- Kasuga M,Liu Q,Miura S,Yamaguchi-Shinozaki K,Shinozaki K
Improving plant drought, salt, and freezing tolerance by gene transfer of a single stress-inducible transcription factor. Nat. Biotechnol., 1999. 17(3): p. 287-91 [PMID:10096298] - Lee H,Xiong L,Ishitani M,Stevenson B,Zhu JK
Cold-regulated gene expression and freezing tolerance in an Arabidopsis thaliana mutant. Plant J., 1999. 17(3): p. 301-8 [PMID:10097388] - Knight H,Veale EL,Warren GJ,Knight MR
The sfr6 mutation in Arabidopsis suppresses low-temperature induction of genes dependent on the CRT/DRE sequence motif. Plant Cell, 1999. 11(5): p. 875-86 [PMID:10330472] - Gilmour SJ,Sebolt AM,Salazar MP,Everard JD,Thomashow MF
Overexpression of the Arabidopsis CBF3 transcriptional activator mimics multiple biochemical changes associated with cold acclimation. Plant Physiol., 2000. 124(4): p. 1854-65 [PMID:11115899] - Riechmann JL, et al.
Arabidopsis transcription factors: genome-wide comparative analysis among eukaryotes. Science, 2000. 290(5499): p. 2105-10 [PMID:11118137] - Seki M, et al.
Monitoring the expression pattern of 1300 Arabidopsis genes under drought and cold stresses by using a full-length cDNA microarray. Plant Cell, 2001. 13(1): p. 61-72 [PMID:11158529] - Park JM, et al.
Overexpression of the tobacco Tsi1 gene encoding an EREBP/AP2-type transcription factor enhances resistance against pathogen attack and osmotic stress in tobacco. Plant Cell, 2001. 13(5): p. 1035-46 [PMID:11340180] - Yamaguchi-Shinozaki K,Shinozaki K
Improving plant drought, salt and freezing tolerance by gene transfer of a single stress-inducible transcription factor. Novartis Found. Symp., 2001. 236: p. 176-86; discussion 186-9 [PMID:11387979] - Sakuma Y, et al.
DNA-binding specificity of the ERF/AP2 domain of Arabidopsis DREBs, transcription factors involved in dehydration- and cold-inducible gene expression. Biochem. Biophys. Res. Commun., 2002. 290(3): p. 998-1009 [PMID:11798174] - Taji T, et al.
Important roles of drought- and cold-inducible genes for galactinol synthase in stress tolerance in Arabidopsis thaliana. Plant J., 2002. 29(4): p. 417-26 [PMID:11846875] - Hao D,Yamasaki K,Sarai A,Ohme-Takagi M
Determinants in the sequence specific binding of two plant transcription factors, CBF1 and NtERF2, to the DRE and GCC motifs. Biochemistry, 2002. 41(13): p. 4202-8 [PMID:11914065] - van Buuren ML,Salvi S,Morgante M,Serhani B,Tuberosa R
Comparative genomic mapping between a 754 kb region flanking DREB1A in Arabidopsis thaliana and maize. Plant Mol. Biol., 2002 Mar-Apr. 48(5-6): p. 741-50 [PMID:11999847] - Guo Y,Xiong L,Ishitani M,Zhu JK
An Arabidopsis mutation in translation elongation factor 2 causes superinduction of CBF/DREB1 transcription factor genes but blocks the induction of their downstream targets under low temperatures. Proc. Natl. Acad. Sci. U.S.A., 2002. 99(11): p. 7786-91 [PMID:12032361] - Cheong YH, et al.
Transcriptional profiling reveals novel interactions between wounding, pathogen, abiotic stress, and hormonal responses in Arabidopsis. Plant Physiol., 2002. 129(2): p. 661-77 [PMID:12068110] - Hsieh TH, et al.
Heterology expression of the Arabidopsis C-repeat/dehydration response element binding factor 1 gene confers elevated tolerance to chilling and oxidative stresses in transgenic tomato. Plant Physiol., 2002. 129(3): p. 1086-94 [PMID:12114563] - Seki M, et al.
Monitoring the expression profiles of 7000 Arabidopsis genes under drought, cold and high-salinity stresses using a full-length cDNA microarray. Plant J., 2002. 31(3): p. 279-92 [PMID:12164808] - Gong Z, et al.
RNA helicase-like protein as an early regulator of transcription factors for plant chilling and freezing tolerance. Proc. Natl. Acad. Sci. U.S.A., 2002. 99(17): p. 11507-12 [PMID:12165572] - Fowler S,Thomashow MF
Arabidopsis transcriptome profiling indicates that multiple regulatory pathways are activated during cold acclimation in addition to the CBF cold response pathway. Plant Cell, 2002. 14(8): p. 1675-90 [PMID:12172015] - Choi DW,Rodriguez EM,Close TJ
Barley Cbf3 gene identification, expression pattern, and map location. Plant Physiol., 2002. 129(4): p. 1781-7 [PMID:12177491] - Haake V, et al.
Transcription factor CBF4 is a regulator of drought adaptation in Arabidopsis. Plant Physiol., 2002. 130(2): p. 639-48 [PMID:12376631] - Dubouzet JG, et al.
OsDREB genes in rice, Oryza sativa L., encode transcription activators that function in drought-, high-salt- and cold-responsive gene expression. Plant J., 2003. 33(4): p. 751-63 [PMID:12609047] - Shen YG, et al.
An EREBP/AP2-type protein in Triticum aestivum was a DRE-binding transcription factor induced by cold, dehydration and ABA stress. Theor. Appl. Genet., 2003. 106(5): p. 923-30 [PMID:12647068] - Chinnusamy V, et al.
ICE1: a regulator of cold-induced transcriptome and freezing tolerance in Arabidopsis. Genes Dev., 2003. 17(8): p. 1043-54 [PMID:12672693] - V
The cold-regulated transcriptional activator Cbf3 is linked to the frost-tolerance locus Fr-A2 on wheat chromosome 5A. Mol. Genet. Genomics, 2003. 269(1): p. 60-7 [PMID:12715154] - Boyce JM, et al.
The sfr6 mutant of Arabidopsis is defective in transcriptional activation via CBF/DREB1 and DREB2 and shows sensitivity to osmotic stress. Plant J., 2003. 34(4): p. 395-406 [PMID:12753580] - Takagi T, et al.
The leaf-order-dependent enhancement of freezing tolerance in cold-acclimated Arabidopsis rosettes is not correlated with the transcript levels of the cold-inducible transcription factors of CBF/DREB1. Plant Cell Physiol., 2003. 44(9): p. 922-31 [PMID:14519774] - Catala R, et al.
Mutations in the Ca2+/H+ transporter CAX1 increase CBF/DREB1 expression and the cold-acclimation response in Arabidopsis. Plant Cell, 2003. 15(12): p. 2940-51 [PMID:14630965] - Seki M, et al.
RIKEN Arabidopsis full-length (RAFL) cDNA and its applications for expression profiling under abiotic stress conditions. J. Exp. Bot., 2004. 55(395): p. 213-23 [PMID:14673034] - Chinnusamy V,Schumaker K,Zhu JK
Molecular genetic perspectives on cross-talk and specificity in abiotic stress signalling in plants. J. Exp. Bot., 2004. 55(395): p. 225-36 [PMID:14673035] - Magome H,Yamaguchi S,Hanada A,Kamiya Y,Oda K
dwarf and delayed-flowering 1, a novel Arabidopsis mutant deficient in gibberellin biosynthesis because of overexpression of a putative AP2 transcription factor. Plant J., 2004. 37(5): p. 720-9 [PMID:14871311] - Novillo F,Alonso JM,Ecker JR,Salinas J
CBF2/DREB1C is a negative regulator of CBF1/DREB1B and CBF3/DREB1A expression and plays a central role in stress tolerance in Arabidopsis. Proc. Natl. Acad. Sci. U.S.A., 2004. 101(11): p. 3985-90 [PMID:15004278] - Kasuga M,Miura S,Shinozaki K,Yamaguchi-Shinozaki K
A combination of the Arabidopsis DREB1A gene and stress-inducible rd29A promoter improved drought- and low-temperature stress tolerance in tobacco by gene transfer. Plant Cell Physiol., 2004. 45(3): p. 346-50 [PMID:15047884] - Maruyama K, et al.
Identification of cold-inducible downstream genes of the Arabidopsis DREB1A/CBF3 transcriptional factor using two microarray systems. Plant J., 2004. 38(6): p. 982-93 [PMID:15165189] - Zhang JZ,Creelman RA,Zhu JK
From laboratory to field. Using information from Arabidopsis to engineer salt, cold, and drought tolerance in crops. Plant Physiol., 2004. 135(2): p. 615-21 [PMID:15173567] - Pellegrineschi A, et al.
Stress-induced expression in wheat of the Arabidopsis thaliana DREB1A gene delays water stress symptoms under greenhouse conditions. Genome, 2004. 47(3): p. 493-500 [PMID:15190366] - Knight H,Zarka DG,Okamoto H,Thomashow MF,Knight MR
Abscisic acid induces CBF gene transcription and subsequent induction of cold-regulated genes via the CRT promoter element. Plant Physiol., 2004. 135(3): p. 1710-7 [PMID:15247382] - Qin F, et al.
Cloning and functional analysis of a novel DREB1/CBF transcription factor involved in cold-responsive gene expression in Zea mays L. Plant Cell Physiol., 2004. 45(8): p. 1042-52 [PMID:15356330] - Gilmour SJ,Fowler SG,Thomashow MF
Arabidopsis transcriptional activators CBF1, CBF2, and CBF3 have matching functional activities. Plant Mol. Biol., 2004. 54(5): p. 767-81 [PMID:15356394] - Vogel JT,Zarka DG,Van Buskirk HA,Fowler SG,Thomashow MF
Roles of the CBF2 and ZAT12 transcription factors in configuring the low temperature transcriptome of Arabidopsis. Plant J., 2005. 41(2): p. 195-211 [PMID:15634197] - Fowler SG,Cook D,Thomashow MF
Low temperature induction of Arabidopsis CBF1, 2, and 3 is gated by the circadian clock. Plant Physiol., 2005. 137(3): p. 961-8 [PMID:15728337] - Oh SJ, et al.
Arabidopsis CBF3/DREB1A and ABF3 in transgenic rice increased tolerance to abiotic stress without stunting growth. Plant Physiol., 2005. 138(1): p. 341-51 [PMID:15834008] - Lee BH,Henderson DA,Zhu JK
The Arabidopsis cold-responsive transcriptome and its regulation by ICE1. Plant Cell, 2005. 17(11): p. 3155-75 [PMID:16214899] - Cao S,Ye M,Jiang S
Involvement of GIGANTEA gene in the regulation of the cold stress response in Arabidopsis. Plant Cell Rep., 2005. 24(11): p. 683-90 [PMID:16231185] - Alonso-Blanco C, et al.
Genetic and molecular analyses of natural variation indicate CBF2 as a candidate gene for underlying a freezing tolerance quantitative trait locus in Arabidopsis. Plant Physiol., 2005. 139(3): p. 1304-12 [PMID:16244146] - Vergnolle C, et al.
The cold-induced early activation of phospholipase C and D pathways determines the response of two distinct clusters of genes in Arabidopsis cell suspensions. Plant Physiol., 2005. 139(3): p. 1217-33 [PMID:16258011] - Ito Y, et al.
Functional analysis of rice DREB1/CBF-type transcription factors involved in cold-responsive gene expression in transgenic rice. Plant Cell Physiol., 2006. 47(1): p. 141-53 [PMID:16284406] - Nakano T,Suzuki K,Fujimura T,Shinshi H
Genome-wide analysis of the ERF gene family in Arabidopsis and rice. Plant Physiol., 2006. 140(2): p. 411-32 [PMID:16407444] - Zhao TJ, et al.
Regulating the drought-responsive element (DRE)-mediated signaling pathway by synergic functions of trans-active and trans-inactive DRE binding factors in Brassica napus. J. Biol. Chem., 2006. 281(16): p. 10752-9 [PMID:16497677] - Xiong Y,Fei SZ
Functional and phylogenetic analysis of a DREB/CBF-like gene in perennial ryegrass (Lolium perenne L.). Planta, 2006. 224(4): p. 878-88 [PMID:16614820] - Sakuma Y, et al.
Functional analysis of an Arabidopsis transcription factor, DREB2A, involved in drought-responsive gene expression. Plant Cell, 2006. 18(5): p. 1292-309 [PMID:16617101] - Dong CH,Agarwal M,Zhang Y,Xie Q,Zhu JK
The negative regulator of plant cold responses, HOS1, is a RING E3 ligase that mediates the ubiquitination and degradation of ICE1. Proc. Natl. Acad. Sci. U.S.A., 2006. 103(21): p. 8281-6 [PMID:16702557] - Hua ZM,Yang X,Fromm ME
Activation of the NaCl- and drought-induced RD29A and RD29B promoters by constitutively active Arabidopsis MAPKK or MAPK proteins. Plant Cell Environ., 2006. 29(9): p. 1761-70 [PMID:16913865] - Agarwal M, et al.
A R2R3 type MYB transcription factor is involved in the cold regulation of CBF genes and in acquired freezing tolerance. J. Biol. Chem., 2006. 281(49): p. 37636-45 [PMID:17015446] - Hong B, et al.
Heterologous expression of the AtDREB1A gene in chrysanthemum increases drought and salt stress tolerance. Sci. China, C, Life Sci., 2006. 49(5): p. 436-45 [PMID:17172050] - Xin Z,Mandaokar A,Chen J,Last RL,Browse J
Arabidopsis ESK1 encodes a novel regulator of freezing tolerance. Plant J., 2007. 49(5): p. 786-99 [PMID:17316173] - Qin F, et al.
Regulation and functional analysis of ZmDREB2A in response to drought and heat stresses in Zea mays L. Plant J., 2007. 50(1): p. 54-69 [PMID:17346263] - Miura K, et al.
SIZ1-mediated sumoylation of ICE1 controls CBF3/DREB1A expression and freezing tolerance in Arabidopsis. Plant Cell, 2007. 19(4): p. 1403-14 [PMID:17416732] - Behnam B, et al.
Arabidopsis rd29A::DREB1A enhances freezing tolerance in transgenic potato. Plant Cell Rep., 2007. 26(8): p. 1275-82 [PMID:17453213] - Zhao J,Ren W,Zhi D,Wang L,Xia G
Arabidopsis DREB1A/CBF3 bestowed transgenic tall fescue increased tolerance to drought stress. Plant Cell Rep., 2007. 26(9): p. 1521-8 [PMID:17483953] - Kant P,Kant S,Gordon M,Shaked R,Barak S
STRESS RESPONSE SUPPRESSOR1 and STRESS RESPONSE SUPPRESSOR2, two DEAD-box RNA helicases that attenuate Arabidopsis responses to multiple abiotic stresses. Plant Physiol., 2007. 145(3): p. 814-30 [PMID:17556511] - Pino MT, et al.
Use of a stress inducible promoter to drive ectopic AtCBF expression improves potato freezing tolerance while minimizing negative effects on tuber yield. Plant Biotechnol. J., 2007. 5(5): p. 591-604 [PMID:17559519] - Bhatnagar-Mathur P, et al.
Stress-inducible expression of At DREB1A in transgenic peanut (Arachis hypogaea L.) increases transpiration efficiency under water-limiting conditions. Plant Cell Rep., 2007. 26(12): p. 2071-82 [PMID:17653723] - Li L,Ilarslan H,James MG,Myers AM,Wurtele ES
Genome wide co-expression among the starch debranching enzyme genes AtISA1, AtISA2, and AtISA3 in Arabidopsis thaliana. J. Exp. Bot., 2007. 58(12): p. 3323-42 [PMID:17890231] - Franklin KA,Whitelam GC
Light-quality regulation of freezing tolerance in Arabidopsis thaliana. Nat. Genet., 2007. 39(11): p. 1410-3 [PMID:17965713] - Chung S,Parish RW
Combinatorial interactions of multiple cis-elements regulating the induction of the Arabidopsis XERO2 dehydrin gene by abscisic acid and cold. Plant J., 2008. 54(1): p. 15-29 [PMID:18088305] - Novillo F,Medina J,Salinas J
Arabidopsis CBF1 and CBF3 have a different function than CBF2 in cold acclimation and define different gene classes in the CBF regulon. Proc. Natl. Acad. Sci. U.S.A., 2007. 104(52): p. 21002-7 [PMID:18093929] - Pennycooke JC, et al.
The low temperature-responsive, Solanum CBF1 genes maintain high identity in their upstream regions in a genomic environment undergoing gene duplications, deletions, and rearrangements. Plant Mol. Biol., 2008. 67(5): p. 483-97 [PMID:18415686] - Kielbowicz-Matuk A,Rey P,Rorat T
The organ-dependent abundance of a Solanum lipid transfer protein is up-regulated upon osmotic constraints and associated with cold acclimation ability. J. Exp. Bot., 2008. 59(8): p. 2191-203 [PMID:18441337] - Zhang X,Liu S,Takano T
Two cysteine proteinase inhibitors from Arabidopsis thaliana, AtCYSa and AtCYSb, increasing the salt, drought, oxidation and cold tolerance. Plant Mol. Biol., 2008. 68(1-2): p. 131-43 [PMID:18523728] - Magome H,Yamaguchi S,Hanada A,Kamiya Y,Oda K
The DDF1 transcriptional activator upregulates expression of a gibberellin-deactivating gene, GA2ox7, under high-salinity stress in Arabidopsis. Plant J., 2008. 56(4): p. 613-26 [PMID:18643985] - Ascencio-Ib
Global analysis of Arabidopsis gene expression uncovers a complex array of changes impacting pathogen response and cell cycle during geminivirus infection. Plant Physiol., 2008. 148(1): p. 436-54 [PMID:18650403] - Wang L, et al.
Isolation and characterization of a C-repeat binding transcription factor from maize. J Integr Plant Biol, 2008. 50(8): p. 965-74 [PMID:18713346] - Lin YH, et al.
Molecular population genetics and gene expression analysis of duplicated CBF genes of Arabidopsis thaliana. BMC Plant Biol., 2008. 8: p. 111 [PMID:18990244] - Hong B, et al.
Over-expression of AtDREB1A in chrysanthemum enhances tolerance to heat stress. Plant Mol. Biol., 2009. 70(3): p. 231-40 [PMID:19234675] - Eckardt NA
CAMTA proteins: a direct link between calcium signals and cold acclimation? Plant Cell, 2009. 21(3): p. 697 [PMID:19270185] - Doherty CJ,Van Buskirk HA,Myers SJ,Thomashow MF
Roles for Arabidopsis CAMTA transcription factors in cold-regulated gene expression and freezing tolerance. Plant Cell, 2009. 21(3): p. 972-84 [PMID:19270186] - Rayirath P, et al.
Lipophilic components of the brown seaweed, Ascophyllum nodosum, enhance freezing tolerance in Arabidopsis thaliana. Planta, 2009. 230(1): p. 135-47 [PMID:19363684] - Navarro M, et al.
Complementary regulation of four Eucalyptus CBF genes under various cold conditions. J. Exp. Bot., 2009. 60(9): p. 2713-24 [PMID:19457981] - Maruyama K, et al.
Metabolic pathways involved in cold acclimation identified by integrated analysis of metabolites and transcripts regulated by DREB1A and DREB2A. Plant Physiol., 2009. 150(4): p. 1972-80 [PMID:19502356] - Miura K,Hasegawa PM
Regulation of cold signaling by sumoylation of ICE1. Plant Signal Behav, 2008. 3(1): p. 52-3 [PMID:19704769] - Gong W, et al.
The development of protein microarrays and their applications in DNA-protein and protein-protein interaction analyses of Arabidopsis transcription factors. Mol Plant, 2008. 1(1): p. 27-41 [PMID:19802365] - Seo E, et al.
Crosstalk between cold response and flowering in Arabidopsis is mediated through the flowering-time gene SOC1 and its upstream negative regulator FLC. Plant Cell, 2009. 21(10): p. 3185-97 [PMID:19825833] - Miura K,Ohta M
SIZ1, a small ubiquitin-related modifier ligase, controls cold signaling through regulation of salicylic acid accumulation. J. Plant Physiol., 2010. 167(7): p. 555-60 [PMID:19959255] - Diallo A,Kane N,Agharbaoui Z,Badawi M,Sarhan F
Heterologous expression of wheat VERNALIZATION 2 (TaVRN2) gene in Arabidopsis delays flowering and enhances freezing tolerance. PLoS ONE, 2010. 5(1): p. e8690 [PMID:20084169] - Abdeen A,Schnell J,Miki B
Transcriptome analysis reveals absence of unintended effects in drought-tolerant transgenic plants overexpressing the transcription factor ABF3. BMC Genomics, 2010. 11: p. 69 [PMID:20105335] - Dong CJ,Liu JY
The Arabidopsis EAR-motif-containing protein RAP2.1 functions as an active transcriptional repressor to keep stress responses under tight control. BMC Plant Biol., 2010. 10: p. 47 [PMID:20230648] - Lee SJ, et al.
DREB2C interacts with ABF2, a bZIP protein regulating abscisic acid-responsive gene expression, and its overexpression affects abscisic acid sensitivity. Plant Physiol., 2010. 153(2): p. 716-27 [PMID:20395451] - Chen CC,Liang CS,Kao AL,Yang CC
HHP1, a novel signalling component in the cross-talk between the cold and osmotic signalling pathways in Arabidopsis. J. Exp. Bot., 2010. 61(12): p. 3305-20 [PMID:20566565] - Li C, et al.
TaCHP: a wheat zinc finger protein gene down-regulated by abscisic acid and salinity stress plays a positive role in stress tolerance. Plant Physiol., 2010. 154(1): p. 211-21 [PMID:20639406] - Nakamura R, et al.
Immunoproteomic and two-dimensional difference gel electrophoresis analysis of Arabidopsis dehydration response element-binding protein 1A (DREB1A)-transgenic potato. Biol. Pharm. Bull., 2010. 33(8): p. 1418-25 [PMID:20686241] - Cantrel C, et al.
Nitric oxide participates in cold-responsive phosphosphingolipid formation and gene expression in Arabidopsis thaliana. New Phytol., 2011. 189(2): p. 415-27 [PMID:21039566] - Yamamoto YY, et al.
Prediction of transcriptional regulatory elements for plant hormone responses based on microarray data. BMC Plant Biol., 2011. 11: p. 39 [PMID:21349196] - Feng Y, et al.
A three-component gene expression system and its application for inducible flavonoid overproduction in transgenic Arabidopsis thaliana. PLoS ONE, 2011. 6(3): p. e17603 [PMID:21408135] - Medina J,Catal
The CBFs: three arabidopsis transcription factors to cold acclimate. Plant Sci., 2011. 180(1): p. 3-11 [PMID:21421341] - Gery C, et al.
Natural variation in the freezing tolerance of Arabidopsis thaliana: effects of RNAi-induced CBF depletion and QTL localisation vary among accessions. Plant Sci., 2011. 180(1): p. 12-23 [PMID:21421342] - Miura K,Ohta M,Nakazawa M,Ono M,Hasegawa PM
ICE1 Ser403 is necessary for protein stabilization and regulation of cold signaling and tolerance. Plant J., 2011. 67(2): p. 269-79 [PMID:21447070] - Dong MA,Farr
Circadian clock-associated 1 and late elongated hypocotyl regulate expression of the C-repeat binding factor (CBF) pathway in Arabidopsis. Proc. Natl. Acad. Sci. U.S.A., 2011. 108(17): p. 7241-6 [PMID:21471455] - Siddiqua M,Nassuth A
Vitis CBF1 and Vitis CBF4 differ in their effect on Arabidopsis abiotic stress tolerance, development and gene expression. Plant Cell Environ., 2011. 34(8): p. 1345-59 [PMID:21486303] - Rushton DL, et al.
WRKY transcription factors: key components in abscisic acid signalling. Plant Biotechnol. J., 2012. 10(1): p. 2-11 [PMID:21696534] - Hao YJ, et al.
Soybean NAC transcription factors promote abiotic stress tolerance and lateral root formation in transgenic plants. Plant J., 2011. 68(2): p. 302-13 [PMID:21707801] - Novillo F,Medina J,Rodr
Genetic analysis reveals a complex regulatory network modulating CBF gene expression and Arabidopsis response to abiotic stress. J. Exp. Bot., 2012. 63(1): p. 293-304 [PMID:21940717] - Tsou PL,Lee SY,Allen NS,Winter-Sederoff H,Robertson D
An ER-targeted calcium-binding peptide confers salt and drought tolerance mediated by CIPK6 in Arabidopsis. Planta, 2012. 235(3): p. 539-52 [PMID:21971994] - Polizel AM, et al.
Molecular, anatomical and physiological properties of a genetically modified soybean line transformed with rd29A:AtDREB1A for the improvement of drought tolerance. Genet. Mol. Res., 2011. 10(4): p. 3641-56 [PMID:22033903] - Chan Z,Bigelow PJ,Loescher W,Grumet R
Comparison of salt stress resistance genes in transgenic Arabidopsis thaliana indicates that extent of transcriptomic change may not predict secondary phenotypic or fitness effects. Plant Biotechnol. J., 2012. 10(3): p. 284-300 [PMID:22070784] - Oraby H,Ahmad R
Physiological and biochemical changes of CBF3 transgenic oat in response to salinity stress. Plant Sci., 2012. 185-186: p. 331-9 [PMID:22325896] - Feng XM, et al.
The cold-induced basic helix-loop-helix transcription factor gene MdCIbHLH1 encodes an ICE-like protein in apple. BMC Plant Biol., 2012. 12: p. 22 [PMID:22336381] - Datta K, et al.
Overexpression of Arabidopsis and rice stress genes' inducible transcription factor confers drought and salinity tolerance to rice. Plant Biotechnol. J., 2012. 10(5): p. 579-86 [PMID:22385556] - Zhang L, et al.
Overexpression of a wheat MYB transcription factor gene, TaMYB56-B, enhances tolerances to freezing and salt stresses in transgenic Arabidopsis. Gene, 2012. 505(1): p. 100-7 [PMID:22634104] - Vadez V,Rao JS,Bhatnagar-Mathur P,Sharma KK
DREB1A promotes root development in deep soil layers and increases water extraction under water stress in groundnut. Plant Biol (Stuttg), 2013. 15(1): p. 45-52 [PMID:22672619] - Lee CM,Thomashow MF
Photoperiodic regulation of the C-repeat binding factor (CBF) cold acclimation pathway and freezing tolerance in Arabidopsis thaliana. Proc. Natl. Acad. Sci. U.S.A., 2012. 109(37): p. 15054-9 [PMID:22927419] - Suo H, et al.
Overexpression of AtDREB1A causes a severe dwarf phenotype by decreasing endogenous gibberellin levels in soybean [Glycine max (L.) Merr]. PLoS ONE, 2012. 7(9): p. e45568 [PMID:23029105] - Mao D,Chen C
Colinearity and similar expression pattern of rice DREB1s reveal their functional conservation in the cold-responsive pathway. PLoS ONE, 2012. 7(10): p. e47275 [PMID:23077584] - Akhtar M, et al.
DREB1/CBF transcription factors: their structure, function and role in abiotic stress tolerance in plants. J. Genet., 2012. 91(3): p. 385-95 [PMID:23271026] - Iwaki T, et al.
Metabolic profiling of transgenic potato tubers expressing Arabidopsis dehydration response element-binding protein 1A (DREB1A). J. Agric. Food Chem., 2013. 61(4): p. 893-900 [PMID:23286584] - Ni Z,Hu Z,Jiang Q,Zhang H
GmNFYA3, a target gene of miR169, is a positive regulator of plant tolerance to drought stress. Plant Mol. Biol., 2013. 82(1-2): p. 113-29 [PMID:23483290] - Hsieh EJ,Cheng MC,Lin TP
Functional characterization of an abiotic stress-inducible transcription factor AtERF53 in Arabidopsis thaliana. Plant Mol. Biol., 2013. 82(3): p. 223-37 [PMID:23625358] - Kang J, et al.
Natural variation of C-repeat-binding factor (CBFs) genes is a major cause of divergence in freezing tolerance among a group of Arabidopsis thaliana populations along the Yangtze River in China. New Phytol., 2013. 199(4): p. 1069-80 [PMID:23721132] - Chen L, et al.
Arabidopsis BPM proteins function as substrate adaptors to a cullin3-based E3 ligase to affect fatty acid metabolism in plants. Plant Cell, 2013. 25(6): p. 2253-64 [PMID:23792371] - Keily J, et al.
Model selection reveals control of cold signalling by evening-phased components of the plant circadian clock. Plant J., 2013. 76(2): p. 247-57 [PMID:23909712] - Hu Y,Jiang L,Wang F,Yu D
Jasmonate regulates the inducer of cbf expression-C-repeat binding factor/DRE binding factor1 cascade and freezing tolerance in Arabidopsis. Plant Cell, 2013. 25(8): p. 2907-24 [PMID:23933884] - Su Z, et al.
Flower development under drought stress: morphological and transcriptomic analyses reveal acute responses and long-term acclimation in Arabidopsis. Plant Cell, 2013. 25(10): p. 3785-807 [PMID:24179129] - Xu C,Wang M,Zhou L,Quan T,Xia G
Heterologous expression of the wheat aquaporin gene TaTIP2;2 compromises the abiotic stress tolerance of Arabidopsis thaliana. PLoS ONE, 2013. 8(11): p. e79618 [PMID:24223981] - Ding Y, et al.
Four distinct types of dehydration stress memory genes in Arabidopsis thaliana. BMC Plant Biol., 2013. 13: p. 229 [PMID:24377444] - Ravikumar G, et al.
Stress-inducible expression of AtDREB1A transcription factor greatly improves drought stress tolerance in transgenic indica rice. Transgenic Res., 2014. 23(3): p. 421-39 [PMID:24398893] - Dou H,Xv K,Meng Q,Li G,Yang X
Potato plants ectopically expressing Arabidopsis thaliana CBF3 exhibit enhanced tolerance to high-temperature stress. Plant Cell Environ., 2015. 38(1): p. 61-72 [PMID:24811248] - Shi H, et al.
The Cysteine2/Histidine2-Type Transcription Factor ZINC FINGER OF ARABIDOPSIS THALIANA6 Modulates Biotic and Abiotic Stress Responses by Activating Salicylic Acid-Related Genes and C-REPEAT-BINDING FACTOR Genes in Arabidopsis. Plant Physiol., 2014. 165(3): p. 1367-1379 [PMID:24834923] - Wan F, et al.
Heterologous expression of Arabidopsis C-repeat binding factor 3 (AtCBF3) and cold-regulated 15A (AtCOR15A) enhanced chilling tolerance in transgenic eggplant (Solanum melongena L.). Plant Cell Rep., 2014. 33(12): p. 1951-61 [PMID:25103420] - Xu F, et al.
Increased drought tolerance through the suppression of ESKMO1 gene and overexpression of CBF-related genes in Arabidopsis. PLoS ONE, 2014. 9(9): p. e106509 [PMID:25184213] - Anbazhagan K, et al.
DREB1A overexpression in transgenic chickpea alters key traits influencing plant water budget across water regimes. Plant Cell Rep., 2015. 34(2): p. 199-210 [PMID:25326370] - Sarkar T,Thankappan R,Kumar A,Mishra GP,Dobaria JR
Heterologous expression of the AtDREB1A gene in transgenic peanut-conferred tolerance to drought and salinity stresses. PLoS ONE, 2014. 9(12): p. e110507 [PMID:25545786] - Miyazaki Y,Abe H,Takase T,Kobayashi M,Kiyosue T
Overexpression of LOV KELCH protein 2 confers dehydration tolerance and is associated with enhanced expression of dehydration-inducible genes in Arabidopsis thaliana. Plant Cell Rep., 2015. 34(5): p. 843-52 [PMID:25627253] - Jiang W,Wu J,Zhang Y,Yin L,Lu J
Isolation of a WRKY30 gene from Muscadinia rotundifolia (Michx) and validation of its function under biotic and abiotic stresses. Protoplasma, 2015. 252(5): p. 1361-74 [PMID:25643917] - Park S, et al.
Regulation of the Arabidopsis CBF regulon by a complex low-temperature regulatory network. Plant J., 2015. 82(2): p. 193-207 [PMID:25736223] - Jin J, et al.
An Arabidopsis Transcriptional Regulatory Map Reveals Distinct Functional and Evolutionary Features of Novel Transcription Factors. Mol. Biol. Evol., 2015. 32(7): p. 1767-73 [PMID:25750178] - Paul S,Gayen D,Datta SK,Datta K
Dissecting root proteome of transgenic rice cultivars unravels metabolic alterations and accumulation of novel stress responsive proteins under drought stress. Plant Sci., 2015. 234: p. 133-43 [PMID:25804816] - Sazegari S,Niazi A,Ahmadi FS
A study on the regulatory network with promoter analysis for Arabidopsis DREB-genes. Bioinformation, 2015. 11(2): p. 101-6 [PMID:25848171] - Alvarez-Gerding X,Espinoza C,Inostroza-Blancheteau C,Arce-Johnson P
Molecular and physiological changes in response to salt stress in Citrus macrophylla W plants overexpressing Arabidopsis CBF3/DREB1A. Plant Physiol. Biochem., 2015. 92: p. 71-80 [PMID:25914135] - Shi H,Qian Y,Tan DX,Reiter RJ,He C
Melatonin induces the transcripts of CBF/DREB1s and their involvement in both abiotic and biotic stresses in Arabidopsis. J. Pineal Res., 2015. 59(3): p. 334-42 [PMID:26182834] - Kim YS,Lee M,Lee JH,Lee HJ,Park CM
The unified ICE-CBF pathway provides a transcriptional feedback control of freezing tolerance during cold acclimation in Arabidopsis. Plant Mol. Biol., 2015. 89(1-2): p. 187-201 [PMID:26311645] - Wang CL,Zhang SC,Qi SD,Zheng CC,Wu CA
Delayed germination of Arabidopsis seeds under chilling stress by overexpressing an abiotic stress inducible GhTPS11. Gene, 2016. 575(2 Pt 1): p. 206-12 [PMID:26325072] - Gehan MA, et al.
Natural variation in the C-repeat binding factor cold response pathway correlates with local adaptation of Arabidopsis ecotypes. Plant J., 2015. 84(4): p. 682-93 [PMID:26369909] - Su F, et al.
Burkholderia phytofirmans PsJN reduces impact of freezing temperatures on photosynthesis in Arabidopsis thaliana. Front Plant Sci, 2015. 6: p. 810 [PMID:26483823] - Chan Z, et al.
RDM4 modulates cold stress resistance in Arabidopsis partially through the CBF-mediated pathway. New Phytol., 2016. 209(4): p. 1527-39 [PMID:26522658] - Shah SH,Ali S,Qureshi AA,Zia MA,Ali GM
WITHDRAWN: Physiological and biochemical characterization of tomato transgenic lines overexpressing Arabidopsis thaliana cold responsive-element binding factor 3 (AtCBF3) gene under chilling stress. J. Biotechnol., 2016. [PMID:26732415] - Gao S, et al.
A cotton miRNA is involved in regulation of plant response to salt stress. Sci Rep, 2016. 6: p. 19736 [PMID:26813144] - Qiao Z,Li CL,Zhang W
WRKY1 regulates stomatal movement in drought-stressed Arabidopsis thaliana. Plant Mol. Biol., 2016. 91(1-2): p. 53-65 [PMID:26820136] - Shi H,Wei Y,He C
Melatonin-induced CBF/DREB1s are essential for diurnal change of disease resistance and CCA1 expression in Arabidopsis. Plant Physiol. Biochem., 2016. 100: p. 150-155 [PMID:26828406] - Kazama D, et al.
Identification of Chimeric Repressors that Confer Salt and Osmotic Stress Tolerance in Arabidopsis. Plants (Basel), 2013. 2(4): p. 769-85 [PMID:27137403] - Norén L, et al.
Circadian and Plastid Signaling Pathways Are Integrated to Ensure Correct Expression of the CBF and COR Genes during Photoperiodic Growth. Plant Physiol., 2016. 171(2): p. 1392-406 [PMID:27208227] - Zhao C, et al.
Mutational Evidence for the Critical Role of CBF Transcription Factors in Cold Acclimation in Arabidopsis. Plant Physiol., 2016. 171(4): p. 2744-59 [PMID:27252305] - Jia Y, et al.
The cbfs triple mutants reveal the essential functions of CBFs in cold acclimation and allow the definition of CBF regulons in Arabidopsis. New Phytol., 2016. 212(2): p. 345-53 [PMID:27353960] - Zhao C,Zhu JK
The broad roles of CBF genes: From development to abiotic stress. Plant Signal Behav, 2016. 11(8): p. e1215794 [PMID:27472659] - Wei T, et al.
Ectopic Expression of DREB Transcription Factor, AtDREB1A, Confers Tolerance to Drought in Transgenic Salvia miltiorrhiza. Plant Cell Physiol., 2016. 57(8): p. 1593-609 [PMID:27485523] - Bolt S,Zuther E,Zintl S,Hincha DK,Schmülling T
ERF105 is a transcription factor gene of Arabidopsis thaliana required for freezing tolerance and cold acclimation. Plant Cell Environ., 2017. 40(1): p. 108-120 [PMID:27723941] - An D, et al.
Divergent Regulation of CBF Regulon on Cold Tolerance and Plant Phenotype in Cassava Overexpressing Arabidopsis CBF3 Gene. Front Plant Sci, 2016. 7: p. 1866 [PMID:27999588] - Shi Y, et al.
The precise regulation of different COR genes by individual CBF transcription factors in Arabidopsis thaliana. J Integr Plant Biol, 2017. 59(2): p. 118-133 [PMID:28009483] - Zhou M,Chen H,Wei D,Ma H,Lin J
Arabidopsis CBF3 and DELLAs positively regulate each other in response to low temperature. Sci Rep, 2017. 7: p. 39819 [PMID:28051152] - Liu Z, et al.
Plasma Membrane CRPK1-Mediated Phosphorylation of 14-3-3 Proteins Induces Their Nuclear Import to Fine-Tune CBF Signaling during Cold Response. Mol. Cell, 2017. 66(1): p. 117-128.e5 [PMID:28344081] - Kidokoro S, et al.
Different Cold-Signaling Pathways Function in the Responses to Rapid and Gradual Decreases in Temperature. Plant Cell, 2017. 29(4): p. 760-774 [PMID:28351986] - Shen PC,Hour AL,Liu LD
Microarray meta-analysis to explore abiotic stress-specific gene expression patterns in Arabidopsis. Bot Stud, 2017. 58(1): p. 22 [PMID:28510204] - Kim SH, et al.
Phosphorylation of the transcriptional repressor MYB15 by mitogen-activated protein kinase 6 is required for freezing tolerance in Arabidopsis. Nucleic Acids Res., 2017. 45(11): p. 6613-6627 [PMID:28510716] - Yang L, et al.
Systematic analysis of the G-box Factor 14-3-3 gene family and functional characterization of GF14a in Brachypodium distachyon. Plant Physiol. Biochem., 2017. 117: p. 1-11 [PMID:28575641] - Shah SH, et al.
Chilling tolerance in three tomato transgenic lines overexpressing CBF3 gene controlled by a stress inducible promoter. Environ Sci Pollut Res Int, 2017. 24(22): p. 18536-18553 [PMID:28646315] - Li A, et al.
Transcriptome Profiling Reveals the Negative Regulation of Multiple Plant Hormone Signaling Pathways Elicited by Overexpression of C-Repeat Binding Factors. Front Plant Sci, 2017. 8: p. 1647 [PMID:28983312] - Du X,Jin Z,Liu D,Yang G,Pei Y
Hydrogen sulfide alleviates the cold stress through MPK4 in Arabidopsis thaliana. Plant Physiol. Biochem., 2017. 120: p. 112-119 [PMID:29024849] - Cho S, et al.
Accession-Dependent CBF Gene Deletion by CRISPR/Cas System in Arabidopsis. Front Plant Sci, 2017. 8: p. 1910 [PMID:29163623] - Beine-Golovchuk O, et al.
Plant Temperature Acclimation and Growth Rely on Cytosolic Ribosome Biogenesis Factor Homologs. Plant Physiol., 2018. 176(3): p. 2251-2276 [PMID:29382692] - Huang KC,Lin WC,Cheng WH
Salt hypersensitive mutant 9, a nucleolar APUM23 protein, is essential for salt sensitivity in association with the ABA signaling pathway in Arabidopsis. BMC Plant Biol., 2018. 18(1): p. 40 [PMID:29490615] - Wei T, et al.
Comparative Transcriptome Analyses Reveal Potential Mechanisms of Enhanced Drought Tolerance in Transgenic Salvia Miltiorrhiza Plants Expressing AtDREB1A from Arabidopsis. Int J Mol Sci, 2018. [PMID:29534548] - Liu Q, et al.
Two transcription factors, DREB1 and DREB2, with an EREBP/AP2 DNA binding domain separate two cellular signal transduction pathways in drought- and low-temperature-responsive gene expression, respectively, in Arabidopsis. Plant Cell, 1998. 10(8): p. 1391-406 [PMID:9707537] - Shinwari ZK, et al.
An Arabidopsis gene family encoding DRE/CRT binding proteins involved in low-temperature-responsive gene expression. Biochem. Biophys. Res. Commun., 1998. 250(1): p. 161-70 [PMID:9735350] - Gilmour SJ, et al.
Low temperature regulation of the Arabidopsis CBF family of AP2 transcriptional activators as an early step in cold-induced COR gene expression. Plant J., 1998. 16(4): p. 433-42 [PMID:9881163] - Medina J,Bargues M,Terol J,Pérez-Alonso M,Salinas J
The Arabidopsis CBF gene family is composed of three genes encoding AP2 domain-containing proteins whose expression Is regulated by low temperature but not by abscisic acid or dehydration. Plant Physiol., 1999. 119(2): p. 463-70 [PMID:9952441]
|