PlantRegMap/PlantTFDB v5.0
Plant Transcription Factor Database
Transcription Factor Information
Basic Information | Signature Domain | Sequence | 
Basic Information? help Back to Top
TF ID AT4G01250.1
Common NameA_IG002N01.6, AtWRKY22, F2N1.6, WRKY22
Taxonomic ID
Taxonomic Lineage
cellular organisms; Eukaryota; Viridiplantae; Streptophyta; Streptophytina; Embryophyta; Tracheophyta; Euphyllophyta; Spermatophyta; Magnoliophyta; Mesangiospermae; eudicotyledons; Gunneridae; Pentapetalae; rosids; malvids; Brassicales; Brassicaceae; Camelineae; Arabidopsis
Family WRKY
Protein Properties Length: 298aa    MW: 32255.6 Da    PI: 7.566
Description WRKY family protein
Gene Model
Gene Model ID Type Source Coding Sequence
AT4G01250.1genomeTAIRView CDS
Signature Domain? help Back to Top
Signature Domain
No. Domain Score E-value Start End HMM Start HMM End
         WRKY   2 dDgynWrKYGqKevkgsefprsYYrCtsa.gCpvkkkversaedpkvveitYegeHnhe 59 
                  +D ++WrKYGqK++kgs++pr+YYrC+++ gC ++k+ver+++dpk++++tY+ eHnh+
                  69************************9988****************************8 PP

Protein Features ? help Back to Top
3D Structure
Database Entry ID E-value Start End InterPro ID Description
Gene3DG3DSA: domain
PROSITE profilePS5081136.77122188IPR003657WRKY domain
SuperFamilySSF1182903.92E-26124188IPR003657WRKY domain
SMARTSM007748.4E-36127187IPR003657WRKY domain
PfamPF031067.0E-26129186IPR003657WRKY domain
Gene Ontology ? help Back to Top
GO Term GO Category GO Description
GO:0006355Biological Processregulation of transcription, DNA-templated
GO:0006952Biological Processdefense response
GO:0010150Biological Processleaf senescence
GO:0010200Biological Processresponse to chitin
GO:0005634Cellular Componentnucleus
GO:0003700Molecular Functiontranscription factor activity, sequence-specific DNA binding
GO:0043565Molecular Functionsequence-specific DNA binding
Plant Ontology ? help Back to Top
PO Term PO Category PO Description
PO:0000013anatomycauline leaf
PO:0000037anatomyshoot apex
PO:0000230anatomyinflorescence meristem
PO:0000293anatomyguard cell
PO:0008019anatomyleaf lamina base
PO:0009006anatomyshoot system
PO:0009009anatomyplant embryo
PO:0009025anatomyvascular leaf
PO:0009052anatomyflower pedicel
PO:0020137anatomyleaf apex
PO:0025022anatomycollective leaf structure
PO:0001054developmental stagevascular leaf senescent stage
PO:0001078developmental stageplant embryo cotyledonary stage
PO:0001081developmental stagemature plant embryo stage
PO:0001185developmental stageplant embryo globular stage
PO:0004507developmental stageplant embryo bilateral stage
PO:0007064developmental stageLP.12 twelve leaves visible stage
PO:0007095developmental stageLP.08 eight leaves visible stage
PO:0007098developmental stageLP.02 two leaves visible stage
PO:0007103developmental stageLP.10 ten leaves visible stage
PO:0007115developmental stageLP.04 four leaves visible stage
PO:0007123developmental stageLP.06 six leaves visible stage
PO:0007611developmental stagepetal differentiation and expansion stage
PO:0007616developmental stageflowering stage
Sequence ? help Back to Top
Protein Sequence    Length: 298 aa     Download sequence    Send to blast
3D Structure ? help Back to Top
PDB ID Evalue Query Start Query End Hit Start Hit End Description
5w3x_B1e-201291891880Disease resistance protein RRS1
5w3x_D1e-201291891880Disease resistance protein RRS1
Search in ModeBase
Expression -- UniGene ? help Back to Top
UniGene ID E-value Expressed in
At.38030.0bud| root
Expression -- Microarray ? help Back to Top
Source ID E-value
Expression AtlasAT4G01250-
Functional Description ? help Back to Top
Source Description
TAIRmember of WRKY Transcription Factor; Group II-e
UniProtTranscription factor involved in the expression of defense genes in innate immune response of plants. Interacts specifically with the W box (5'-(T)TGAC[CT]-3'), a frequently occurring elicitor-responsive cis-acting element. Activates WRKY 29, SIRK and its own promoters. {ECO:0000269|PubMed:11875555}.
Function -- GeneRIF ? help Back to Top
  1. AtWRKY22 participates in the dark-induced senescence signal transduction pathway
    [PMID: 21359674]
  2. Data indicate that WRKY22 T-DNA insertion mutants wrky22-1 and wrky22-2 had lower disease resistance and lower induction of innate immunity markers, such as FLG22-INDUCED RECEPTOR-LIKE KINASE1 (FRK1) and WRKY53, after submergence.
    [PMID: 23897923]
  3. WRKY22 modulates the interplay between the salicylic acid (SA) and jasmonic acid (JA) pathways in response to a wide range of biotic and abiotic stimuli. Its induction by aphids and its role in suppressing SA and JA signalling make WRKY22 a potential target for aphids to manipulate host plant defences.
    [PMID: 27107291]
Binding Motif ? help Back to Top
Motif ID Method Source Motif file
Motif logo
Cis-element ? help Back to Top
Regulation -- Description ? help Back to Top
Source Description
UniProtINDUCTION: Induced after flagellin treatment. {ECO:0000269|PubMed:11875555}.
Regulation -- PlantRegMap ? help Back to Top
Source Upstream Regulator Target Gene
Regulation -- ATRM (Manually Curated Target Genes) ? help Back to Top
Source Target Gene (A: Activate/R: Repress)
ATRM AT2G19190(A), AT4G23550(A)
Phenotype -- Mutation ? help Back to Top
Source ID
T-DNA ExpressAT4G01250
Annotation -- Nucleotide ? help Back to Top
Source Hit ID E-value Description
GenBankAF4423920.0AF442392.1 Arabidopsis thaliana WRKY transcription factor 22 (WRKY22) mRNA, complete cds.
GenBankAY0459090.0AY045909.1 Arabidopsis thaliana putative DNA-binding protein (At4g01250) mRNA, complete cds.
GenBankAY0794040.0AY079404.1 Arabidopsis thaliana putative DNA-binding protein (At4g01250) mRNA, complete cds.
Annotation -- Protein ? help Back to Top
Source Hit ID E-value Description
RefseqNP_192034.10.0WRKY family transcription factor
SwissprotO046090.0WRK22_ARATH; WRKY transcription factor 22
TrEMBLA0A178V2510.0A0A178V251_ARATH; WRKY22
STRINGAT4G01250.10.0(Arabidopsis thaliana)
Orthologous Group ? help Back to Top
LineageOrthologous Group IDTaxa NumberGene Number
Representative plantOGRP1417875
Publications ? help Back to Top
  1. Eulgem T,Rushton PJ,Robatzek S,Somssich IE
    The WRKY superfamily of plant transcription factors.
    Trends Plant Sci., 2000. 5(5): p. 199-206
  2. Riechmann JL, et al.
    Arabidopsis transcription factors: genome-wide comparative analysis among eukaryotes.
    Science, 2000. 290(5499): p. 2105-10
  3. Asai T, et al.
    MAP kinase signalling cascade in Arabidopsis innate immunity.
    Nature, 2002. 415(6875): p. 977-83
  4. Folta KM,Pontin MA,Karlin-Neumann G,Bottini R,Spalding EP
    Genomic and physiological studies of early cryptochrome 1 action demonstrate roles for auxin and gibberellin in the control of hypocotyl growth by blue light.
    Plant J., 2003. 36(2): p. 203-14
  5. Dal Bosco C, et al.
    Inactivation of the chloroplast ATP synthase gamma subunit results in high non-photochemical fluorescence quenching and altered nuclear gene expression in Arabidopsis thaliana.
    J. Biol. Chem., 2004. 279(2): p. 1060-9
  6. Yamada K, et al.
    Empirical analysis of transcriptional activity in the Arabidopsis genome.
    Science, 2003. 302(5646): p. 842-6
  7. Hoth S, et al.
    Monitoring genome-wide changes in gene expression in response to endogenous cytokinin reveals targets in Arabidopsis thaliana.
    FEBS Lett., 2003. 554(3): p. 373-80
  8. Zipfel C, et al.
    Bacterial disease resistance in Arabidopsis through flagellin perception.
    Nature, 2004. 428(6984): p. 764-7
  9. Navarro L, et al.
    The transcriptional innate immune response to flg22. Interplay and overlap with Avr gene-dependent defense responses and bacterial pathogenesis.
    Plant Physiol., 2004. 135(2): p. 1113-28
  10. Hampton CR, et al.
    Cesium toxicity in Arabidopsis.
    Plant Physiol., 2004. 136(3): p. 3824-37
  11. Monte E, et al.
    The phytochrome-interacting transcription factor, PIF3, acts early, selectively, and positively in light-induced chloroplast development.
    Proc. Natl. Acad. Sci. U.S.A., 2004. 101(46): p. 16091-8
  12. Miao Y,Laun T,Zimmermann P,Zentgraf U
    Targets of the WRKY53 transcription factor and its role during leaf senescence in Arabidopsis.
    Plant Mol. Biol., 2004. 55(6): p. 853-67
  13. Xie Z, et al.
    Annotations and functional analyses of the rice WRKY gene superfamily reveal positive and negative regulators of abscisic acid signaling in aleurone cells.
    Plant Physiol., 2005. 137(1): p. 176-89
  14. Lee D,Polisensky DH,Braam J
    Genome-wide identification of touch- and darkness-regulated Arabidopsis genes: a focus on calmodulin-like and XTH genes.
    New Phytol., 2005. 165(2): p. 429-44
  15. Lee BH,Henderson DA,Zhu JK
    The Arabidopsis cold-responsive transcriptome and its regulation by ICE1.
    Plant Cell, 2005. 17(11): p. 3155-75
  16. Phelps-Durr TL,Thomas J,Vahab P,Timmermans MC
    Maize rough sheath2 and its Arabidopsis orthologue ASYMMETRIC LEAVES1 interact with HIRA, a predicted histone chaperone, to maintain knox gene silencing and determinacy during organogenesis.
    Plant Cell, 2005. 17(11): p. 2886-98
  17. Suzuki N, et al.
    Enhanced tolerance to environmental stress in transgenic plants expressing the transcriptional coactivator multiprotein bridging factor 1c.
    Plant Physiol., 2005. 139(3): p. 1313-22
  18. Truman W,de Zabala MT,Grant M
    Type III effectors orchestrate a complex interplay between transcriptional networks to modify basal defence responses during pathogenesis and resistance.
    Plant J., 2006. 46(1): p. 14-33
  19. Thilmony R,Underwood W,He SY
    Genome-wide transcriptional analysis of the Arabidopsis thaliana interaction with the plant pathogen Pseudomonas syringae pv. tomato DC3000 and the human pathogen Escherichia coli O157:H7.
    Plant J., 2006. 46(1): p. 34-53
  20. Tosti N, et al.
    Gene expression profiles of O3-treated Arabidopsis plants.
    Plant Cell Environ., 2006. 29(9): p. 1686-702
  21. M
    The Arabidopsis MAP kinase kinase MKK1 participates in defence responses to the bacterial elicitor flagellin.
    Plant J., 2006. 48(4): p. 485-98
  22. Serrano M, et al.
    Chemical interference of pathogen-associated molecular pattern-triggered immune responses in Arabidopsis reveals a potential role for fatty-acid synthase type II complex-derived lipid signals.
    J. Biol. Chem., 2007. 282(9): p. 6803-11
  23. Libault M,Wan J,Czechowski T,Udvardi M,Stacey G
    Identification of 118 Arabidopsis transcription factor and 30 ubiquitin-ligase genes responding to chitin, a plant-defense elicitor.
    Mol. Plant Microbe Interact., 2007. 20(8): p. 900-11
  24. Chawade A,Br
    Putative cold acclimation pathways in Arabidopsis thaliana identified by a combined analysis of mRNA co-expression patterns, promoter motifs and transcription factors.
    BMC Genomics, 2007. 8: p. 304
  25. Xu L, et al.
    Di- and tri- but not monomethylation on histone H3 lysine 36 marks active transcription of genes involved in flowering time regulation and other processes in Arabidopsis thaliana.
    Mol. Cell. Biol., 2008. 28(4): p. 1348-60
  26. Wan J, et al.
    A LysM receptor-like kinase plays a critical role in chitin signaling and fungal resistance in Arabidopsis.
    Plant Cell, 2008. 20(2): p. 471-81
  27. Yamaguchi Y,Huffaker A,Bryan AC,Tax FE,Ryan CA
    PEPR2 is a second receptor for the Pep1 and Pep2 peptides and contributes to defense responses in Arabidopsis.
    Plant Cell, 2010. 22(2): p. 508-22
  28. Wan J,Zhang S,Stacey G
    Activation of a mitogen-activated protein kinase pathway in Arabidopsis by chitin.
    Mol. Plant Pathol., 2004. 5(2): p. 125-35
  29. Zhou X,Jiang Y,Yu D
    WRKY22 transcription factor mediates dark-induced leaf senescence in Arabidopsis.
    Mol. Cells, 2011. 31(4): p. 303-13
  30. Schikora A, et al.
    N-acyl-homoserine lactone confers resistance toward biotrophic and hemibiotrophic pathogens via altered activation of AtMPK6.
    Plant Physiol., 2011. 157(3): p. 1407-18
  31. Gonz
    The conjugated auxin indole-3-acetic acid-aspartic acid promotes plant disease development.
    Plant Cell, 2012. 24(2): p. 762-77
  32. Göhre V,Jones AM,Sklenář J,Robatzek S,Weber AP
    Molecular crosstalk between PAMP-triggered immunity and photosynthesis.
    Mol. Plant Microbe Interact., 2012. 25(8): p. 1083-92
  33. Hsu FC, et al.
    Submergence confers immunity mediated by the WRKY22 transcription factor in Arabidopsis.
    Plant Cell, 2013. 25(7): p. 2699-713
  34. Ding Y, et al.
    Four distinct types of dehydration stress memory genes in Arabidopsis thaliana.
    BMC Plant Biol., 2013. 13: p. 229
  35. Coego A, et al.
    The TRANSPLANTA collection of Arabidopsis lines: a resource for functional analysis of transcription factors based on their conditional overexpression.
    Plant J., 2014. 77(6): p. 944-53
  36. Jin J, et al.
    An Arabidopsis Transcriptional Regulatory Map Reveals Distinct Functional and Evolutionary Features of Novel Transcription Factors.
    Mol. Biol. Evol., 2015. 32(7): p. 1767-73
  37. Gkizi D, et al.
    The Innate Immune Signaling System as a Regulator of Disease Resistance and Induced Systemic Resistance Activity Against Verticillium dahliae.
    Mol. Plant Microbe Interact., 2016. 29(4): p. 313-23
  38. Kloth KJ, et al.
    AtWRKY22 promotes susceptibility to aphids and modulates salicylic acid and jasmonic acid signalling.
    J. Exp. Bot., 2016. 67(11): p. 3383-96
  39. Camborde L, et al.
    Detection of nucleic acid-protein interactions in plant leaves using fluorescence lifetime imaging microscopy.
    Nat Protoc, 2017. 12(9): p. 1933-1950
  40. Wang S, et al.
    Bacillus cereus AR156 Activates Defense Responses to Pseudomonas syringae pv. tomato in Arabidopsis thaliana Similarly to flg22.
    Mol. Plant Microbe Interact., 2018. 31(3): p. 311-322