PlantRegMap/PlantTFDB v5.0
Plant Transcription Factor Database
Transcription Factor Information
Basic Information | Signature Domain | Sequence | 
Basic Information? help Back to Top
TF ID AT4G20380.7
Common NameCHS4, F9F13.30, LSD1
Taxonomic ID
Taxonomic Lineage
cellular organisms; Eukaryota; Viridiplantae; Streptophyta; Streptophytina; Embryophyta; Tracheophyta; Euphyllophyta; Spermatophyta; Magnoliophyta; Mesangiospermae; eudicotyledons; Gunneridae; Pentapetalae; rosids; malvids; Brassicales; Brassicaceae; Camelineae; Arabidopsis
Family LSD
Protein Properties Length: 189aa    MW: 20107.2 Da    PI: 8.4437
Description LSD family protein
Gene Model
Gene Model ID Type Source Coding Sequence
AT4G20380.7genomeTAIRView CDS
Signature Domain? help Back to Top
Signature Domain
No. Domain Score E-value Start End HMM Start HMM End
      zf-LSD1  1 CggCrtlLsYPrGApsVRCalCdtV 25
                 ***********************97 PP

      zf-LSD1  1 CggCrtlLsYPrGApsVRCalCdt 24
                 ***********************9 PP

      zf-LSD1   1 CggCrtlLsYPrGApsVRCalCdtV 25 
                  ***********************98 PP

Protein Features ? help Back to Top
3D Structure
Database Entry ID E-value Start End InterPro ID Description
TIGRFAMsTIGR010531.5E-19939IPR005735Zinc finger, LSD1-type
PfamPF069434.3E-141236IPR005735Zinc finger, LSD1-type
TIGRFAMsTIGR010532.2E-185080IPR005735Zinc finger, LSD1-type
PfamPF069435.9E-125376IPR005735Zinc finger, LSD1-type
TIGRFAMsTIGR010538.7E-1497127IPR005735Zinc finger, LSD1-type
PfamPF069435.9E-14100124IPR005735Zinc finger, LSD1-type
Gene Ontology ? help Back to Top
GO Term GO Category GO Description
GO:0000303Biological Processresponse to superoxide
GO:0001666Biological Processresponse to hypoxia
GO:0002240Biological Processresponse to molecule of oomycetes origin
GO:0006355Biological Processregulation of transcription, DNA-templated
GO:0009626Biological Processplant-type hypersensitive response
GO:0009862Biological Processsystemic acquired resistance, salicylic acid mediated signaling pathway
GO:0010104Biological Processregulation of ethylene-activated signaling pathway
GO:0010310Biological Processregulation of hydrogen peroxide metabolic process
GO:0010602Biological Processregulation of 1-aminocyclopropane-1-carboxylate metabolic process
GO:0010618Biological Processaerenchyma formation
GO:0043069Biological Processnegative regulation of programmed cell death
GO:0005634Cellular Componentnucleus
GO:0005737Cellular Componentcytoplasm
GO:0003700Molecular Functiontranscription factor activity, sequence-specific DNA binding
GO:0005515Molecular Functionprotein binding
Plant Ontology ? help Back to Top
PO Term PO Category PO Description
PO:0000013anatomycauline leaf
PO:0000037anatomyshoot apex
PO:0000084anatomyplant sperm cell
PO:0000230anatomyinflorescence meristem
PO:0000293anatomyguard cell
PO:0008019anatomyleaf lamina base
PO:0009006anatomyshoot system
PO:0009009anatomyplant embryo
PO:0009025anatomyvascular leaf
PO:0009052anatomyflower pedicel
PO:0020137anatomyleaf apex
PO:0025022anatomycollective leaf structure
PO:0025195anatomypollen tube cell
PO:0001016developmental stageL mature pollen stage
PO:0001017developmental stageM germinated pollen stage
PO:0001054developmental stagevascular leaf senescent stage
PO:0001078developmental stageplant embryo cotyledonary stage
PO:0001081developmental stagemature plant embryo stage
PO:0001185developmental stageplant embryo globular stage
PO:0004507developmental stageplant embryo bilateral stage
PO:0007064developmental stageLP.12 twelve leaves visible stage
PO:0007095developmental stageLP.08 eight leaves visible stage
PO:0007098developmental stageLP.02 two leaves visible stage
PO:0007103developmental stageLP.10 ten leaves visible stage
PO:0007115developmental stageLP.04 four leaves visible stage
PO:0007123developmental stageLP.06 six leaves visible stage
PO:0007611developmental stagepetal differentiation and expansion stage
PO:0007616developmental stageflowering stage
Sequence ? help Back to Top
Protein Sequence    Length: 189 aa     Download sequence    Send to blast
Expression -- UniGene ? help Back to Top
UniGene ID E-value Expressed in
At.241871e-125floral meristem| flower| root| seed
Expression -- Microarray ? help Back to Top
Source ID E-value
Expression AtlasAT4G20380-
Expression -- Description ? help Back to Top
Source Description
UniprotTISSUE SPECIFICITY: Expressed in cotyledons, roots, rosette leaves, stems, inflorescences and flowers. {ECO:0000269|PubMed:20456049}.
Functional Description ? help Back to Top
Source Description
TAIRLSD1 monitors a superoxide-dependent signal and negatively regulates a plant cell death pathway. contains zinc-finger motifs. LSD1 negatively regulates a basal defense pathway that can act upstream or independently of both NIM1/NPR1 function and SA accumulation following avirulent or virulent pathogen challenge
UniProtNegative regulator of reactive oxygen-induced cell death, cold stress-induced cell death, pathogen-induced hypersensitive response (HR), basal disease resistance. May be involved in the induction of the copper/zinc superoxide dismutase CSD1 and CSD2 that detoxify accumulating superoxide before the reactive oxygen species (ROS) can trigger a cell death cascade. LSD1 and LOL1 have antagonistic effects on CSD1 and CSD2 accumulation to regulate oxidative stress-induced cell death. Antagonizes the function of BZIP10, a positive regulator of cell death, by interacting in the cytoplasm and preventing its nuclear localization. Controls lysigenous aerenchyma in hypocotyls under root hypoxia. Required for leaf acclimation in response to excess excitation energy. {ECO:0000269|PubMed:10550898, ECO:0000269|PubMed:11595797, ECO:0000269|PubMed:11844114, ECO:0000269|PubMed:12732715, ECO:0000269|PubMed:15347794, ECO:0000269|PubMed:16957775, ECO:0000269|PubMed:18055613, ECO:0000269|PubMed:18790826, ECO:0000269|PubMed:20456049, ECO:0000269|PubMed:21097903}.
Function -- GeneRIF ? help Back to Top
  1. the roles of LSD1 in light acclimation and in restricting pathogen-induced cell death are functionally linked
    [PMID: 15347794]
  2. Use in the implementation of bimolecular fluorescence complementation for visualization of protein-protein interactions in plant cells.
    [PMID: 15469500]
  3. LSD1 likely functions as a cellular hub, where its interaction with AtbZIP10 and additional, as yet unidentified, proteins contributes significantly to plant oxidative stress responses
    [PMID: 16957775]
  4. The balanced activities of LSD1, EDS1, and PAD4 regulate lysigenous aerenchyma formation in response to hypoxia.
    [PMID: 18055613]
  5. Data suggest that the balanced activities of LSD1, EDS1, PAD4, and EIN2 regulate signaling of programmed cell death, light acclimation, and holistic defense responses that are initiated, at least in part, by redox changes of the plastoquinone pool.
    [PMID: 18790826]
  6. These findings reveal a role of LSD1 in regulating cell death trigged by cold stress and a link between cold stress responses and ROS-associated signaling.
    [PMID: 20456049]
  7. lsd1-catalase interaction plays an important role in regulating programmed cell death (PCD) in Arabidopsis.
    [PMID: 23958864]
  8. LSD1 and EDS1 regulate processes extinguishing excessive energy, reactive oxygen species formation and subsequent programmed cell death in response to different stresses related to impaired electron transport.
    [PMID: 24471507]
  9. Data indicate that Arabidopsis proteins PAD4, LSD1 and EDS1 constitute a molecular hub, which integrates plant responses to water stress, vegetative biomass production and generative development.
    [PMID: 26754794]
  10. LSD1 plays a dual role within the cell by acting as a condition-dependent scaffold protein and as a transcription regulator.
    [PMID: 28555890]
  11. Salicylic acid and hydrogen peroxide are conditionally regulated by LSD1/EDS/PAD4 to govern water use efficiency, biomass accumulation and seed yield.
    [PMID: 30461017]
Cis-element ? help Back to Top
Regulation -- Description ? help Back to Top
Source Description
UniProtINDUCTION: By methyl viologen. {ECO:0000269|PubMed:20456049}.
Regulation -- PlantRegMap ? help Back to Top
Source Upstream Regulator Target Gene
Regulation -- ATRM (Manually Curated Target Genes) ? help Back to Top
Source Target Gene (A: Activate/R: Repress)
ATRM AT1G08830(A), AT1G19250(R), AT1G20630(A), AT5G61900(R)
Interaction ? help Back to Top
Source Intact With
BioGRIDAT4G20380, AT4G02640
IntActSearch P94077
Phenotype -- Disruption Phenotype ? help Back to Top
Source Description
UniProtDISRUPTION PHENOTYPE: No visible phenotype under normal growth condition, however cold treatment induces the development of yellowish leaves with necrosis, and treatment with salicylic acid or infection with avirulent pathogen causes a runaway cell death and plant death. {ECO:0000269|PubMed:11844114, ECO:0000269|PubMed:20456049}.
Phenotype -- Mutation ? help Back to Top
Source ID
T-DNA ExpressAT4G20380
Annotation -- Nucleotide ? help Back to Top
Source Hit ID E-value Description
GenBankATU878330.0U87833.1 Arabidopsis thaliana zinc-finger protein Lsd1 (LSD1) mRNA, complete cds.
Annotation -- Protein ? help Back to Top
Source Hit ID E-value Description
RefseqNP_001078413.11e-136LSD1 zinc finger family protein
RefseqNP_849549.11e-136LSD1 zinc finger family protein
SwissprotP940771e-137LSD1_ARATH; Protein LSD1
TrEMBLA0A178V4C01e-134A0A178V4C0_ARATH; LSD1
STRINGfgenesh2_kg.7__2262__AT4G20380.41e-112(Arabidopsis lyrata)
Publications ? help Back to Top
  1. Richberg MH,Aviv DH,Dangl JL
    Dead cells do tell tales.
    Curr. Opin. Plant Biol., 1998. 1(6): p. 480-5
  2. Kliebenstein DJ,Dietrich RA,Martin AC,Last RL,Dangl JL
    LSD1 regulates salicylic acid induction of copper zinc superoxide dismutase in Arabidopsis thaliana.
    Mol. Plant Microbe Interact., 1999. 12(11): p. 1022-6
  3. Daniel X,Lacomme C,Morel JB,Roby D
    A novel myb oncogene homologue in Arabidopsis thaliana related to hypersensitive cell death.
    Plant J., 1999. 20(1): p. 57-66
  4. Mazel A,Levine A
    Induction of cell death in arabidopsis by superoxide in combination with salicylic acid or with protein synthesis inhibitors.
    Free Radic. Biol. Med., 2001. 30(1): p. 98-106
  5. Rust
    The disease resistance signaling components EDS1 and PAD4 are essential regulators of the cell death pathway controlled by LSD1 in Arabidopsis.
    Plant Cell, 2001. 13(10): p. 2211-24
  6. Aviv DH, et al.
    Runaway cell death, but not basal disease resistance, in lsd1 is SA- and NIM1/NPR1-dependent.
    Plant J., 2002. 29(3): p. 381-91
  7. Epple P,Mack AA,Morris VR,Dangl JL
    Antagonistic control of oxidative stress-induced cell death in Arabidopsis by two related, plant-specific zinc finger proteins.
    Proc. Natl. Acad. Sci. U.S.A., 2003. 100(11): p. 6831-6
  8. Jambunathan N,McNellis TW
    Regulation of Arabidopsis COPINE 1 gene expression in response to pathogens and abiotic stimuli.
    Plant Physiol., 2003. 132(3): p. 1370-81
  9. Yamada K, et al.
    Empirical analysis of transcriptional activity in the Arabidopsis genome.
    Science, 2003. 302(5646): p. 842-6
  10. Coupe SA,Watson LM,Ryan DJ,Pinkney TT,Eason JR
    Molecular analysis of programmed cell death during senescence in Arabidopsis thaliana and Brassica oleracea: cloning broccoli LSD1, Bax inhibitor and serine palmitoyltransferase homologues.
    J. Exp. Bot., 2004. 55(394): p. 59-68
  11. Mateo A, et al.
    LESION SIMULATING DISEASE 1 is required for acclimation to conditions that promote excess excitation energy.
    Plant Physiol., 2004. 136(1): p. 2818-30
  12. Walter M, et al.
    Visualization of protein interactions in living plant cells using bimolecular fluorescence complementation.
    Plant J., 2004. 40(3): p. 428-38
  13. Wang L,Pei Z,Tian Y,He C
    OsLSD1, a rice zinc finger protein, regulates programmed cell death and callus differentiation.
    Mol. Plant Microbe Interact., 2005. 18(5): p. 375-84
  14. Takemoto D,Hardham AR,Jones DA
    Differences in cell death induction by Phytophthora Elicitins are determined by signal components downstream of MAP kinase kinase in different species of Nicotiana and cultivars of Brassica rapa and Raphanus sativus.
    Plant Physiol., 2005. 138(3): p. 1491-504
  15. Mishina TE,Zeier J
    The Arabidopsis flavin-dependent monooxygenase FMO1 is an essential component of biologically induced systemic acquired resistance.
    Plant Physiol., 2006. 141(4): p. 1666-75
  16. Kaminaka H, et al.
    bZIP10-LSD1 antagonism modulates basal defense and cell death in Arabidopsis following infection.
    EMBO J., 2006. 25(18): p. 4400-11
  17. Xu C,He C
    The rice OsLOL2 gene encodes a zinc finger protein involved in rice growth and disease resistance.
    Mol. Genet. Genomics, 2007. 278(1): p. 85-94
  18. Mühlenbock P,Plaszczyca M,Plaszczyca M,Mellerowicz E,Karpinski S
    Lysigenous aerenchyma formation in Arabidopsis is controlled by LESION SIMULATING DISEASE1.
    Plant Cell, 2007. 19(11): p. 3819-30
  19. Spedaletti V, et al.
    Characterization of a lysine-specific histone demethylase from Arabidopsis thaliana.
    Biochemistry, 2008. 47(17): p. 4936-47
  20. Cooper AJ, et al.
    Basic compatibility of Albugo candida in Arabidopsis thaliana and Brassica juncea causes broad-spectrum suppression of innate immunity.
    Mol. Plant Microbe Interact., 2008. 21(6): p. 745-56
  21. Wang Y, et al.
    Transcriptome analyses show changes in gene expression to accompany pollen germination and tube growth in Arabidopsis.
    Plant Physiol., 2008. 148(3): p. 1201-11
  22. Mühlenbock P, et al.
    Chloroplast signaling and LESION SIMULATING DISEASE1 regulate crosstalk between light acclimation and immunity in Arabidopsis.
    Plant Cell, 2008. 20(9): p. 2339-56
  23. Huang X,Li Y,Zhang X,Zuo J,Yang S
    The Arabidopsis LSD1 gene plays an important role in the regulation of low temperature-dependent cell death.
    New Phytol., 2010. 187(2): p. 301-12
  24. Chaouch S, et al.
    Peroxisomal hydrogen peroxide is coupled to biotic defense responses by ISOCHORISMATE SYNTHASE1 in a daylength-related manner.
    Plant Physiol., 2010. 153(4): p. 1692-705
  25. Coll NS, et al.
    Arabidopsis type I metacaspases control cell death.
    Science, 2010. 330(6009): p. 1393-7
  26. He S, et al.
    The LSD1-interacting protein GILP is a LITAF domain protein that negatively regulates hypersensitive cell death in Arabidopsis.
    PLoS ONE, 2011. 6(4): p. e18750
  27. Yeh SH,Lin CS,Wu FH,Wang AY
    Analysis of the expression of BohLOL1, which encodes an LSD1-like zinc finger protein in Bambusa oldhamii.
    Planta, 2011. 234(6): p. 1179-89
  28. He S, et al.
    The LSD1-type zinc finger motifs of Pisum sativa LSD1 are a novel nuclear localization signal and interact with importin alpha.
    PLoS ONE, 2011. 6(7): p. e22131
  29. Klopffleisch K, et al.
    Arabidopsis G-protein interactome reveals connections to cell wall carbohydrates and morphogenesis.
    Mol. Syst. Biol., 2011. 7: p. 532
  30. Wituszynska W, et al.
    Lesion simulating disease1, enhanced disease susceptibility1, and phytoalexin deficient4 conditionally regulate cellular signaling homeostasis, photosynthesis, water use efficiency, and seed yield in Arabidopsis.
    Plant Physiol., 2013. 161(4): p. 1795-805
  31. Yoon GM,Kieber JJ
    14-3-3 regulates 1-aminocyclopropane-1-carboxylate synthase protein turnover in Arabidopsis.
    Plant Cell, 2013. 25(3): p. 1016-28
  32. Roberts M,Tang S,Stallmann A,Dangl JL,Bonardi V
    Genetic requirements for signaling from an autoactive plant NB-LRR intracellular innate immune receptor.
    PLoS Genet., 2013. 9(4): p. e1003465
  33. Li Y,Chen L,Mu J,Zuo J
    LESION SIMULATING DISEASE1 interacts with catalases to regulate hypersensitive cell death in Arabidopsis.
    Plant Physiol., 2013. 163(2): p. 1059-70
  34. Wituszyńska W, et al.
    Lesion simulating disease 1 and enhanced disease susceptibility 1 differentially regulate UV-C-induced photooxidative stress signalling and programmed cell death in Arabidopsis thaliana.
    Plant Cell Environ., 2015. 38(2): p. 315-30
  35. Jin J, et al.
    An Arabidopsis Transcriptional Regulatory Map Reveals Distinct Functional and Evolutionary Features of Novel Transcription Factors.
    Mol. Biol. Evol., 2015. 32(7): p. 1767-73
  36. Chai T,Zhou J,Liu J,Xing D
    LSD1 and HY5 antagonistically regulate red light induced-programmed cell death in Arabidopsis.
    Front Plant Sci, 2015. 6: p. 292
  37. Szechyńska-Hebda M,Czarnocka W,Hebda M,Bernacki MJ,Karpiński S
    PAD4, LSD1 and EDS1 regulate drought tolerance, plant biomass production, and cell wall properties.
    Plant Cell Rep., 2016. 35(3): p. 527-39
  38. Czarnocka W, et al.
    The dual role of LESION SIMULATING DISEASE 1 as a condition-dependent scaffold protein and transcription regulator.
    Plant Cell Environ., 2017. 40(11): p. 2644-2662
  39. Bernacki MJ, et al.
    LSD1-, EDS1- and PAD4-dependent conditional correlation among salicylic acid, hydrogen peroxide, water use efficiency and seed yield in Arabidopsis thaliana.
    Physiol Plant, 2019. 165(2): p. 369-382
  40. Jabs T,Dietrich RA,Dangl JL
    Initiation of runaway cell death in an Arabidopsis mutant by extracellular superoxide.
    Science, 1996. 273(5283): p. 1853-6
  41. Dietrich RA,Richberg MH,Schmidt R,Dean C,Dangl JL
    A novel zinc finger protein is encoded by the Arabidopsis LSD1 gene and functions as a negative regulator of plant cell death.
    Cell, 1997. 88(5): p. 685-94