PlantRegMap/PlantTFDB v5.0
Plant Transcription Factor Database
Transcription Factor Information
Basic Information | Signature Domain | Sequence | 
Basic Information? help Back to Top
TF ID AT2G46410.1
Common NameCPC, F11C10.10
Taxonomic ID
Taxonomic Lineage
cellular organisms; Eukaryota; Viridiplantae; Streptophyta; Streptophytina; Embryophyta; Tracheophyta; Euphyllophyta; Spermatophyta; Magnoliophyta; Mesangiospermae; eudicotyledons; Gunneridae; Pentapetalae; rosids; malvids; Brassicales; Brassicaceae; Camelineae; Arabidopsis
Family MYB_related
Protein Properties Length: 94aa    MW: 11385.1 Da    PI: 10.2111
Description MYB_related family protein
Gene Model
Gene Model ID Type Source Coding Sequence
AT2G46410.1genomeTAIRView CDS
Signature Domain? help Back to Top
Signature Domain
No. Domain Score E-value Start End HMM Start HMM End
  Myb_DNA-binding  3 rWTteEdellvdavkqlGggtWktIartmgkgRtlkqcksrwq 45
                     ++++eE++l+ +  k+ G + W++Ia +++ gRt++++  +w+
                     689***************99.*********.***********7 PP

Protein Features ? help Back to Top
3D Structure
Database Entry ID E-value Start End InterPro ID Description
SMARTSM007176.6E-83482IPR001005SANT/Myb domain
CDDcd001671.10E-63778No hitNo description
PfamPF002491.4E-93778IPR001005SANT/Myb domain
PROSITE profilePS500906.7713976IPR017877Myb-like domain
Gene Ontology ? help Back to Top
GO Term GO Category GO Description
GO:0006357Biological Processregulation of transcription from RNA polymerase II promoter
GO:0009751Biological Processresponse to salicylic acid
GO:0009753Biological Processresponse to jasmonic acid
GO:0009913Biological Processepidermal cell differentiation
GO:0010063Biological Processpositive regulation of trichoblast fate specification
GO:0005634Cellular Componentnucleus
GO:0000981Molecular FunctionRNA polymerase II transcription factor activity, sequence-specific DNA binding
GO:0001135Molecular Functiontranscription factor activity, RNA polymerase II transcription factor recruiting
GO:0005515Molecular Functionprotein binding
GO:0043565Molecular Functionsequence-specific DNA binding
GO:0044212Molecular Functiontranscription regulatory region DNA binding
Plant Ontology ? help Back to Top
PO Term PO Category PO Description
PO:0000013anatomycauline leaf
PO:0000026anatomyprimary root tip
PO:0000037anatomyshoot apex
PO:0000258anatomyroot cortex
PO:0000263anatomynon-hair root epidermal cell
PO:0000293anatomyguard cell
PO:0003015anatomyprimary root differentiation zone
PO:0009009anatomyplant embryo
PO:0009025anatomyvascular leaf
PO:0020124anatomyroot stele
PO:0025022anatomycollective leaf structure
PO:0025257anatomyprimary root elongation zone
PO:0001078developmental stageplant embryo cotyledonary stage
PO:0001081developmental stagemature plant embryo stage
PO:0004507developmental stageplant embryo bilateral stage
PO:0007611developmental stagepetal differentiation and expansion stage
PO:0007616developmental stageflowering stage
Sequence ? help Back to Top
Protein Sequence    Length: 94 aa     Download sequence    Send to blast
Expression -- UniGene ? help Back to Top
UniGene ID E-value Expressed in
Expression -- Microarray ? help Back to Top
Source ID E-value
Expression AtlasAT2G46410-
Expression -- Description ? help Back to Top
Source Description
UniprotDEVELOPMENTAL STAGE: Expressed in leaves primordia and later confined to trichomes. {ECO:0000269|PubMed:12356720}.
UniprotTISSUE SPECIFICITY: Expressed in trichomes and in young developing leaves, as well as in root hair and stele cells (pericycle and vascular tissues). Expressed in epidermal root hairless cells (atrichoblasts) and moves to root hair cells (trichoblasts) by a cell-to-cell movement through plasmodesmata (at protein level). {ECO:0000269|PubMed:15795220, ECO:0000269|PubMed:16291794}.
Functional Description ? help Back to Top
Source Description
TAIRNuclear-localized R3-type MYB transcription factor. Positive regulator of hair-cell differentiation. Preferentially transcribed in hairless cells. Moves from atrichoblasts into trichoblast via plasmodesmata in a tissue-specific mode. N-terminus and part of the Myb domain are required for this movement, with W76 playing a crucial role. Capability to increase the size-exclusion limit of plasmodesmata. Regulated by WEREWOLF.
UniProtTranscription factor. Determines the fate of epidermal cell differentiation. Represses trichome development by lateral inhibition. Together with GL3 or BHLH2, promotes the formation of hair developing cells (H position) in root epidermis, probably by inhibiting non-hair cell formation. Represses the expression of GL2 and WER in H cells. Positively regulates stomatal formation in the hypocotyl (PubMed:19513241). {ECO:0000269|PubMed:11910008, ECO:0000269|PubMed:12356720, ECO:0000269|PubMed:16291794, ECO:0000269|PubMed:19513241, ECO:0000269|PubMed:9262483}.
Function -- GeneRIF ? help Back to Top
  1. Deletion analyses of the CPC promoter revealed that hairless cell-specific transcription of the CPC gene required a 69 bp sequence, and a tandem repeat of this region was sufficient for its expression in epidermis.
    [PMID: 15795220]
  2. Intercellular CPC movement is mediated through plasmodesmata. Furthermore, the fusion of CPC to tandem-GFPs defined the capability of CPC to increase the size exclusion limit of plasmodesmata.
    [PMID: 16291794]
  3. The functional relationship of the R2R3-type MYB gene WEREWOLF (WER) and the R3-type MYB gene CAPRICE (CPC), was analyzed.
    [PMID: 17644729]
  4. Results suggest that patterning depends on the movement of the CAPRICE and GLABRA3 transcriptional regulators between epidermal cells.
    [PMID: 18816165]
  5. The report adds anthocyanin biosynthesis to the set of programs that are under CPC control, indicating that this regulator is not only for developmental programs (e.g. root hairs, trichomes), but can influence anthocyanin pigment synthesis.
    [PMID: 19825656]
  6. WER and CPC compete with one another to define cell fates in the Arabidopsis root epidermis.
    [PMID: 21914815]
  7. Mutations in CPC or TRY delay flowering of cpl3 plants. A mutation in ETC1 did not further delay flowering but reduced plant size.
    [PMID: 23796522]
  8. Localization of CPC in the nucleus requires the H-cell-expressed ENHANCER OF GLABRA3 (EGL3).
    [PMID: 23832626]
  9. AtMYC1 modulates the behaviour of GL1 by recruiting it from the nucleus to the cytoplasm, and AtMYC1 is recruited by TRY or CPC to the nucleus.
    [PMID: 23900543]
  10. Double mutant analysis reveal that wer and caprice (cpc) mutants, defective in core components of the epidermal patterning pathway, genetically interact with sab. This suggests that SAB may act on epidermal patterning upstream of WER and CPC.
    [PMID: 25124848]
  11. TRY, but not the related factor CPC, is responsible for the preferential SCM accumulation.
    [PMID: 25482776]
  12. In an intricate interplay between three partly redundant single R3 MYB proteins, CPC, ETC1, and TRY regulate several developmental, physiological and metabolic processes that are putatively located in different tissues.
    [PMID: 26022254]
  13. overexpression did not influence anthocyanin biosynthesis in tomato fruit peel
    [PMID: 26039466]
  14. that CPC, TRY and ETC1 are also involved in root hair formation at the root-hypocotyl junction.
    [PMID: 26339713]
  15. These results indicate that the maintenance of not only the S1 and S2 motifs but also the precise structure of CPC protein might be necessary for the cell-to-cell movement of CPC. Our results should help in further unraveling of the roles of these MYB transcription factors in root hair formation
    [PMID: 29337129]
Cis-element ? help Back to Top
Regulation -- Description ? help Back to Top
Source Description
UniProtINDUCTION: Transcriptional repression correlates with reduced histone acetylation on H3 and H4 mediated by HDA18 in root epidermis N cells (non-hair developing cells). Induced by WER. Negative autoregulation by interfering with the binding of WER to its WER-binding sites (WBS) promoter region, especially in H cells. Down-regulated by GEM. Down-regulated by TMM (PubMed:19513241). {ECO:0000269|PubMed:11910008, ECO:0000269|PubMed:15795220, ECO:0000269|PubMed:16176989, ECO:0000269|PubMed:16207757, ECO:0000269|PubMed:17450124, ECO:0000269|PubMed:19513241}.
Regulation -- PlantRegMap ? help Back to Top
Source Upstream Regulator Target Gene
Regulation -- ATRM (Manually Curated Upstream Regulators) ? help Back to Top
Source Upstream Regulator (A: Activate/R: Repress)
ATRM AT1G63650 (A), AT2G46410 (R), AT3G27920 (A), AT5G14750 (A), AT5G40330 (A), AT5G41315 (A)
Regulation -- ATRM (Manually Curated Target Genes) ? help Back to Top
Source Target Gene (A: Activate/R: Repress)
ATRM AT1G63650(A), AT1G79840(R), AT2G37260(R), AT2G46410(R), AT5G14750(R), AT5G40330(R), AT5G41315(A), AT5G53200(R)
Regulation -- Hormone ? help Back to Top
Source Hormone
AHDjasmonic acid, salicylic acid
Interaction -- BIND ? help Back to Top
Source Intact With Description
BINDAT1G63650EGL3 interacts with CPC.
BINDAT5G41315GL3 interacts with CPC.
Interaction ? help Back to Top
Source Intact With
BioGRIDAT3G27920, AT5G14750, AT5G41315, AT5G53200, AT1G63650
IntActSearch O22059
Phenotype -- Mutation ? help Back to Top
Source ID
T-DNA ExpressAT2G46410
Annotation -- Nucleotide ? help Back to Top
Source Hit ID E-value Description
GenBankAB0048711e-158AB004871.1 Arabidopsis thaliana mRNA for CPC, complete cds.
GenBankAY0746371e-158AY074637.1 Arabidopsis thaliana At2g46410/F11C10.10 mRNA, complete cds.
GenBankAY5195211e-158AY519521.1 Arabidopsis thaliana MYB transcription factor (At2g46410) mRNA, complete cds.
Annotation -- Protein ? help Back to Top
Source Hit ID E-value Description
RefseqNP_182164.12e-62Homeodomain-like superfamily protein
SwissprotO220592e-63CPC_ARATH; Transcription factor CPC
TrEMBLR0FYS94e-59R0FYS9_9BRAS; Uncharacterized protein
STRINGAT2G46410.19e-62(Arabidopsis thaliana)
Orthologous Group ? help Back to Top
LineageOrthologous Group IDTaxa NumberGene Number
Representative plantOGRP4207823
Publications ? help Back to Top
  1. Lee MM,Schiefelbein J
    WEREWOLF, a MYB-related protein in Arabidopsis, is a position-dependent regulator of epidermal cell patterning.
    Cell, 1999. 99(5): p. 473-83
  2. Mendoza L,Alvarez-Buylla ER
    Genetic regulation of root hair development in Arabidopsis thaliana: a network model.
    J. Theor. Biol., 2000. 204(3): p. 311-26
  3. Riechmann JL, et al.
    Arabidopsis transcription factors: genome-wide comparative analysis among eukaryotes.
    Science, 2000. 290(5499): p. 2105-10
  4. Dolan L,Costa S
    Evolution and genetics of root hair stripes in the root epidermis.
    J. Exp. Bot., 2001. 52(Spec Issue): p. 413-7
  5. Lin Y,Schiefelbein J
    Embryonic control of epidermal cell patterning in the root and hypocotyl of Arabidopsis.
    Development, 2001. 128(19): p. 3697-705
  6. Lee MM,Schiefelbein J
    Cell pattern in the Arabidopsis root epidermis determined by lateral inhibition with feedback.
    Plant Cell, 2002. 14(3): p. 611-8
  7. Schellmann S, et al.
    TRIPTYCHON and CAPRICE mediate lateral inhibition during trichome and root hair patterning in Arabidopsis.
    EMBO J., 2002. 21(19): p. 5036-46
  8. Wada T, et al.
    Role of a positive regulator of root hair development, CAPRICE, in Arabidopsis root epidermal cell differentiation.
    Development, 2002. 129(23): p. 5409-19
  9. Cho HT,Cosgrove DJ
    Regulation of root hair initiation and expansin gene expression in Arabidopsis.
    Plant Cell, 2002. 14(12): p. 3237-53
  10. Schiefelbein J
    Cell-fate specification in the epidermis: a common patterning mechanism in the root and shoot.
    Curr. Opin. Plant Biol., 2003. 6(1): p. 74-8
  11. Costa S,Dolan L
    Epidermal patterning genes are active during embryogenesis in Arabidopsis.
    Development, 2003. 130(13): p. 2893-901
  12. Zhang F,Gonzalez A,Zhao M,Payne CT,Lloyd A
    A network of redundant bHLH proteins functions in all TTG1-dependent pathways of Arabidopsis.
    Development, 2003. 130(20): p. 4859-69
  13. Yamada K, et al.
    Empirical analysis of transcriptional activity in the Arabidopsis genome.
    Science, 2003. 302(5646): p. 842-6
  14. Bernhardt C, et al.
    The bHLH genes GLABRA3 (GL3) and ENHANCER OF GLABRA3 (EGL3) specify epidermal cell fate in the Arabidopsis root.
    Development, 2003. 130(26): p. 6431-9
  15. Kirik V,Simon M,Huelskamp M,Schiefelbein J
    The ENHANCER OF TRY AND CPC1 gene acts redundantly with TRIPTYCHON and CAPRICE in trichome and root hair cell patterning in Arabidopsis.
    Dev. Biol., 2004. 268(2): p. 506-13
  16. Serna L
    A network of interacting factors triggering different cell fates.
    Plant Cell, 2004. 16(9): p. 2258-63
  17. Zimmermann IM,Heim MA,Weisshaar B,Uhrig JF
    Comprehensive identification of Arabidopsis thaliana MYB transcription factors interacting with R/B-like BHLH proteins.
    Plant J., 2004. 40(1): p. 22-34
  18. Montiel G,Gantet P,Jay-Allemand C,Breton C
    Transcription factor networks. Pathways to the knowledge of root development.
    Plant Physiol., 2004. 136(3): p. 3478-85
  19. Bernhardt C,Zhao M,Gonzalez A,Lloyd A,Schiefelbein J
    The bHLH genes GL3 and EGL3 participate in an intercellular regulatory circuit that controls cell patterning in the Arabidopsis root epidermis.
    Development, 2005. 132(2): p. 291-8
  20. Koshino-Kimura Y, et al.
    Regulation of CAPRICE transcription by MYB proteins for root epidermis differentiation in Arabidopsis.
    Plant Cell Physiol., 2005. 46(6): p. 817-26
  21. Serna L
    Epidermal cell patterning and differentiation throughout the apical-basal axis of the seedling.
    J. Exp. Bot., 2005. 56(418): p. 1983-9
  22. Xu CR, et al.
    Histone acetylation affects expression of cellular patterning genes in the Arabidopsis root epidermis.
    Proc. Natl. Acad. Sci. U.S.A., 2005. 102(40): p. 14469-74
  23. Ryu KH, et al.
    The WEREWOLF MYB protein directly regulates CAPRICE transcription during cell fate specification in the Arabidopsis root epidermis.
    Development, 2005. 132(21): p. 4765-75
  24. Kurata T, et al.
    Cell-to-cell movement of the CAPRICE protein in Arabidopsis root epidermal cell differentiation.
    Development, 2005. 132(24): p. 5387-98
  25. Dolan L
    Positional information and mobile transcriptional regulators determine cell pattern in the Arabidopsis root epidermis.
    J. Exp. Bot., 2006. 57(1): p. 51-4
  26. Yanhui C, et al.
    The MYB transcription factor superfamily of Arabidopsis: expression analysis and phylogenetic comparison with the rice MYB family.
    Plant Mol. Biol., 2006. 60(1): p. 107-24
  27. Lee JY, et al.
    Transcriptional and posttranscriptional regulation of transcription factor expression in Arabidopsis roots.
    Proc. Natl. Acad. Sci. U.S.A., 2006. 103(15): p. 6055-60
  28. Molas ML,Kiss JZ,Correll MJ
    Gene profiling of the red light signalling pathways in roots.
    J. Exp. Bot., 2006. 57(12): p. 3217-29
  29. Kwak SH,Schiefelbein J
    The role of the SCRAMBLED receptor-like kinase in patterning the Arabidopsis root epidermis.
    Dev. Biol., 2007. 302(1): p. 118-31
  30. Chen ZH,Nimmo GA,Jenkins GI,Nimmo HG
    BHLH32 modulates several biochemical and morphological processes that respond to Pi starvation in Arabidopsis.
    Biochem. J., 2007. 405(1): p. 191-8
  31. Caro E,Castellano MM,Gutierrez C
    A chromatin link that couples cell division to root epidermis patterning in Arabidopsis.
    Nature, 2007. 447(7141): p. 213-7
  32. Wang YP, et al.
    [The mechanism of root hair development and molecular regulation in plants].
    Yi Chuan, 2007. 29(4): p. 413-9
  33. Tominaga R,Iwata M,Okada K,Wada T
    Functional analysis of the epidermal-specific MYB genes CAPRICE and WEREWOLF in Arabidopsis.
    Plant Cell, 2007. 19(7): p. 2264-77
  34. Ishida T, et al.
    Arabidopsis TRANSPARENT TESTA GLABRA2 is directly regulated by R2R3 MYB transcription factors and is involved in regulation of GLABRA2 transcription in epidermal differentiation.
    Plant Cell, 2007. 19(8): p. 2531-43
  35. Morohashi K, et al.
    Participation of the Arabidopsis bHLH factor GL3 in trichome initiation regulatory events.
    Plant Physiol., 2007. 145(3): p. 736-46
  36. Simon M,Lee MM,Lin Y,Gish L,Schiefelbein J
    Distinct and overlapping roles of single-repeat MYB genes in root epidermal patterning.
    Dev. Biol., 2007. 311(2): p. 566-78
  37. Wang S, et al.
    TRICHOMELESS1 regulates trichome patterning by suppressing GLABRA1 in Arabidopsis.
    Development, 2007. 134(21): p. 3873-82
  38. Wang Y, et al.
    Salt-induced plasticity of root hair development is caused by ion disequilibrium in Arabidopsis thaliana.
    J. Plant Res., 2008. 121(1): p. 87-96
  39. Motose H,Tominaga R,Wada T,Sugiyama M,Watanabe Y
    A NIMA-related protein kinase suppresses ectopic outgrowth of epidermal cells through its kinase activity and the association with microtubules.
    Plant J., 2008. 54(5): p. 829-44
  40. Tominaga R, et al.
    Arabidopsis CAPRICE-LIKE MYB 3 (CPL3) controls endoreduplication and flowering development in addition to trichome and root hair formation.
    Development, 2008. 135(7): p. 1335-45
  41. Zhao M,Morohashi K,Hatlestad G,Grotewold E,Lloyd A
    The TTG1-bHLH-MYB complex controls trichome cell fate and patterning through direct targeting of regulatory loci.
    Development, 2008. 135(11): p. 1991-9
  42. Kaminuma E,Yoshizumi T,Wada T,Matsui M,Toyoda T
    Quantitative analysis of heterogeneous spatial distribution of Arabidopsis leaf trichomes using micro X-ray computed tomography.
    Plant J., 2008. 56(3): p. 470-82
  43. Wang S, et al.
    Comprehensive analysis of single-repeat R3 MYB proteins in epidermal cell patterning and their transcriptional regulation in Arabidopsis.
    BMC Plant Biol., 2008. 8: p. 81
  44. Shangguan XX,Xu B,Yu ZX,Wang LJ,Chen XY
    Promoter of a cotton fibre MYB gene functional in trichomes of Arabidopsis and glandular trichomes of tobacco.
    J. Exp. Bot., 2008. 59(13): p. 3533-42
  45. Digiuni S, et al.
    A competitive complex formation mechanism underlies trichome patterning on Arabidopsis leaves.
    Mol. Syst. Biol., 2008. 4: p. 217
  46. Yang TJ,Perry PJ,Ciani S,Pandian S,Schmidt W
    Manganese deficiency alters the patterning and development of root hairs in Arabidopsis.
    J. Exp. Bot., 2008. 59(12): p. 3453-64
  47. Savage NS, et al.
    A mutual support mechanism through intercellular movement of CAPRICE and GLABRA3 can pattern the Arabidopsis root epidermis.
    PLoS Biol., 2008. 6(9): p. e235
  48. Ben
    Interlinked nonlinear subnetworks underlie the formation of robust cellular patterns in Arabidopsis epidermis: a dynamic spatial model.
    BMC Syst Biol, 2008. 2: p. 98
  49. Li SF, et al.
    The Arabidopsis MYB5 transcription factor regulates mucilage synthesis, seed coat development, and trichome morphogenesis.
    Plant Cell, 2009. 21(1): p. 72-89
  50. Wester K, et al.
    Functional diversity of R3 single-repeat genes in trichome development.
    Development, 2009. 136(9): p. 1487-96
  51. Kang YH, et al.
    The MYB23 gene provides a positive feedback loop for cell fate specification in the Arabidopsis root epidermis.
    Plant Cell, 2009. 21(4): p. 1080-94
  52. Kuppusamy KT,Chen AY,Nemhauser JL
    Steroids are required for epidermal cell fate establishment in Arabidopsis roots.
    Proc. Natl. Acad. Sci. U.S.A., 2009. 106(19): p. 8073-6
  53. Serna L
    CAPRICE positively regulates stomatal formation in the Arabidopsis hypocotyl.
    Plant Signal Behav, 2008. 3(12): p. 1077-82
  54. Tominaga-Wada R, et al.
    The GLABRA2 homeodomain protein directly regulates CESA5 and XTH17 gene expression in Arabidopsis roots.
    Plant J., 2009. 60(3): p. 564-74
  55. Marks MD,Wenger JP,Gilding E,Jilk R,Dixon RA
    Transcriptome analysis of Arabidopsis wild-type and gl3-sst sim trichomes identifies four additional genes required for trichome development.
    Mol Plant, 2009. 2(4): p. 803-22
  56. Zhang W,Ning G,Lv H,Liao L,Bao M
    Single MYB-type transcription factor AtCAPRICE: a new efficient tool to engineer the production of anthocyanin in tobacco.
    Biochem. Biophys. Res. Commun., 2009. 388(4): p. 742-7
  57. Siegal-Gaskins D,Grotewold E,Smith GD
    The capacity for multistability in small gene regulatory networks.
    BMC Syst Biol, 2009. 3: p. 96
  58. Zhu HF,Fitzsimmons K,Khandelwal A,Kranz RG
    CPC, a single-repeat R3 MYB, is a negative regulator of anthocyanin biosynthesis in Arabidopsis.
    Mol Plant, 2009. 2(4): p. 790-802
  59. Schliep M,Ebert B,Simon-Rosin U,Zoeller D,Fisahn J
    Quantitative expression analysis of selected transcription factors in pavement, basal and trichome cells of mature leaves from Arabidopsis thaliana.
    Protoplasma, 2010. 241(1-4): p. 29-36
  60. Hassan H,Scheres B,Blilou I
    JACKDAW controls epidermal patterning in the Arabidopsis root meristem through a non-cell-autonomous mechanism.
    Development, 2010. 137(9): p. 1523-9
  61. Gilding EK,Marks MD
    Analysis of purified glabra3-shapeshifter trichomes reveals a role for NOECK in regulating early trichome morphogenic events.
    Plant J., 2010. 64(2): p. 304-17
  62. Kubo H,Hayashi K
    Characterization of root cells of anl2 mutant in Arabidopsis thaliana.
    Plant Sci., 2011. 180(5): p. 679-85
  63. Niu Y, et al.
    Auxin modulates the enhanced development of root hairs in Arabidopsis thaliana (L.) Heynh. under elevated CO(2).
    Plant Cell Environ., 2011. 34(8): p. 1304-17
  64. Song SK, et al.
    Cell fate in the Arabidopsis root epidermis is determined by competition between WEREWOLF and CAPRICE.
    Plant Physiol., 2011. 157(3): p. 1196-208
  65. Koizumi K,Wu S,MacRae-Crerar A,Gallagher KL
    An essential protein that interacts with endosomes and promotes movement of the SHORT-ROOT transcription factor.
    Curr. Biol., 2011. 21(18): p. 1559-64
  66. Rim Y, et al.
    Analysis of Arabidopsis transcription factor families revealed extensive capacity for cell-to-cell movement as well as discrete trafficking patterns.
    Mol. Cells, 2011. 32(6): p. 519-26
  67. Wu S,Koizumi K,Macrae-Crerar A,Gallagher KL
    Assessing the utility of photoswitchable fluorescent proteins for tracking intercellular protein movement in the Arabidopsis root.
    PLoS ONE, 2011. 6(11): p. e27536
  68. Tominaga-Wada R,Nukumizu Y,Wada T
    Amino acid substitution converts WEREWOLF function from an activator to a repressor of Arabidopsis non-hair cell development.
    Plant Sci., 2012. 183: p. 37-42
  69. Tominaga-Wada R,Iwata M,Nukumizu Y,Sano R,Wada T
    A full-length R-like basic-helix-loop-helix transcription factor is required for anthocyanin upregulation whereas the N-terminal region regulates epidermal hair formation.
    Plant Sci., 2012. 183: p. 115-22
  70. An L, et al.
    A zinc finger protein gene ZFP5 integrates phytohormone signaling to control root hair development in Arabidopsis.
    Plant J., 2012. 72(3): p. 474-90
  71. Wieckowski Y,Schiefelbein J
    Nuclear ribosome biogenesis mediated by the DIM1A rRNA dimethylase is required for organized root growth and epidermal patterning in Arabidopsis.
    Plant Cell, 2012. 24(7): p. 2839-56
  72. Fuentes S,Ca
    Relationship between brassinosteroids and genes controlling stomatal production in the Arabidopsis hypocotyl.
    Int. J. Dev. Biol., 2012. 56(9): p. 675-80
  73. Tominaga-Wada R,Nukumizu Y,Sato S,Wada T
    Control of plant trichome and root-hair development by a tomato (Solanum lycopersicum) R3 MYB transcription factor.
    PLoS ONE, 2013. 8(1): p. e54019
  74. Nukumizu Y,Wada T,Tominaga-Wada R
    Tomato (Solanum lycopersicum) homologs of TRIPTYCHON (SlTRY) and GLABRA3 (SlGL3) are involved in anthocyanin accumulation.
    Plant Signal Behav, 2013. 8(7): p. e24575
  75. Wang G,Zhao GH,Jia YH,Du XM
    Identification and characterization of cotton genes involved in fuzz-fiber development.
    J Integr Plant Biol, 2013. 55(7): p. 619-30
  76. Tominaga-Wada R,Nukumizu Y,Wada T
    Flowering is delayed by mutations in homologous genes CAPRICE and TRYPTICHON in the early flowering Arabidopsis cpl3 mutant.
    J. Plant Physiol., 2013. 170(16): p. 1466-8
  77. Kang YH,Song SK,Schiefelbein J,Lee MM
    Nuclear trapping controls the position-dependent localization of CAPRICE in the root epidermis of Arabidopsis.
    Plant Physiol., 2013. 163(1): p. 193-204
  78. Pesch M,Schulthei
    Mutual control of intracellular localisation of the patterning proteins AtMYC1, GL1 and TRY/CPC in Arabidopsis.
    Development, 2013. 140(16): p. 3456-67
  79. Savage N, et al.
    Positional signaling and expression of ENHANCER OF TRY AND CPC1 are tuned to increase root hair density in response to phosphate deficiency in Arabidopsis thaliana.
    PLoS ONE, 2013. 8(10): p. e75452
  80. Nayidu NK, et al.
    Comparison of five major trichome regulatory genes in Brassica villosa with orthologues within the Brassicaceae.
    PLoS ONE, 2014. 9(4): p. e95877
  81. Pietra S,Lang P,Grebe M
    SABRE is required for stabilization of root hair patterning in Arabidopsis thaliana.
    Physiol Plant, 2015. 153(3): p. 440-53
  82. Kwak SH,Schiefelbein J
    TRIPTYCHON, not CAPRICE, participates in feedback regulation of SCM expression in the Arabidopsis root epidermis.
    Plant Signal Behav, 2014. 9(11): p. e973815
  83. Jin J, et al.
    An Arabidopsis Transcriptional Regulatory Map Reveals Distinct Functional and Evolutionary Features of Novel Transcription Factors.
    Mol. Biol. Evol., 2015. 32(7): p. 1767-73
  84. Chen CY,Schmidt W
    The paralogous R3 MYB proteins CAPRICE, TRIPTYCHON and ENHANCER OF TRY AND CPC1 play pleiotropic and partly non-redundant roles in the phosphate starvation response of Arabidopsis roots.
    J. Exp. Bot., 2015. 66(15): p. 4821-34
  85. Wada T,Onishi M,Kunihiro A,Tominaga-Wada R
    Overexpressing CAPRICE and GLABRA3 did not change the anthocyanin content of tomato (Solanum lycopersicum) fruit peel.
    Plant Signal Behav, 2015. 10(5): p. e1000131
  86. Wada T,Hayashi N,Tominaga-Wada R
    Root hair formation at the root-hypocotyl junction in CPC-LIKE MYB double and triple mutants of Arabidopsis.
    Plant Signal Behav, 2015. 10(11): p. e1089372
  87. Huang M,Hu Y,Liu X,Li Y,Hou X
    Arabidopsis LEAFY COTYLEDON1 controls cell fate determination during post-embryonic development.
    Front Plant Sci, 2015. 6: p. 955
  88. Tominaga-Wada R,Wada T
    The ectopic localization of CAPRICE LIKE MYB3 protein in Arabidopsis root epidermis.
    J. Plant Physiol., 2016. 199: p. 111-115
  89. Hegebarth D,Buschhaus C,Wu M,Bird D,Jetter R
    The composition of surface wax on trichomes of Arabidopsis thaliana differs from wax on other epidermal cells.
    Plant J., 2016. 88(5): p. 762-774
  90. Tominaga-Wada R,Kurata T,Wada T
    Localization of ENHANCER OF TRY AND CPC1 protein in Arabidopsis root epidermis.
    J. Plant Physiol., 2017. 214: p. 48-52
  91. Tominaga-Wada R,Kurata T,Wada T
    Localization of the CAPRICE-ENHANCER OF TRY AND CPC1 chimera protein in Arabidopsis root epidermis.
    Biosci. Biotechnol. Biochem., 2017. 81(9): p. 1762-1767
  92. Tominaga-Wada R,Wada T
    Extended C termini of CPC-LIKE MYB proteins confer functional diversity in Arabidopsis epidermal cell differentiation.
    Development, 2017. 144(13): p. 2375-2380
  93. Canales J,Contreras-López O,Álvarez JM,Gutiérrez RA
    Nitrate induction of root hair density is mediated by TGA1/TGA4 and CPC transcription factors in Arabidopsis thaliana.
    Plant J., 2017. 92(2): p. 305-316
  94. Tominaga-Wada R,Wada T
    Effect of amino acid substitution of CAPRICE on cell-to-cell movement ability in Arabidopsis root epidermis.
    Dev. Biol., 2018. 435(1): p. 1-5
  95. Kohanová J, et al.
    Root hair abundance impacts cadmium accumulation in Arabidopsis thaliana shoots.
    Ann. Bot., 2018. 122(5): p. 903-914
  96. Wada T,Tachibana T,Shimura Y,Okada K
    Epidermal cell differentiation in Arabidopsis determined by a Myb homolog, CPC.
    Science, 1997. 277(5329): p. 1113-6