Novillo F,Medina J,Salinas J
    Arabidopsis CBF1 and CBF3 have a different function than CBF2 in cold acclimation and define different gene classes in the CBF regulon.
    Proc. Natl. Acad. Sci. U.S.A., 2007. 104(52): p. 21002-7
    [PMID:18093929]
  67. Pennycooke JC, et al.
    The low temperature-responsive, Solanum CBF1 genes maintain high identity in their upstream regions in a genomic environment undergoing gene duplications, deletions, and rearrangements.
    Plant Mol. Biol., 2008. 67(5): p. 483-97
    [PMID:18415686]
  68. Kielbowicz-Matuk A,Rey P,Rorat T
    The organ-dependent abundance of a Solanum lipid transfer protein is up-regulated upon osmotic constraints and associated with cold acclimation ability.
    J. Exp. Bot., 2008. 59(8): p. 2191-203
    [PMID:18441337]
  69. Zhang X,Liu S,Takano T
    Two cysteine proteinase inhibitors from Arabidopsis thaliana, AtCYSa and AtCYSb, increasing the salt, drought, oxidation and cold tolerance.
    Plant Mol. Biol., 2008. 68(1-2): p. 131-43
    [PMID:18523728]
  70. Magome H,Yamaguchi S,Hanada A,Kamiya Y,Oda K
    The DDF1 transcriptional activator upregulates expression of a gibberellin-deactivating gene, GA2ox7, under high-salinity stress in Arabidopsis.
    Plant J., 2008. 56(4): p. 613-26
    [PMID:18643985]
  71. Ascencio-Ib
    Global analysis of Arabidopsis gene expression uncovers a complex array of changes impacting pathogen response and cell cycle during geminivirus infection.
    Plant Physiol., 2008. 148(1): p. 436-54
    [PMID:18650403]
  72. Wang L, et al.
    Isolation and characterization of a C-repeat binding transcription factor from maize.
    J Integr Plant Biol, 2008. 50(8): p. 965-74
    [PMID:18713346]
  73. Lin YH, et al.
    Molecular population genetics and gene expression analysis of duplicated CBF genes of Arabidopsis thaliana.
    BMC Plant Biol., 2008. 8: p. 111
    [PMID:18990244]
  74. Hong B, et al.
    Over-expression of AtDREB1A in chrysanthemum enhances tolerance to heat stress.
    Plant Mol. Biol., 2009. 70(3): p. 231-40
    [PMID:19234675]
  75. Eckardt NA
    CAMTA proteins: a direct link between calcium signals and cold acclimation?
    Plant Cell, 2009. 21(3): p. 697
    [PMID:19270185]
  76. Doherty CJ,Van Buskirk HA,Myers SJ,Thomashow MF
    Roles for Arabidopsis CAMTA transcription factors in cold-regulated gene expression and freezing tolerance.
    Plant Cell, 2009. 21(3): p. 972-84
    [PMID:19270186]
  77. Rayirath P, et al.
    Lipophilic components of the brown seaweed, Ascophyllum nodosum, enhance freezing tolerance in Arabidopsis thaliana.
    Planta, 2009. 230(1): p. 135-47
    [PMID:19363684]
  78. Navarro M, et al.
    Complementary regulation of four Eucalyptus CBF genes under various cold conditions.
    J. Exp. Bot., 2009. 60(9): p. 2713-24
    [PMID:19457981]
  79. Maruyama K, et al.
    Metabolic pathways involved in cold acclimation identified by integrated analysis of metabolites and transcripts regulated by DREB1A and DREB2A.
    Plant Physiol., 2009. 150(4): p. 1972-80
    [PMID:19502356]
  80. Miura K,Hasegawa PM
    Regulation of cold signaling by sumoylation of ICE1.
    Plant Signal Behav, 2008. 3(1): p. 52-3
    [PMID:19704769]
  81. Gong W, et al.
    The development of protein microarrays and their applications in DNA-protein and protein-protein interaction analyses of Arabidopsis transcription factors.
    Mol Plant, 2008. 1(1): p. 27-41
    [PMID:19802365]
  82. Seo E, et al.
    Crosstalk between cold response and flowering in Arabidopsis is mediated through the flowering-time gene SOC1 and its upstream negative regulator FLC.
    Plant Cell, 2009. 21(10): p. 3185-97
    [PMID:19825833]
  83. Miura K,Ohta M
    SIZ1, a small ubiquitin-related modifier ligase, controls cold signaling through regulation of salicylic acid accumulation.
    J. Plant Physiol., 2010. 167(7): p. 555-60
    [PMID:19959255]
  84. Diallo A,Kane N,Agharbaoui Z,Badawi M,Sarhan F
    Heterologous expression of wheat VERNALIZATION 2 (TaVRN2) gene in Arabidopsis delays flowering and enhances freezing tolerance.
    PLoS ONE, 2010. 5(1): p. e8690
    [PMID:20084169]
  85. Abdeen A,Schnell J,Miki B
    Transcriptome analysis reveals absence of unintended effects in drought-tolerant transgenic plants overexpressing the transcription factor ABF3.
    BMC Genomics, 2010. 11: p. 69
    [PMID:20105335]
  86. Dong CJ,Liu JY
    The Arabidopsis EAR-motif-containing protein RAP2.1 functions as an active transcriptional repressor to keep stress responses under tight control.
    BMC Plant Biol., 2010. 10: p. 47
    [PMID:20230648]
  87. Lee SJ, et al.
    DREB2C interacts with ABF2, a bZIP protein regulating abscisic acid-responsive gene expression, and its overexpression affects abscisic acid sensitivity.
    Plant Physiol., 2010. 153(2): p. 716-27
    [PMID:20395451]
  88. Chen CC,Liang CS,Kao AL,Yang CC
    HHP1, a novel signalling component in the cross-talk between the cold and osmotic signalling pathways in Arabidopsis.
    J. Exp. Bot., 2010. 61(12): p. 3305-20
    [PMID:20566565]
  89. Li C, et al.
    TaCHP: a wheat zinc finger protein gene down-regulated by abscisic acid and salinity stress plays a positive role in stress tolerance.
    Plant Physiol., 2010. 154(1): p. 211-21
    [PMID:20639406]
  90. Nakamura R, et al.
    Immunoproteomic and two-dimensional difference gel electrophoresis analysis of Arabidopsis dehydration response element-binding protein 1A (DREB1A)-transgenic potato.
    Biol. Pharm. Bull., 2010. 33(8): p. 1418-25
    [PMID:20686241]
  91. Cantrel C, et al.
    Nitric oxide participates in cold-responsive phosphosphingolipid formation and gene expression in Arabidopsis thaliana.
    New Phytol., 2011. 189(2): p. 415-27
    [PMID:21039566]
  92. Yamamoto YY, et al.
    Prediction of transcriptional regulatory elements for plant hormone responses based on microarray data.
    BMC Plant Biol., 2011. 11: p. 39
    [PMID:21349196]
  93. Feng Y, et al.
    A three-component gene expression system and its application for inducible flavonoid overproduction in transgenic Arabidopsis thaliana.
    PLoS ONE, 2011. 6(3): p. e17603
    [PMID:21408135]
  94. Medina J,Catal
    The CBFs: three arabidopsis transcription factors to cold acclimate.
    Plant Sci., 2011. 180(1): p. 3-11
    [PMID:21421341]
  95. Gery C, et al.
    Natural variation in the freezing tolerance of Arabidopsis thaliana: effects of RNAi-induced CBF depletion and QTL localisation vary among accessions.
    Plant Sci., 2011. 180(1): p. 12-23
    [PMID:21421342]
  96. Miura K,Ohta M,Nakazawa M,Ono M,Hasegawa PM
    ICE1 Ser403 is necessary for protein stabilization and regulation of cold signaling and tolerance.
    Plant J., 2011. 67(2): p. 269-79
    [PMID:21447070]
  97. Dong MA,Farr
    Circadian clock-associated 1 and late elongated hypocotyl regulate expression of the C-repeat binding factor (CBF) pathway in Arabidopsis.
    Proc. Natl. Acad. Sci. U.S.A., 2011. 108(17): p. 7241-6
    [PMID:21471455]
  98. Siddiqua M,Nassuth A
    Vitis CBF1 and Vitis CBF4 differ in their effect on Arabidopsis abiotic stress tolerance, development and gene expression.
    Plant Cell Environ., 2011. 34(8): p. 1345-59
    [PMID:21486303]
  99. Rushton DL, et al.
    WRKY transcription factors: key components in abscisic acid signalling.
    Plant Biotechnol. J., 2012. 10(1): p. 2-11
    [PMID:21696534]
  100. Hao YJ, et al.
    Soybean NAC transcription factors promote abiotic stress tolerance and lateral root formation in transgenic plants.
    Plant J., 2011. 68(2): p. 302-13
    [PMID:21707801]
  101. Novillo F,Medina J,Rodr
    Genetic analysis reveals a complex regulatory network modulating CBF gene expression and Arabidopsis response to abiotic stress.
    J. Exp. Bot., 2012. 63(1): p. 293-304
    [PMID:21940717]
  102. Tsou PL,Lee SY,Allen NS,Winter-Sederoff H,Robertson D
    An ER-targeted calcium-binding peptide confers salt and drought tolerance mediated by CIPK6 in Arabidopsis.
    Planta, 2012. 235(3): p. 539-52
    [PMID:21971994]
  103. Polizel AM, et al.
    Molecular, anatomical and physiological properties of a genetically modified soybean line transformed with rd29A:AtDREB1A for the improvement of drought tolerance.
    Genet. Mol. Res., 2011. 10(4): p. 3641-56
    [PMID:22033903]
  104. Chan Z,Bigelow PJ,Loescher W,Grumet R
    Comparison of salt stress resistance genes in transgenic Arabidopsis thaliana indicates that extent of transcriptomic change may not predict secondary phenotypic or fitness effects.
    Plant Biotechnol. J., 2012. 10(3): p. 284-300
    [PMID:22070784]
  105. Oraby H,Ahmad R
    Physiological and biochemical changes of CBF3 transgenic oat in response to salinity stress.
    Plant Sci., 2012. 185-186: p. 331-9
    [PMID:22325896]
  106. Feng XM, et al.
    The cold-induced basic helix-loop-helix transcription factor gene MdCIbHLH1 encodes an ICE-like protein in apple.
    BMC Plant Biol., 2012. 12: p. 22
    [PMID:22336381]
  107. Datta K, et al.
    Overexpression of Arabidopsis and rice stress genes' inducible transcription factor confers drought and salinity tolerance to rice.
    Plant Biotechnol. J., 2012. 10(5): p. 579-86
    [PMID:22385556]
  108. Zhang L, et al.
    Overexpression of a wheat MYB transcription factor gene, TaMYB56-B, enhances tolerances to freezing and salt stresses in transgenic Arabidopsis.
    Gene, 2012. 505(1): p. 100-7
    [PMID:22634104]
  109. Vadez V,Rao JS,Bhatnagar-Mathur P,Sharma KK
    DREB1A promotes root development in deep soil layers and increases water extraction under water stress in groundnut.
    Plant Biol (Stuttg), 2013. 15(1): p. 45-52
    [PMID:22672619]
  110. Lee CM,Thomashow MF
    Photoperiodic regulation of the C-repeat binding factor (CBF) cold acclimation pathway and freezing tolerance in Arabidopsis thaliana.
    Proc. Natl. Acad. Sci. U.S.A., 2012. 109(37): p. 15054-9
    [PMID:22927419]
  111. Suo H, et al.
    Overexpression of AtDREB1A causes a severe dwarf phenotype by decreasing endogenous gibberellin levels in soybean [Glycine max (L.) Merr].
    PLoS ONE, 2012. 7(9): p. e45568
    [PMID:23029105]
  112. Mao D,Chen C
    Colinearity and similar expression pattern of rice DREB1s reveal their functional conservation in the cold-responsive pathway.
    PLoS ONE, 2012. 7(10): p. e47275
    [PMID:23077584]
  113. Akhtar M, et al.
    DREB1/CBF transcription factors: their structure, function and role in abiotic stress tolerance in plants.
    J. Genet., 2012. 91(3): p. 385-95
    [PMID:23271026]
  114. Iwaki T, et al.
    Metabolic profiling of transgenic potato tubers expressing Arabidopsis dehydration response element-binding protein 1A (DREB1A).
    J. Agric. Food Chem., 2013. 61(4): p. 893-900
    [PMID:23286584]
  115. Ni Z,Hu Z,Jiang Q,Zhang H
    GmNFYA3, a target gene of miR169, is a positive regulator of plant tolerance to drought stress.
    Plant Mol. Biol., 2013. 82(1-2): p. 113-29
    [PMID:23483290]
  116. Hsieh EJ,Cheng MC,Lin TP
    Functional characterization of an abiotic stress-inducible transcription factor AtERF53 in Arabidopsis thaliana.
    Plant Mol. Biol., 2013. 82(3): p. 223-37
    [PMID:23625358]
  117. Kang J, et al.
    Natural variation of C-repeat-binding factor (CBFs) genes is a major cause of divergence in freezing tolerance among a group of Arabidopsis thaliana populations along the Yangtze River in China.
    New Phytol., 2013. 199(4): p. 1069-80
    [PMID:23721132]
  118. Chen L, et al.
    Arabidopsis BPM proteins function as substrate adaptors to a cullin3-based E3 ligase to affect fatty acid metabolism in plants.
    Plant Cell, 2013. 25(6): p. 2253-64
    [PMID:23792371]
  119. Keily J, et al.
    Model selection reveals control of cold signalling by evening-phased components of the plant circadian clock.
    Plant J., 2013. 76(2): p. 247-57
    [PMID:23909712]
  120. Hu Y,Jiang L,Wang F,Yu D
    Jasmonate regulates the inducer of cbf expression-C-repeat binding factor/DRE binding factor1 cascade and freezing tolerance in Arabidopsis.
    Plant Cell, 2013. 25(8): p. 2907-24
    [PMID:23933884]
  121. Su Z, et al.
    Flower development under drought stress: morphological and transcriptomic analyses reveal acute responses and long-term acclimation in Arabidopsis.
    Plant Cell, 2013. 25(10): p. 3785-807
    [PMID:24179129]
  122. Xu C,Wang M,Zhou L,Quan T,Xia G
    Heterologous expression of the wheat aquaporin gene TaTIP2;2 compromises the abiotic stress tolerance of Arabidopsis thaliana.
    PLoS ONE, 2013. 8(11): p. e79618
    [PMID:24223981]
  123. Ding Y, et al.
    Four distinct types of dehydration stress memory genes in Arabidopsis thaliana.
    BMC Plant Biol., 2013. 13: p. 229
    [PMID:24377444]
  124. Ravikumar G, et al.
    Stress-inducible expression of AtDREB1A transcription factor greatly improves drought stress tolerance in transgenic indica rice.
    Transgenic Res., 2014. 23(3): p. 421-39
    [PMID:24398893]
  125. Dou H,Xv K,Meng Q,Li G,Yang X
    Potato plants ectopically expressing Arabidopsis thaliana CBF3 exhibit enhanced tolerance to high-temperature stress.
    Plant Cell Environ., 2015. 38(1): p. 61-72
    [PMID:24811248]
  126. Shi H, et al.
    The Cysteine2/Histidine2-Type Transcription Factor ZINC FINGER OF ARABIDOPSIS THALIANA6 Modulates Biotic and Abiotic Stress Responses by Activating Salicylic Acid-Related Genes and C-REPEAT-BINDING FACTOR Genes in Arabidopsis.
    Plant Physiol., 2014. 165(3): p. 1367-1379
    [PMID:24834923]
  127. Wan F, et al.
    Heterologous expression of Arabidopsis C-repeat binding factor 3 (AtCBF3) and cold-regulated 15A (AtCOR15A) enhanced chilling tolerance in transgenic eggplant (Solanum melongena L.).
    Plant Cell Rep., 2014. 33(12): p. 1951-61
    [PMID:25103420]
  128. Xu F, et al.
    Increased drought tolerance through the suppression of ESKMO1 gene and overexpression of CBF-related genes in Arabidopsis.
    PLoS ONE, 2014. 9(9): p. e106509
    [PMID:25184213]
  129. Anbazhagan K, et al.
    DREB1A overexpression in transgenic chickpea alters key traits influencing plant water budget across water regimes.
    Plant Cell Rep., 2015. 34(2): p. 199-210
    [PMID:25326370]
  130. Sarkar T,Thankappan R,Kumar A,Mishra GP,Dobaria JR
    Heterologous expression of the AtDREB1A gene in transgenic peanut-conferred tolerance to drought and salinity stresses.
    PLoS ONE, 2014. 9(12): p. e110507
    [PMID:25545786]
  131. Miyazaki Y,Abe H,Takase T,Kobayashi M,Kiyosue T
    Overexpression of LOV KELCH protein 2 confers dehydration tolerance and is associated with enhanced expression of dehydration-inducible genes in Arabidopsis thaliana.
    Plant Cell Rep., 2015. 34(5): p. 843-52
    [PMID:25627253]
  132. Jiang W,Wu J,Zhang Y,Yin L,Lu J
    Isolation of a WRKY30 gene from Muscadinia rotundifolia (Michx) and validation of its function under biotic and abiotic stresses.
    Protoplasma, 2015. 252(5): p. 1361-74
    [PMID:25643917]
  133. Park S, et al.
    Regulation of the Arabidopsis CBF regulon by a complex low-temperature regulatory network.
    Plant J., 2015. 82(2): p. 193-207
    [PMID:25736223]
  134. Jin J, et al.
    An Arabidopsis Transcriptional Regulatory Map Reveals Distinct Functional and Evolutionary Features of Novel Transcription Factors.
    Mol. Biol. Evol., 2015. 32(7): p. 1767-73
    [PMID:25750178]
  135. Paul S,Gayen D,Datta SK,Datta K
    Dissecting root proteome of transgenic rice cultivars unravels metabolic alterations and accumulation of novel stress responsive proteins under drought stress.
    Plant Sci., 2015. 234: p. 133-43
    [PMID:25804816]
  136. Sazegari S,Niazi A,Ahmadi FS
    A study on the regulatory network with promoter analysis for Arabidopsis DREB-genes.
    Bioinformation, 2015. 11(2): p. 101-6
    [PMID:25848171]
  137. Alvarez-Gerding X,Espinoza C,Inostroza-Blancheteau C,Arce-Johnson P
    Molecular and physiological changes in response to salt stress in Citrus macrophylla W plants overexpressing Arabidopsis CBF3/DREB1A.
    Plant Physiol. Biochem., 2015. 92: p. 71-80
    [PMID:25914135]
  138. Shi H,Qian Y,Tan DX,Reiter RJ,He C
    Melatonin induces the transcripts of CBF/DREB1s and their involvement in both abiotic and biotic stresses in Arabidopsis.
    J. Pineal Res., 2015. 59(3): p. 334-42
    [PMID:26182834]
  139. Kim YS,Lee M,Lee JH,Lee HJ,Park CM
    The unified ICE-CBF pathway provides a transcriptional feedback control of freezing tolerance during cold acclimation in Arabidopsis.
    Plant Mol. Biol., 2015. 89(1-2): p. 187-201
    [PMID:26311645]
  140. Wang CL,Zhang SC,Qi SD,Zheng CC,Wu CA
    Delayed germination of Arabidopsis seeds under chilling stress by overexpressing an abiotic stress inducible GhTPS11.
    Gene, 2016. 575(2 Pt 1): p. 206-12
    [PMID:26325072]
  141. Gehan MA, et al.
    Natural variation in the C-repeat binding factor cold response pathway correlates with local adaptation of Arabidopsis ecotypes.
    Plant J., 2015. 84(4): p. 682-93
    [PMID:26369909]
  142. Su F, et al.
    Burkholderia phytofirmans PsJN reduces impact of freezing temperatures on photosynthesis in Arabidopsis thaliana.
    Front Plant Sci, 2015. 6: p. 810
    [PMID:26483823]
  143. Chan Z, et al.
    RDM4 modulates cold stress resistance in Arabidopsis partially through the CBF-mediated pathway.
    New Phytol., 2016. 209(4): p. 1527-39
    [PMID:26522658]
  144. Shah SH,Ali S,Qureshi AA,Zia MA,Ali GM
    WITHDRAWN: Physiological and biochemical characterization of tomato transgenic lines overexpressing Arabidopsis thaliana cold responsive-element binding factor 3 (AtCBF3) gene under chilling stress.
    J. Biotechnol., 2016.
    [PMID:26732415]
  145. Gao S, et al.
    A cotton miRNA is involved in regulation of plant response to salt stress.
    Sci Rep, 2016. 6: p. 19736
    [PMID:26813144]
  146. Qiao Z,Li CL,Zhang W
    WRKY1 regulates stomatal movement in drought-stressed Arabidopsis thaliana.
    Plant Mol. Biol., 2016. 91(1-2): p. 53-65
    [PMID:26820136]
  147. Shi H,Wei Y,He C
    Melatonin-induced CBF/DREB1s are essential for diurnal change of disease resistance and CCA1 expression in Arabidopsis.
    Plant Physiol. Biochem., 2016. 100: p. 150-155
    [PMID:26828406]
  148. Kazama D, et al.
    Identification of Chimeric Repressors that Confer Salt and Osmotic Stress Tolerance in Arabidopsis.
    Plants (Basel), 2013. 2(4): p. 769-85
    [PMID:27137403]
  149. Norén L, et al.
    Circadian and Plastid Signaling Pathways Are Integrated to Ensure Correct Expression of the CBF and COR Genes during Photoperiodic Growth.
    Plant Physiol., 2016. 171(2): p. 1392-406
    [PMID:27208227]
  150. Zhao C, et al.
    Mutational Evidence for the Critical Role of CBF Transcription Factors in Cold Acclimation in Arabidopsis.
    Plant Physiol., 2016. 171(4): p. 2744-59
    [PMID:27252305]
  151. Jia Y, et al.
    The cbfs triple mutants reveal the essential functions of CBFs in cold acclimation and allow the definition of CBF regulons in Arabidopsis.
    New Phytol., 2016. 212(2): p. 345-53
    [PMID:27353960]
  152. Zhao C,Zhu JK
    The broad roles of CBF genes: From development to abiotic stress.
    Plant Signal Behav, 2016. 11(8): p. e1215794
    [PMID:27472659]
  153. Wei T, et al.
    Ectopic Expression of DREB Transcription Factor, AtDREB1A, Confers Tolerance to Drought in Transgenic Salvia miltiorrhiza.
    Plant Cell Physiol., 2016. 57(8): p. 1593-609
    [PMID:27485523]
  154. Bolt S,Zuther E,Zintl S,Hincha DK,Schmülling T
    ERF105 is a transcription factor gene of Arabidopsis thaliana required for freezing tolerance and cold acclimation.
    Plant Cell Environ., 2017. 40(1): p. 108-120
    [PMID:27723941]
  155. An D, et al.
    Divergent Regulation of CBF Regulon on Cold Tolerance and Plant Phenotype in Cassava Overexpressing Arabidopsis CBF3 Gene.
    Front Plant Sci, 2016. 7: p. 1866
    [PMID:27999588]
  156. Shi Y, et al.
    The precise regulation of different COR genes by individual CBF transcription factors in Arabidopsis thaliana.
    J Integr Plant Biol, 2017. 59(2): p. 118-133
    [PMID:28009483]
  157. Zhou M,Chen H,Wei D,Ma H,Lin J
    Arabidopsis CBF3 and DELLAs positively regulate each other in response to low temperature.
    Sci Rep, 2017. 7: p. 39819
    [PMID:28051152]
  158. Liu Z, et al.
    Plasma Membrane CRPK1-Mediated Phosphorylation of 14-3-3 Proteins Induces Their Nuclear Import to Fine-Tune CBF Signaling during Cold Response.
    Mol. Cell, 2017. 66(1): p. 117-128.e5
    [PMID:28344081]
  159. Kidokoro S, et al.
    Different Cold-Signaling Pathways Function in the Responses to Rapid and Gradual Decreases in Temperature.
    Plant Cell, 2017. 29(4): p. 760-774
    [PMID:28351986]
  160. Shen PC,Hour AL,Liu LD
    Microarray meta-analysis to explore abiotic stress-specific gene expression patterns in Arabidopsis.
    Bot Stud, 2017. 58(1): p. 22
    [PMID:28510204]
  161. Kim SH, et al.
    Phosphorylation of the transcriptional repressor MYB15 by mitogen-activated protein kinase 6 is required for freezing tolerance in Arabidopsis.
    Nucleic Acids Res., 2017. 45(11): p. 6613-6627
    [PMID:28510716]
  162. Yang L, et al.
    Systematic analysis of the G-box Factor 14-3-3 gene family and functional characterization of GF14a in Brachypodium distachyon.
    Plant Physiol. Biochem., 2017. 117: p. 1-11
    [PMID:28575641]
  163. Shah SH, et al.
    Chilling tolerance in three tomato transgenic lines overexpressing CBF3 gene controlled by a stress inducible promoter.
    Environ Sci Pollut Res Int, 2017. 24(22): p. 18536-18553
    [PMID:28646315]
  164. Li A, et al.
    Transcriptome Profiling Reveals the Negative Regulation of Multiple Plant Hormone Signaling Pathways Elicited by Overexpression of C-Repeat Binding Factors.
    Front Plant Sci, 2017. 8: p. 1647
    [PMID:28983312]
  165. Du X,Jin Z,Liu D,Yang G,Pei Y
    Hydrogen sulfide alleviates the cold stress through MPK4 in Arabidopsis thaliana.
    Plant Physiol. Biochem., 2017. 120: p. 112-119
    [PMID:29024849]
  166. Cho S, et al.
    Accession-Dependent CBF Gene Deletion by CRISPR/Cas System in Arabidopsis.
    Front Plant Sci, 2017. 8: p. 1910
    [PMID:29163623]
  167. Beine-Golovchuk O, et al.
    Plant Temperature Acclimation and Growth Rely on Cytosolic Ribosome Biogenesis Factor Homologs.
    Plant Physiol., 2018. 176(3): p. 2251-2276
    [PMID:29382692]
  168. Huang KC,Lin WC,Cheng WH
    Salt hypersensitive mutant 9, a nucleolar APUM23 protein, is essential for salt sensitivity in association with the ABA signaling pathway in Arabidopsis.
    BMC Plant Biol., 2018. 18(1): p. 40
    [PMID:29490615]
  169. Wei T, et al.
    Comparative Transcriptome Analyses Reveal Potential Mechanisms of Enhanced Drought Tolerance in Transgenic Salvia Miltiorrhiza Plants Expressing AtDREB1A from Arabidopsis.
    Int J Mol Sci, 2018.
    [PMID:29534548]
  170. Liu Q, et al.
    Two transcription factors, DREB1 and DREB2, with an EREBP/AP2 DNA binding domain separate two cellular signal transduction pathways in drought- and low-temperature-responsive gene expression, respectively, in Arabidopsis.
    Plant Cell, 1998. 10(8): p. 1391-406
    [PMID:9707537]
  171. Shinwari ZK, et al.
    An Arabidopsis gene family encoding DRE/CRT binding proteins involved in low-temperature-responsive gene expression.
    Biochem. Biophys. Res. Commun., 1998. 250(1): p. 161-70
    [PMID:9735350]
  172. Gilmour SJ, et al.
    Low temperature regulation of the Arabidopsis CBF family of AP2 transcriptional activators as an early step in cold-induced COR gene expression.
    Plant J., 1998. 16(4): p. 433-42
    [PMID:9881163]
  173. Medina J,Bargues M,Terol J,Pérez-Alonso M,Salinas J
    The Arabidopsis CBF gene family is composed of three genes encoding AP2 domain-containing proteins whose expression Is regulated by low temperature but not by abscisic acid or dehydration.
    Plant Physiol., 1999. 119(2): p. 463-70
    [PMID:9952441]