PlantRegMap/PlantTFDB v5.0
Plant Transcription Factor Database
Transcription Factor Information
Basic Information | Signature Domain | Sequence | 
Basic Information? help Back to Top
TF ID AT3G54340.1
Common NameAP3, ATAP3, T12E18_30
Taxonomic ID
Taxonomic Lineage
cellular organisms; Eukaryota; Viridiplantae; Streptophyta; Streptophytina; Embryophyta; Tracheophyta; Euphyllophyta; Spermatophyta; Magnoliophyta; Mesangiospermae; eudicotyledons; Gunneridae; Pentapetalae; rosids; malvids; Brassicales; Brassicaceae; Camelineae; Arabidopsis
Protein Properties Length: 232aa    MW: 27340.9 Da    PI: 8.937
Description MIKC_MADS family protein
Gene Model
Gene Model ID Type Source Coding Sequence
AT3G54340.1genomeTAIRView CDS
Signature Domain? help Back to Top
Signature Domain
No. Domain Score E-value Start End HMM Start HMM End
       SRF-TF  1 krienksnrqvtfskRrngilKKAeELSvLCdaevaviifsstgklyeyss 51
                 krien++nrqvt+skRrng++KKA+EL vLCda+v++i+fss++kl+ey+s
                 79***********************************************86 PP

        K-box   1 yqkssgksleeakaeslqqelakLkkeienLqreqRhllGedLesLslkeLqqLeqqLekslkkiRskKnellleqieelqkkekelqeenkaLrkkl 98 
                  yq+ s+++++++++e++q+  +kL + ++nL+++++++lGe+L++L+++eL++Le+++e+  k +R++K + l +qie+++kk+k++q+++k+L ++l
                  7899999***************************************************************************************9987 PP

        K-box  99 e 99 
  AT3G54340.1 169 E 169
                  5 PP

Protein Features ? help Back to Top
3D Structure
Database Entry ID E-value Start End InterPro ID Description
PROSITE profilePS5006632.142161IPR002100Transcription factor, MADS-box
SMARTSM004321.0E-40160IPR002100Transcription factor, MADS-box
CDDcd002653.06E-40280No hitNo description
PRINTSPR004046.1E-29323IPR002100Transcription factor, MADS-box
SuperFamilySSF554556.67E-36394IPR002100Transcription factor, MADS-box
PROSITE patternPS003500357IPR002100Transcription factor, MADS-box
PfamPF003192.4E-251057IPR002100Transcription factor, MADS-box
PRINTSPR004046.1E-292338IPR002100Transcription factor, MADS-box
PRINTSPR004046.1E-293859IPR002100Transcription factor, MADS-box
PfamPF014862.7E-1582168IPR002487Transcription factor, K-box
PROSITE profilePS5129713.73984174IPR002487Transcription factor, K-box
Gene Ontology ? help Back to Top
GO Term GO Category GO Description
GO:0006355Biological Processregulation of transcription, DNA-templated
GO:0010093Biological Processspecification of floral organ identity
GO:0030154Biological Processcell differentiation
GO:0005634Cellular Componentnucleus
GO:0003677Molecular FunctionDNA binding
GO:0003700Molecular Functiontranscription factor activity, sequence-specific DNA binding
GO:0046983Molecular Functionprotein dimerization activity
Plant Ontology ? help Back to Top
PO Term PO Category PO Description
PO:0000037anatomyshoot apex
PO:0000229anatomyflower meristem
PO:0009009anatomyplant embryo
PO:0009052anatomyflower pedicel
PO:0025022anatomycollective leaf structure
PO:0001078developmental stageplant embryo cotyledonary stage
PO:0001081developmental stagemature plant embryo stage
PO:0001185developmental stageplant embryo globular stage
PO:0004507developmental stageplant embryo bilateral stage
PO:0007600developmental stagefloral organ differentiation stage
PO:0007611developmental stagepetal differentiation and expansion stage
PO:0007616developmental stageflowering stage
Sequence ? help Back to Top
Protein Sequence    Length: 232 aa     Download sequence    Send to blast
3D Structure ? help Back to Top
PDB ID Evalue Query Start Query End Hit Start Hit End Description
6byy_A6e-18161161MEF2 CHIMERA
6byy_B6e-18161161MEF2 CHIMERA
6byy_C6e-18161161MEF2 CHIMERA
6byy_D6e-18161161MEF2 CHIMERA
6bz1_A6e-18161161MEF2 CHIMERA
6bz1_B6e-18161161MEF2 CHIMERA
6bz1_C6e-18161161MEF2 CHIMERA
6bz1_D6e-18161161MEF2 CHIMERA
Search in ModeBase
Expression -- UniGene ? help Back to Top
UniGene ID E-value Expressed in
At.2870.0bud| floral meristem| flower
Expression -- Microarray ? help Back to Top
Source ID E-value
Expression AtlasAT3G54340-
Expression -- Description ? help Back to Top
Source Description
UniprotTISSUE SPECIFICITY: Expressed in petals and stamens.
Functional Description ? help Back to Top
Source Description
TAIRFloral homeotic gene encoding a MADS domain protein homologous to SRF transcription factors. Specifies petal and stamen identities. Associates with PISTILLATA.
UniProtProbable transcription factor involved in the genetic control of flower development. Is required for normal development of petals and stamens in the wild-type flower. Forms a heterodimer with PISTILLATA that is required for autoregulation of both AP3 and PI genes. AP3/PI heterodimer interacts with APETALA1 or SEPALLATA3 to form a ternary complex that could be responsible for the regulation of the genes involved in the flower development. AP3/PI heterodimer activates the expression of NAP. AP3/PI prevents GATA22/GNL and GATA21/GNC expression (PubMed:18417639). {ECO:0000269|PubMed:18417639, ECO:0000269|PubMed:8565821, ECO:0000269|PubMed:9489703}.
Function -- GeneRIF ? help Back to Top
  1. truncated form, lacking the conserved C-terminal motifs, functions to direct floral organ identity specification
    [PMID: 17965182]
  2. BNQ genes Are negatively regulated by AP3 and PI in petals.
    [PMID: 20305124]
  3. These results imply considerable changes in the composition and topology of the gene network controlled by AP3/PI during the course of flower development.
    [PMID: 22847437]
  4. Data indicate that C function regulator AGAMOUS and the B function regulators APETALA3 and PISTILLATA control many developmental processes in conjunction, as well as independent activities.
    [PMID: 23821642]
  5. Ectopic Fagopyrum esculentum AP3 can rescue stamen development in Arabidopsis ap3 mutant.
    [PMID: 25149019]
Binding Motif ? help Back to Top
Motif ID Method Source Motif file
Motif logo
Cis-element ? help Back to Top
Regulation -- Description ? help Back to Top
Source Description
UniProtINDUCTION: Positively regulated by the meristem identity proteins APETALA1 and LEAFY with the cooperation of UFO. Repressed by silencing mediated by polycomb group (PcG) protein complex containing EMF1 and EMF2. {ECO:0000269|PubMed:11283333, ECO:0000269|PubMed:19783648}.
Regulation -- PlantRegMap ? help Back to Top
Source Upstream Regulator Target Gene
Regulation -- ATRM (Manually Curated Upstream Regulators) ? help Back to Top
Source Upstream Regulator (A: Activate/R: Repress)
ATRM AT1G24260 (A), AT1G69120 (A), AT3G23130 (R), AT3G54340 (A), AT4G18960 (A), AT4G36920 (A), AT4G37750 (A), AT5G20240 (A), AT5G61850 (A)
Regulation -- ATRM (Manually Curated Target Genes) ? help Back to Top
Source Target Gene (A: Activate/R: Repress)
ATRM AT1G57990(A), AT1G69120(R), AT1G69180(A), AT1G69490(A), AT2G15890(A), AT2G29350(A), AT3G23130(A), AT3G54340(A), AT4G26150(R), AT4G29130(A), AT4G30270(A), AT4G35770(A), AT5G20240(A), AT5G26340(A), AT5G56860(R)
Interaction -- BIND ? help Back to Top
Source Intact With Description
BINDAT1G69120AP1 interacts with AP3.
BINDAT3G54340AP3 interacts with itself.
BINDAT3G54340AP3 interacts with another molecule of AP3 to form a dimer.
BINDAT5G20240AP3 interacts with PI.
BINDAT5G20240AP3 interacts with PI.
Interaction ? help Back to Top
Source Intact With
BioGRIDAT3G54340, AT3G61120, AT4G18960, AT5G20240, AT1G24260, AT1G69120
IntActSearch P35632
Phenotype -- Mutation ? help Back to Top
Source ID
T-DNA ExpressAT3G54340
Annotation -- Nucleotide ? help Back to Top
Source Hit ID E-value Description
GenBankAY0703970.0AY070397.1 Arabidopsis thaliana putative floral homeotic protein APETALA3 (AP3) (At3g54340) mRNA, complete cds.
GenBankAY1425900.0AY142590.1 Arabidopsis thaliana putative floral homeotic protein APETALA3 (AP3) (At3g54340) mRNA, complete cds.
Annotation -- Protein ? help Back to Top
Source Hit ID E-value Description
RefseqNP_191002.11e-173K-box region and MADS-box transcription factor family protein
SwissprotP356321e-174AP3_ARATH; Floral homeotic protein APETALA 3
STRINGAT3G54340.11e-173(Arabidopsis thaliana)
Orthologous Group ? help Back to Top
LineageOrthologous Group IDTaxa NumberGene Number
Representative plantOGRP51991121
Publications ? help Back to Top
  1. Kramer EM,Irish VF
    Evolution of genetic mechanisms controlling petal development.
    Nature, 1999. 399(6732): p. 144-8
  2. Brunel D,Froger N,Pelletier G
    Development of amplified consensus genetic markers (ACGM) in Brassica napus from Arabidopsis thaliana sequences of known biological function.
    Genome, 1999. 42(3): p. 387-402
  3. Moon YH,Jung JY,Kang HG,An G
    Identification of a rice APETALA3 homologue by yeast two-hybrid screening.
    Plant Mol. Biol., 1999. 40(1): p. 167-77
  4. Samach A, et al.
    The UNUSUAL FLORAL ORGANS gene of Arabidopsis thaliana is an F-box protein required for normal patterning and growth in the floral meristem.
    Plant J., 1999. 20(4): p. 433-45
  5. Honma T,Goto K
    The Arabidopsis floral homeotic gene PISTILLATA is regulated by discrete cis-elements responsive to induction and maintenance signals.
    Development, 2000. 127(10): p. 2021-30
  6. Kater MM,Franken J,van Aelst A,Angenent GC
    Suppression of cell expansion by ectopic expression of the Arabidopsis SUPERMAN gene in transgenic petunia and tobacco.
    Plant J., 2000. 23(3): p. 407-13
  7. Sakai H,Krizek BA,Jacobsen SE,Meyerowitz EM
    Regulation of SUP expression identifies multiple regulators involved in arabidopsis floral meristem development.
    Plant Cell, 2000. 12(9): p. 1607-18
  8. Sheppard LA, et al.
    A DEFICIENS homolog from the dioecious tree black cottonwood is expressed in female and male floral meristems of the two-whorled, unisexual flowers.
    Plant Physiol., 2000. 124(2): p. 627-40
  9. Ren T,Qu F,Morris TJ
    HRT gene function requires interaction between a NAC protein and viral capsid protein to confer resistance to turnip crinkle virus.
    Plant Cell, 2000. 12(10): p. 1917-26
  10. Jenik PD,Irish VF
    The Arabidopsis floral homeotic gene APETALA3 differentially regulates intercellular signaling required for petal and stamen development.
    Development, 2001. 128(1): p. 13-23
  11. Riechmann JL, et al.
    Arabidopsis transcription factors: genome-wide comparative analysis among eukaryotes.
    Science, 2000. 290(5499): p. 2105-10
  12. Honma T,Goto K
    Complexes of MADS-box proteins are sufficient to convert leaves into floral organs.
    Nature, 2001. 409(6819): p. 525-9
  13. Garc
    Genomic organization and transcriptional analysis of STDEFICIENS in Solanum tuberosum L.
    Gene, 2001. 264(2): p. 163-71
  14. Ng M,Yanofsky MF
    Activation of the Arabidopsis B class homeotic genes by APETALA1.
    Plant Cell, 2001. 13(4): p. 739-53
  15. G
    early bolting in short days: an Arabidopsis mutation that causes early flowering and partially suppresses the floral phenotype of leafy.
    Plant Cell, 2001. 13(5): p. 1011-24
  16. Kishimoto N, et al.
    Site specificity of the Arabidopsis METI DNA methyltransferase demonstrated through hypermethylation of the superman locus.
    Plant Mol. Biol., 2001. 46(2): p. 171-83
  17. Prasad K,Sriram P,Kumar CS,Kushalappa K,Vijayraghavan U
    Ectopic expression of rice OsMADS1 reveals a role in specifying the lemma and palea, grass floral organs analogous to sepals.
    Dev. Genes Evol., 2001. 211(6): p. 281-90
  18. Zhao D,Yu Q,Chen M,Ma H
    The ASK1 gene regulates B function gene expression in cooperation with UFO and LEAFY in Arabidopsis.
    Development, 2001. 128(14): p. 2735-46
  19. Tzeng TY,Yang CH
    A MADS box gene from lily (Lilium Longiflorum) is sufficient to generate dominant negative mutation by interacting with PISTILLATA (PI) in Arabidopsis thaliana.
    Plant Cell Physiol., 2001. 42(10): p. 1156-68
  20. Yun JY,Weigel D,Lee I
    Ectopic expression of SUPERMAN suppresses development of petals and stamens.
    Plant Cell Physiol., 2002. 43(1): p. 52-7
  21. Bereterbide A,Hernould M,Farbos I,Glimelius K,Mouras A
    Restoration of stamen development and production of functional pollen in an alloplasmic CMS tobacco line by ectopic expression of the Arabidopsis thaliana SUPERMAN gene.
    Plant J., 2002. 29(5): p. 607-15
  22. Western TL,Cheng Y,Liu J,Chen X
    HUA ENHANCER2, a putative DExH-box RNA helicase, maintains homeotic B and C gene expression in Arabidopsis.
    Development, 2002. 129(7): p. 1569-81
  23. Goff SA, et al.
    A draft sequence of the rice genome (Oryza sativa L. ssp. japonica).
    Science, 2002. 296(5565): p. 92-100
  24. Lamb RS,Hill TA,Tan QK,Irish VF
    Regulation of APETALA3 floral homeotic gene expression by meristem identity genes.
    Development, 2002. 129(9): p. 2079-86
  25. van der Linden CG,Vosman B,Smulders MJ
    Cloning and characterization of four apple MADS box genes isolated from vegetative tissue.
    J. Exp. Bot., 2002. 53(371): p. 1025-36
  26. Olsen KM,Womack A,Garrett AR,Suddith JI,Purugganan MD
    Contrasting evolutionary forces in the Arabidopsis thaliana floral developmental pathway.
    Genetics, 2002. 160(4): p. 1641-50
  27. Zhou Y, et al.
    Control of petal and pollen development by the plant cyclin-dependent kinase inhibitor ICK1 in transgenic Brassica plants.
    Planta, 2002. 215(2): p. 248-57
  28. Skipper M
    Genes from the APETALA3 and PISTILLATA lineages are expressed in developing vascular bundles of the tuberous rhizome, flowering stem and flower Primordia of Eranthis hyemalis.
    Ann. Bot., 2002. 89(1): p. 83-8
  29. Sundström J,Engström P
    Conifer reproductive development involves B-type MADS-box genes with distinct and different activities in male organ primordia.
    Plant J., 2002. 31(2): p. 161-9
  30. Gaiser JC,Robinson-Beers K,Gasser CS
    The Arabidopsis SUPERMAN Gene Mediates Asymmetric Growth of the Outer Integument of Ovules.
    Plant Cell, 1995. 7(3): p. 333-345
  31. Guan X, et al.
    Heritable endogenous gene regulation in plants with designed polydactyl zinc finger transcription factors.
    Proc. Natl. Acad. Sci. U.S.A., 2002. 99(20): p. 13296-301
  32. Schultz EA,Pickett FB,Haughn GW
    The FLO10 Gene Product Regulates the Expression Domain of Homeotic Genes AP3 and PI in Arabidopsis Flowers.
    Plant Cell, 1991. 3(11): p. 1221-1237
  33. Hsu HF,Yang CH
    An orchid (Oncidium Gower Ramsey) AP3-like MADS gene regulates floral formation and initiation.
    Plant Cell Physiol., 2002. 43(10): p. 1198-209
  34. G
    A mitochondrial dysfunction induces the expression of nuclear-encoded complex I genes in engineered male sterile Arabidopsis thaliana.
    FEBS Lett., 2002. 532(1-2): p. 70-4
  35. Zik M,Irish VF
    Global identification of target genes regulated by APETALA3 and PISTILLATA floral homeotic gene action.
    Plant Cell, 2003. 15(1): p. 207-22
  36. Alvarez-Venegas R, et al.
    ATX-1, an Arabidopsis homolog of trithorax, activates flower homeotic genes.
    Curr. Biol., 2003. 13(8): p. 627-37
  37. Wang X, et al.
    The COP9 signalosome interacts with SCF UFO and participates in Arabidopsis flower development.
    Plant Cell, 2003. 15(5): p. 1071-82
  38. Lamb RS,Irish VF
    Functional divergence within the APETALA3/PISTILLATA floral homeotic gene lineages.
    Proc. Natl. Acad. Sci. U.S.A., 2003. 100(11): p. 6558-63
  39. Parenicová L, et al.
    Molecular and phylogenetic analyses of the complete MADS-box transcription factor family in Arabidopsis: new openings to the MADS world.
    Plant Cell, 2003. 15(7): p. 1538-51
  40. Lee S, et al.
    Alteration of floral organ identity in rice through ectopic expression of OsMADS16.
    Planta, 2003. 217(6): p. 904-11
  41. Pylatuik JD,Lindsay DL,Davis AR,Bonham-Smith PC
    Isolation and characterization of a Brassica napus cDNA corresponding to a B-class floral development gene.
    J. Exp. Bot., 2003. 54(391): p. 2385-7
  42. Golovkin M,Reddy AS
    Expression of U1 small nuclear ribonucleoprotein 70K antisense transcript using APETALA3 promoter suppresses the development of sepals and petals.
    Plant Physiol., 2003. 132(4): p. 1884-91
  43. Yang Y,Fanning L,Jack T
    The K domain mediates heterodimerization of the Arabidopsis floral organ identity proteins, APETALA3 and PISTILLATA.
    Plant J., 2003. 33(1): p. 47-59
  44. Yang Y,Xiang H,Jack T
    pistillata-5, an Arabidopsis B class mutant with strong defects in petal but not in stamen development.
    Plant J., 2003. 33(1): p. 177-88
  45. Jack T,Brockman LL,Meyerowitz EM
    The homeotic gene APETALA3 of Arabidopsis thaliana encodes a MADS box and is expressed in petals and stamens.
    Cell, 1992. 68(4): p. 683-97
  46. Bowman JL, et al.
    SUPERMAN, a regulator of floral homeotic genes in Arabidopsis.
    Development, 1992. 114(3): p. 599-615
  47. Byzova M,Verduyn C,De Brouwer D,De Block M
    Transforming petals into sepaloid organs in Arabidopsis and oilseed rape: implementation of the hairpin RNA-mediated gene silencing technology in an organ-specific manner.
    Planta, 2004. 218(3): p. 379-87
  48. Yamada K, et al.
    Empirical analysis of transcriptional activity in the Arabidopsis genome.
    Science, 2003. 302(5646): p. 842-6
  49. Tzeng TY,Liu HC,Yang CH
    The C-terminal sequence of LMADS1 is essential for the formation of homodimers for B function proteins.
    J. Biol. Chem., 2004. 279(11): p. 10747-55
  50. Stellari GM,Jaramillo MA,Kramer EM
    Evolution of the APETALA3 and PISTILLATA lineages of MADS-box-containing genes in the basal angiosperms.
    Mol. Biol. Evol., 2004. 21(3): p. 506-19
  51. Yamaguchi T, et al.
    The YABBY gene DROOPING LEAF regulates carpel specification and midrib development in Oryza sativa.
    Plant Cell, 2004. 16(2): p. 500-9
  52. Vandenbussche M,Zethof J,Royaert S,Weterings K,Gerats T
    The duplicated B-class heterodimer model: whorl-specific effects and complex genetic interactions in Petunia hybrida flower development.
    Plant Cell, 2004. 16(3): p. 741-54
  53. Jack T
    Molecular and genetic mechanisms of floral control.
    Plant Cell, 2004. 16 Suppl: p. S1-17
  54. Yu H, et al.
    Floral homeotic genes are targets of gibberellin signaling in flower development.
    Proc. Natl. Acad. Sci. U.S.A., 2004. 101(20): p. 7827-32
  55. Liu Y, et al.
    Virus induced gene silencing of a DEFICIENS ortholog in Nicotiana benthamiana.
    Plant Mol. Biol., 2004. 54(5): p. 701-11
  56. Lee JY, et al.
    Activation of CRABS CLAW in the Nectaries and Carpels of Arabidopsis.
    Plant Cell, 2005. 17(1): p. 25-36
  57. Yang Y,Jack T
    Defining subdomains of the K domain important for protein-protein interactions of plant MADS proteins.
    Plant Mol. Biol., 2004. 55(1): p. 45-59
  58. Pfent C,Pobursky KJ,Sather DN,Golenberg EM
    Characterization of SpAPETALA3 and SpPISTILLATA, B class floral identity genes in Spinacia oleracea, and their relationship to sexual dimorphism.
    Dev. Genes Evol., 2005. 215(3): p. 132-42
  59. Di Stilio VS,Kramer EM,Baum DA
    Floral MADS box genes and homeotic gender dimorphism in Thalictrum dioicum (Ranunculaceae) - a new model for the study of dioecy.
    Plant J., 2005. 41(5): p. 755-66
  60. Teixeira RT,Farbos I,Glimelius K
    Expression levels of meristem identity and homeotic genes are modified by nuclear-mitochondrial interactions in alloplasmic male-sterile lines of Brassica napus.
    Plant J., 2005. 42(5): p. 731-42
  61. Castillejo C,Romera-Branchat M,Pelaz S
    A new role of the Arabidopsis SEPALLATA3 gene revealed by its constitutive expression.
    Plant J., 2005. 43(4): p. 586-96
  62. Kim S, et al.
    Expression of floral MADS-box genes in basal angiosperms: implications for the evolution of floral regulators.
    Plant J., 2005. 43(5): p. 724-44
  63. Pekker I,Alvarez JP,Eshed Y
    Auxin response factors mediate Arabidopsis organ asymmetry via modulation of KANADI activity.
    Plant Cell, 2005. 17(11): p. 2899-910
  64. Krizek BA,Lewis MW,Fletcher JC
    RABBIT EARS is a second-whorl repressor of AGAMOUS that maintains spatial boundaries in Arabidopsis flowers.
    Plant J., 2006. 45(3): p. 369-83
  65. Xu Y,Teo LL,Zhou J,Kumar PP,Yu H
    Floral organ identity genes in the orchid Dendrobium crumenatum.
    Plant J., 2006. 46(1): p. 54-68
  66. Kramer EM,Su HJ,Wu CC,Hu JM
    A simplified explanation for the frameshift mutation that created a novel C-terminal motif in the APETALA3 gene lineage.
    BMC Evol. Biol., 2006. 6: p. 30
  67. De Bodt S,Theissen G,Van de Peer Y
    Promoter analysis of MADS-box genes in eudicots through phylogenetic footprinting.
    Mol. Biol. Evol., 2006. 23(6): p. 1293-303
  68. Sundström JF,Nakayama N,Glimelius K,Irish VF
    Direct regulation of the floral homeotic APETALA1 gene by APETALA3 and PISTILLATA in Arabidopsis.
    Plant J., 2006. 46(4): p. 593-600
  69. Gregis V,Sessa A,Colombo L,Kater MM
    AGL24, SHORT VEGETATIVE PHASE, and APETALA1 redundantly control AGAMOUS during early stages of flower development in Arabidopsis.
    Plant Cell, 2006. 18(6): p. 1373-82
  70. Nole-Wilson S,Krizek BA
    AINTEGUMENTA contributes to organ polarity and regulates growth of lateral organs in combination with YABBY genes.
    Plant Physiol., 2006. 141(3): p. 977-87
  71. de Martino G,Pan I,Emmanuel E,Levy A,Irish VF
    Functional analyses of two tomato APETALA3 genes demonstrate diversification in their roles in regulating floral development.
    Plant Cell, 2006. 18(8): p. 1833-45
  72. Rijpkema AS, et al.
    Analysis of the Petunia TM6 MADS box gene reveals functional divergence within the DEF/AP3 lineage.
    Plant Cell, 2006. 18(8): p. 1819-32
  73. Bowman JL,Smyth DR,Meyerowitz EM
    Genetic interactions among floral homeotic genes of Arabidopsis.
    Development, 1991. 112(1): p. 1-20
  74. Sridhar VV,Surendrarao A,Liu Z
    APETALA1 and SEPALLATA3 interact with SEUSS to mediate transcription repression during flower development.
    Development, 2006. 133(16): p. 3159-66
  75. Makarevich G, et al.
    Different Polycomb group complexes regulate common target genes in Arabidopsis.
    EMBO Rep., 2006. 7(9): p. 947-52
  76. Szécsi J, et al.
    BIGPETALp, a bHLH transcription factor is involved in the control of Arabidopsis petal size.
    EMBO J., 2006. 25(16): p. 3912-20
  77. Germann S,Juul-Jensen T,Letarnec B,Gaudin V
    DamID, a new tool for studying plant chromatin profiling in vivo, and its use to identify putative LHP1 target loci.
    Plant J., 2006. 48(1): p. 153-63
  78. Carlsson J, et al.
    Microarray analysis reveals altered expression of a large number of nuclear genes in developing cytoplasmic male sterile Brassica napus flowers.
    Plant J., 2007. 49(3): p. 452-62
  79. Yadav SR,Prasad K,Vijayraghavan U
    Divergent regulatory OsMADS2 functions control size, shape and differentiation of the highly derived rice floret second-whorl organ.
    Genetics, 2007. 176(1): p. 283-94
  80. Turck F, et al.
    Arabidopsis TFL2/LHP1 specifically associates with genes marked by trimethylation of histone H3 lysine 27.
    PLoS Genet., 2007. 3(6): p. e86
  81. Zhao L,Kim Y,Dinh TT,Chen X
    miR172 regulates stem cell fate and defines the inner boundary of APETALA3 and PISTILLATA expression domain in Arabidopsis floral meristems.
    Plant J., 2007. 51(5): p. 840-9
  82. Poupin MJ, et al.
    Isolation of the three grape sub-lineages of B-class MADS-box TM6, PISTILLATA and APETALA3 genes which are differentially expressed during flower and fruit development.
    Gene, 2007. 404(1-2): p. 10-24
  83. Drea S,Hileman LC,de Martino G,Irish VF
    Functional analyses of genetic pathways controlling petal specification in poppy.
    Development, 2007. 134(23): p. 4157-66
  84. Piwarzyk E,Yang Y,Jack T
    Conserved C-terminal motifs of the Arabidopsis proteins APETALA3 and PISTILLATA are dispensable for floral organ identity function.
    Plant Physiol., 2007. 145(4): p. 1495-505
  85. Tan FC,Swain SM
    Functional characterization of AP3, SOC1 and WUS homologues from citrus (Citrus sinensis).
    Physiol Plant, 2007. 131(3): p. 481-95
  86. Furner I,Ellis L,Bakht S,Mirza B,Sheikh M
    CAUT lines: a novel resource for studies of cell autonomy in Arabidopsis.
    Plant J., 2008. 53(4): p. 645-60
  87. Chae E,Tan QK,Hill TA,Irish VF
    An Arabidopsis F-box protein acts as a transcriptional co-factor to regulate floral development.
    Development, 2008. 135(7): p. 1235-45
  88. Su K, et al.
    The MIK region rather than the C-terminal domain of AP3-like class B floral homeotic proteins determines functional specificity in the development and evolution of petals.
    New Phytol., 2008. 178(3): p. 544-58
  89. Mara CD,Irish VF
    Two GATA transcription factors are downstream effectors of floral homeotic gene action in Arabidopsis.
    Plant Physiol., 2008. 147(2): p. 707-18
  90. Leseberg CH, et al.
    Interaction study of MADS-domain proteins in tomato.
    J. Exp. Bot., 2008. 59(8): p. 2253-65
  91. Melzer R,Verelst W,Theissen G
    The class E floral homeotic protein SEPALLATA3 is sufficient to loop DNA in 'floral quartet'-like complexes in vitro.
    Nucleic Acids Res., 2009. 37(1): p. 144-57
  92. Teranishi C,Yoshida K,Miyashita NT
    DNA polymorphism in the SUPERWOMAN1 (SPW1) locus of the wild rice Oryza rufipogon and its related species.
    Genes Genet. Syst., 2008. 83(5): p. 403-15
  93. Melzer R,Theissen G
    Reconstitution of 'floral quartets' in vitro involving class B and class E floral homeotic proteins.
    Nucleic Acids Res., 2009. 37(8): p. 2723-36
  94. Krizek B
    AINTEGUMENTA and AINTEGUMENTA-LIKE6 act redundantly to regulate Arabidopsis floral growth and patterning.
    Plant Physiol., 2009. 150(4): p. 1916-29
  95. Liu X, et al.
    The SPOROCYTELESS/NOZZLE gene is involved in controlling stamen identity in Arabidopsis.
    Plant Physiol., 2009. 151(3): p. 1401-11
  96. Kim SY,Zhu T,Sung ZR
    Epigenetic regulation of gene programs by EMF1 and EMF2 in Arabidopsis.
    Plant Physiol., 2010. 152(2): p. 516-28
  97. Litt A,Kramer EM
    The ABC model and the diversification of floral organ identity.
    Semin. Cell Dev. Biol., 2010. 21(1): p. 129-37
  98. Kagale S,Links MG,Rozwadowski K
    Genome-wide analysis of ethylene-responsive element binding factor-associated amphiphilic repression motif-containing transcriptional regulators in Arabidopsis.
    Plant Physiol., 2010. 152(3): p. 1109-34
  99. Mara CD,Huang T,Irish VF
    The Arabidopsis floral homeotic proteins APETALA3 and PISTILLATA negatively regulate the BANQUO genes implicated in light signaling.
    Plant Cell, 2010. 22(3): p. 690-702
  100. Urbanus SL, et al.
    Intercellular transport of epidermis-expressed MADS domain transcription factors and their effect on plant morphology and floral transition.
    Plant J., 2010. 63(1): p. 60-72
  101. Irish VF
    The flowering of Arabidopsis flower development.
    Plant J., 2010. 61(6): p. 1014-28
  102. L
    Ectopic expression of TrPI, a Taihangia rupestris (Rosaceae) PI ortholog, causes modifications of vegetative architecture in Arabidopsis.
    J. Plant Physiol., 2010. 167(18): p. 1613-21
  103. Sasaki K, et al.
    Functional divergence within class B MADS-box genes TfGLO and TfDEF in Torenia fournieri Lind.
    Mol. Genet. Genomics, 2010. 284(5): p. 399-414
  104. An X, et al.
    Ectopic expression of a poplar APETALA3-like gene in tobacco causes early flowering and fast growth.
    Biotechnol. Lett., 2011. 33(6): p. 1239-47
  105. Kaufmann K,Nagasaki M,J
    Modelling the Molecular Interactions in the Flower Developmental Network of Arabidopsis thaliana.
    Stud Health Technol Inform, 2011. 162: p. 279-97
  106. Zhang Y, et al.
    Functional analysis of the two Brassica AP3 genes involved in apetalous and stamen carpelloid phenotypes.
    PLoS ONE, 2011. 6(6): p. e20930
  107. Kerchev PI, et al.
    The transcription factor ABI4 Is required for the ascorbic acid-dependent regulation of growth and regulation of jasmonate-dependent defense signaling pathways in Arabidopsis.
    Plant Cell, 2011. 23(9): p. 3319-34
  108. Romanel E, et al.
    Reproductive Meristem22 is a unique marker for the early stages of stamen development.
    Int. J. Dev. Biol., 2011. 55(6): p. 657-64
  109. Smaczniak C, et al.
    Characterization of MADS-domain transcription factor complexes in Arabidopsis flower development.
    Proc. Natl. Acad. Sci. U.S.A., 2012. 109(5): p. 1560-5
  110. Wu MF, et al.
    SWI2/SNF2 chromatin remodeling ATPases overcome polycomb repression and control floral organ identity with the LEAFY and SEPALLATA3 transcription factors.
    Proc. Natl. Acad. Sci. U.S.A., 2012. 109(9): p. 3576-81
  111. Liu DD, et al.
    Functional characterization of an apple apomixis-related MhFIE gene in reproduction development.
    Plant Sci., 2012. 185-186: p. 105-11
  112. Kaufmann K,Nagasaki M,J
    Modelling the molecular interactions in the flower developmental network of Arabidopsis thaliana.
    In Silico Biol. (Gedrukt), 2010. 10(1): p. 125-43
  113. Garay-Arroyo A,Pi
    When ABC becomes ACB.
    J. Exp. Bot., 2012. 63(7): p. 2377-95
  114. Jung CH,Wong CE,Singh MB,Bhalla PL
    Comparative genomic analysis of soybean flowering genes.
    PLoS ONE, 2012. 7(6): p. e38250
  115. Wuest SE, et al.
    Molecular basis for the specification of floral organs by APETALA3 and PISTILLATA.
    Proc. Natl. Acad. Sci. U.S.A., 2012. 109(33): p. 13452-7
  116. Burgos-Rivera B,Dawe RK
    An Arabidopsis tissue-specific RNAi method for studying genes essential to mitosis.
    PLoS ONE, 2012. 7(12): p. e51388
  117. Kamata N,Okada H,Komeda Y,Takahashi T
    Mutations in epidermis-specific HD-ZIP IV genes affect floral organ identity in Arabidopsis thaliana.
    Plant J., 2013. 75(3): p. 430-40

  118. Control of reproductive floral organ identity specification in Arabidopsis by the C function regulator AGAMOUS.
    Plant Cell, 2013. 25(7): p. 2482-503
  119. Hsu WH, et al.
    AGAMOUS-LIKE13, a putative ancestor for the E functional genes, specifies male and female gametophyte morphogenesis.
    Plant J., 2014. 77(1): p. 1-15
  120. Jing D, et al.
    Two ancestral APETALA3 homologs from the basal angiosperm Magnolia wufengensis (Magnoliaceae) can affect flower development of Arabidopsis.
    Gene, 2014. 537(1): p. 100-7
  121. Zhang Y, et al.
    A cucumber DELLA homolog CsGAIP may inhibit staminate development through transcriptional repression of B class floral homeotic genes.
    PLoS ONE, 2014. 9(3): p. e91804
  122. Nakamura Y,Liu YC,Lin YC
    Floral glycerolipid profiles in homeotic mutants of Arabidopsis thaliana.
    Biochem. Biophys. Res. Commun., 2014. 450(4): p. 1272-5
  123. Fang ZW,Qi R,Li XF,Liu ZX
    Ectopic expression of FaesAP3, a Fagopyrum esculentum (Polygonaceae) AP3 orthologous gene rescues stamen development in an Arabidopsis ap3 mutant.
    Gene, 2014. 550(2): p. 200-6
  124. Bowman JL,Smyth DR,Meyerowitz EM
    Genes directing flower development in Arabidopsis.
    Plant Cell, 1989. 1(1): p. 37-52
  125. Behrend A,Borchert T,Hohe A
    "The usual suspects"- analysis of transcriptome sequences reveals deviating B gene activity in C. vulgaris bud bloomers.
    BMC Plant Biol., 2015. 15: p. 8
  126. Jin J, et al.
    An Arabidopsis Transcriptional Regulatory Map Reveals Distinct Functional and Evolutionary Features of Novel Transcription Factors.
    Mol. Biol. Evol., 2015. 32(7): p. 1767-73
  127. Chen Z, et al.
    Overexpression of AtAP1M3 regulates flowering time and floral development in Arabidopsis and effects key flowering-related genes in poplar.
    Transgenic Res., 2015. 24(4): p. 705-15
  128. Yunus IS, et al.
    Phosphatidic acid is a major phospholipid class in reproductive organs of Arabidopsis thaliana.
    Plant Signal Behav, 2015. 10(8): p. e1049790
  129. Sun JJ, et al.
    CsAP3: A Cucumber Homolog to Arabidopsis APETALA3 with Novel Characteristics.
    Front Plant Sci, 2016. 7: p. 1181
  130. Sakai H,Medrano LJ,Meyerowitz EM
    Role of SUPERMAN in maintaining Arabidopsis floral whorl boundaries.
    Nature, 1995. 378(6553): p. 199-203
  131. Day CD,Galgoci BF,Irish VF
    Genetic ablation of petal and stamen primordia to elucidate cell interactions during floral development.
    Development, 1995. 121(9): p. 2887-95
  132. Irish VF,Yamamoto YT
    Conservation of floral homeotic gene function between Arabidopsis and antirrhinum.
    Plant Cell, 1995. 7(10): p. 1635-44
  133. Jack T,Fox GL,Meyerowitz EM
    Arabidopsis homeotic gene APETALA3 ectopic expression: transcriptional and posttranscriptional regulation determine floral organ identity.
    Cell, 1994. 76(4): p. 703-16
  134. Okamoto H,Yano A,Shiraishi H,Okada K,Shimura Y
    Genetic complementation of a floral homeotic mutation, apetala3, with an Arabidopsis thaliana gene homologous to DEFICIENS of Antirrhinum majus.
    Plant Mol. Biol., 1994. 26(1): p. 465-72
  135. Flanagan CA,Ma H
    Spatially and temporally regulated expression of the MADS-box gene AGL2 in wild-type and mutant arabidopsis flowers.
    Plant Mol. Biol., 1994. 26(2): p. 581-95
  136. Goto K,Meyerowitz EM
    Function and regulation of the Arabidopsis floral homeotic gene PISTILLATA.
    Genes Dev., 1994. 8(13): p. 1548-60
  137. Krizek BA,Meyerowitz EM
    The Arabidopsis homeotic genes APETALA3 and PISTILLATA are sufficient to provide the B class organ identity function.
    Development, 1996. 122(1): p. 11-22
  138. Krizek BA,Meyerowitz EM
    Mapping the protein regions responsible for the functional specificities of the Arabidopsis MADS domain organ-identity proteins.
    Proc. Natl. Acad. Sci. U.S.A., 1996. 93(9): p. 4063-70
  139. Riechmann JL,Krizek BA,Meyerowitz EM
    Dimerization specificity of Arabidopsis MADS domain homeotic proteins APETALA1, APETALA3, PISTILLATA, and AGAMOUS.
    Proc. Natl. Acad. Sci. U.S.A., 1996. 93(10): p. 4793-8
  140. McGonigle B,Bouhidel K,Irish VF
    Nuclear localization of the Arabidopsis APETALA3 and PISTILLATA homeotic gene products depends on their simultaneous expression.
    Genes Dev., 1996. 10(14): p. 1812-21
  141. Venglat SP,Sawhney VK
    Benzylaminopurine induces phenocopies of floral meristem and organ identity mutants in wild-type Arabidopsis plants.
    Planta, 1996. 198(3): p. 480-7
  142. Flanagan CA,Hu Y,Ma H
    Specific expression of the AGL1 MADS-box gene suggests regulatory functions in Arabidopsis gynoecium and ovule development.
    Plant J., 1996. 10(2): p. 343-53
  143. Riechmann JL,Wang M,Meyerowitz EM
    DNA-binding properties of Arabidopsis MADS domain homeotic proteins APETALA1, APETALA3, PISTILLATA and AGAMOUS.
    Nucleic Acids Res., 1996. 24(16): p. 3134-41
  144. Lee I,Wolfe DS,Nilsson O,Weigel D
    A LEAFY co-regulator encoded by UNUSUAL FLORAL ORGANS.
    Curr. Biol., 1997. 7(2): p. 95-104
  145. Huang H,Ma H
    FON1, an Arabidopsis gene that terminates floral meristem activity and controls flower organ number.
    Plant Cell, 1997. 9(2): p. 115-34
  146. Carr SM,Irish VF
    Floral homeotic gene expression defines developmental arrest stages in Brassica oleracea L. vars. botrytis and italica.
    Planta, 1997. 201(2): p. 179-88
  147. Samach A,Kohalmi SE,Motte P,Datla R,Haughn GW
    Divergence of function and regulation of class B floral organ identity genes.
    Plant Cell, 1997. 9(4): p. 559-70
  148. Heard J,Caspi M,Dunn K
    Evolutionary diversity of symbiotically induced nodule MADS box genes: characterization of nmhC5, a member of a novel subfamily.
    Mol. Plant Microbe Interact., 1997. 10(5): p. 665-76
  149. Riechmann JL,Meyerowitz EM
    Determination of floral organ identity by Arabidopsis MADS domain homeotic proteins AP1, AP3, PI, and AG is independent of their DNA-binding specificity.
    Mol. Biol. Cell, 1997. 8(7): p. 1243-59
  150. Sablowski RW,Meyerowitz EM
    A homolog of NO APICAL MERISTEM is an immediate target of the floral homeotic genes APETALA3/PISTILLATA.
    Cell, 1998. 92(1): p. 93-103
  151. Tilly JJ,Allen DW,Jack T
    The CArG boxes in the promoter of the Arabidopsis floral organ identity gene APETALA3 mediate diverse regulatory effects.
    Development, 1998. 125(9): p. 1647-57
  152. Kramer EM,Dorit RL,Irish VF
    Molecular evolution of genes controlling petal and stamen development: duplication and divergence within the APETALA3 and PISTILLATA MADS-box gene lineages.
    Genetics, 1998. 149(2): p. 765-83
  153. Sablowski RW,Meyerowitz EM
    Temperature-sensitive splicing in the floral homeotic mutant apetala3-1.
    Plant Cell, 1998. 10(9): p. 1453-63
  154. Yi Y,Jack T
    An intragenic suppressor of the Arabidopsis floral organ identity mutant apetala3-1 functions by suppressing defects in splicing.
    Plant Cell, 1998. 10(9): p. 1465-77
  155. Purugganan MD,Suddith JI
    Molecular population genetics of floral homeotic loci. Departures from the equilibrium-neutral model at the APETALA3 and PISTILLATA genes of Arabidopsis thaliana.
    Genetics, 1999. 151(2): p. 839-48