PlantRegMap/PlantTFDB v5.0
Plant Transcription Factor Database
Transcription Factor Information
Basic Information | Signature Domain | Sequence | 
Basic Information? help Back to Top
TF ID AT2G45660.1
Common NameAGL20, ATSOC1, F17K2.19, SOC1
Taxonomic ID
Taxonomic Lineage
cellular organisms; Eukaryota; Viridiplantae; Streptophyta; Streptophytina; Embryophyta; Tracheophyta; Euphyllophyta; Spermatophyta; Magnoliophyta; Mesangiospermae; eudicotyledons; Gunneridae; Pentapetalae; rosids; malvids; Brassicales; Brassicaceae; Camelineae; Arabidopsis
Protein Properties Length: 214aa    MW: 24533 Da    PI: 9.4279
Description AGAMOUS-like 20
Gene Model
Gene Model ID Type Source Coding Sequence
AT2G45660.1genomeTAIRView CDS
Signature Domain? help Back to Top
Signature Domain
No. Domain Score E-value Start End HMM Start HMM End
       SRF-TF  1 krienksnrqvtfskRrngilKKAeELSvLCdaevaviifsstgklyeyss 51
                 krien + rqvtfskRrng+lKKA+ELSvLCdaev++iifs++gklye++s
                 79***********************************************86 PP

        K-box   4 ssgksleeakaeslqqelakLkkeienLqreqRhllGedLesLslkeLqqLeqqLekslkkiRskKnellleqieelqkkekelqeenkaLrkkl 98 
                   s+k ++e+++++l+ e+a++ k+ie+L+ ++R+llGe+++++s++eLqq+eqqLeks+k iR++K+++++eqie+l++kek+l  en++L++k+
                  566779**************************************************************************************997 PP

Protein Features ? help Back to Top
3D Structure
Database Entry ID E-value Start End InterPro ID Description
SMARTSM004323.8E-41160IPR002100Transcription factor, MADS-box
PROSITE profilePS5006631.735161IPR002100Transcription factor, MADS-box
PRINTSPR004048.0E-31323IPR002100Transcription factor, MADS-box
CDDcd002657.82E-42378No hitNo description
SuperFamilySSF554551.03E-33383IPR002100Transcription factor, MADS-box
PROSITE patternPS003500357IPR002100Transcription factor, MADS-box
PfamPF003192.0E-261057IPR002100Transcription factor, MADS-box
PRINTSPR004048.0E-312338IPR002100Transcription factor, MADS-box
PRINTSPR004048.0E-313859IPR002100Transcription factor, MADS-box
PfamPF014861.1E-2884170IPR002487Transcription factor, K-box
PROSITE profilePS5129715.71587177IPR002487Transcription factor, K-box
Gene Ontology ? help Back to Top
GO Term GO Category GO Description
GO:0000060Biological Processprotein import into nucleus, translocation
GO:0009409Biological Processresponse to cold
GO:0009739Biological Processresponse to gibberellin
GO:0009911Biological Processpositive regulation of flower development
GO:0010077Biological Processmaintenance of inflorescence meristem identity
GO:0030154Biological Processcell differentiation
GO:0045893Biological Processpositive regulation of transcription, DNA-templated
GO:0005634Cellular Componentnucleus
GO:0005737Cellular Componentcytoplasm
GO:0003677Molecular FunctionDNA binding
GO:0003700Molecular Functiontranscription factor activity, sequence-specific DNA binding
GO:0008134Molecular Functiontranscription factor binding
GO:0046983Molecular Functionprotein dimerization activity
Plant Ontology ? help Back to Top
PO Term PO Category PO Description
PO:0000013anatomycauline leaf
PO:0000037anatomyshoot apex
PO:0000230anatomyinflorescence meristem
PO:0000293anatomyguard cell
PO:0008019anatomyleaf lamina base
PO:0009006anatomyshoot system
PO:0009009anatomyplant embryo
PO:0009013anatomyportion of meristem tissue
PO:0009025anatomyvascular leaf
PO:0020137anatomyleaf apex
PO:0025022anatomycollective leaf structure
PO:0001054developmental stagevascular leaf senescent stage
PO:0001078developmental stageplant embryo cotyledonary stage
PO:0001081developmental stagemature plant embryo stage
PO:0004507developmental stageplant embryo bilateral stage
PO:0007064developmental stageLP.12 twelve leaves visible stage
PO:0007095developmental stageLP.08 eight leaves visible stage
PO:0007098developmental stageLP.02 two leaves visible stage
PO:0007103developmental stageLP.10 ten leaves visible stage
PO:0007115developmental stageLP.04 four leaves visible stage
PO:0007123developmental stageLP.06 six leaves visible stage
PO:0007611developmental stagepetal differentiation and expansion stage
PO:0007616developmental stageflowering stage
Sequence ? help Back to Top
Protein Sequence    Length: 214 aa     Download sequence    Send to blast
3D Structure ? help Back to Top
PDB ID Evalue Query Start Query End Hit Start Hit End Description
6byy_A6e-19169169MEF2 CHIMERA
6byy_B6e-19169169MEF2 CHIMERA
6byy_C6e-19169169MEF2 CHIMERA
6byy_D6e-19169169MEF2 CHIMERA
6bz1_A5e-19169169MEF2 CHIMERA
6bz1_B5e-19169169MEF2 CHIMERA
6bz1_C5e-19169169MEF2 CHIMERA
6bz1_D5e-19169169MEF2 CHIMERA
Search in ModeBase
Expression -- UniGene ? help Back to Top
UniGene ID E-value Expressed in
Expression -- Microarray ? help Back to Top
Source ID E-value
Expression AtlasAT2G45660-
Expression -- Description ? help Back to Top
Source Description
UniprotDEVELOPMENTAL STAGE: Rapidly up-regulated in apical meristems during the transition to flowering. Transiently expressed in inflorescence meristem. Re-appears in stage 3 flowers, in the central dome that later will develop into stamens and carpels. {ECO:0000269|PubMed:19656343}.
UniprotTISSUE SPECIFICITY: Widely expressed. Not found in the apical meristem of short-day grown plants in vegetative stage.
Functional Description ? help Back to Top
Source Description
TAIRControls flowering and is required for CO to promote flowering. It acts downstream of FT. Overexpression of (SOC1) AGL20 suppresses not only the late flowering of plants that have functional FRI and FLC alleles but also the delayed phase transitions during the vegetative stages of development. AGL20/SOC1 acts with AGL24 to promote flowering and inflorescence meristem identity.AGL20 upregulates expression of AGL24 in response to GA.
UniProtTranscription activator active in flowering time control. May integrate signals from the photoperiod, vernalization and autonomous floral induction pathways. Can modulate class B and C homeotic genes expression. When associated with AGL24, mediates effect of gibberellins on flowering under short-day conditions, and regulates the expression of LEAFY (LFY), which links floral induction and floral development. {ECO:0000269|PubMed:10995392, ECO:0000269|PubMed:18339670, ECO:0000269|PubMed:18466303, ECO:0000269|PubMed:19656343}.
Function -- GeneRIF ? help Back to Top
  1. Activation of SOC1 expression by FT and TSF in winter-annual flowering A. thaliana. [SOC1]
    [PMID: 15618421]
  2. FT regulates SOC1 expression, and SOC1 regulates LFY expression [SOC1]
    [PMID: 15695467]
  3. inactivation of FT caused down-regulation of SOC1 even in plants overexpressing CO, indicating that FT is required for SOC1 induction by CO
    [PMID: 16183837]
  4. SOC1 gene. MADS box proteins are thought to bind their DNA targets as dimers or higher-order multimers
    [PMID: 16623882]
  5. once AP1 is activated during the floral transition, it acts partly as a master repressor in floral meristems by directly suppressing the expression of flowering time genes SVP, AGL24 and SOC1, preventing continuation of the shoot developmental program
    [PMID: 17428825]
  6. during floral transition, a positive-feedback loop conferred by direct transcriptional regulation between AGL24 and SOC1 at the shoot apex integrates flowering signals
    [PMID: 18339670]
  7. Interaction with AGL24 relocates SOC1 to the nucleus, where SOC1 regulates leafy expression by binding to the LFY promoter.
    [PMID: 18466303]
  8. EARLY FLOWERING9 (ELF9), an Arabidopsis thaliana RNA binding protein, directly targets the SOC1 transcript and reduces SOC1 mRNA levels.
    [PMID: 19376936]
  9. SOC1 is able to bind directly to regulatory regions of class B and C homeotic genes.
    [PMID: 19656343]
  10. Results demonstrate the presence of feedback loop that delays flowering through the increase of FLC when a cold spell is transient but suppresses the cold response when floral induction occurs through the repression of cold-inducible genes by SOC1.
    [PMID: 19825833]
  11. Flowering was promoted by induction of FT and SOC1 expression with blue light in Arabidopsis, whereas GpFTs and GpSOC1 expression was low with blue light induction in G. paniculata.
    [PMID: 21431295]
  12. SOC1 directly controls the expression of AGL42, AGL71 and AGL72 to balance the expression level of these SOC1-like genes.
    [PMID: 21609362]
  13. SOC1-SPL module serves as a molecular link that integrates photoperiod and gibberellic acid signals to promote flowering in Arabidopsis.
    [PMID: 21988498]
  14. Findings show that feedback regulatory loops mediated by SOC1 and SVP are essential components of the gene regulatory networks that underpin the integration of flowering signals during floral transition.
    [PMID: 22268548]
  15. Our studies provide insight into the role of MPF2-like genes in phase transition by interacting with SOC1 and MAF1 genes, thereby also pointing to their significance as potential candidates for modifying flowering in crop plants in the future.
    [PMID: 22539207]
  16. SOC1 constitutes a major hub in the regulatory networks underlying floral timing and flower development and that these networks are composed of many positive and negative autoregulatory and feedback loops.
    [PMID: 22791302]
  17. Flowering is controlled by AGL24 partly independently of SOC1 and FUL.
    [PMID: 22902690]
  18. 3' UTR-mediated SOC1 mRNA destabilization by AtBRN1 and AtBRN2 proteins.
    [PMID: 23437850]
  19. The drought escape response requires GI, FT/TSF, and AGL20 proteins in Arabidopsis.Abscisic acid up-regulates AGL20 expression in a photoperiod-dependent manner.
    [PMID: 23719890]
  20. a cross-repressive interaction of GNC and GNL on the one side and SOC1 on the other in the control of flowering time, greening, and cold tolerance
    [PMID: 23739688]
  21. The sequential formation of FUL-SVP and FUL-SOC1 heterodimers may mediate the vegetative and meristem identity transitions, counteracting the repressive effect of FLC and SVP on flowering.
    [PMID: 24465009]
  22. SOC1 is involved in the regulation of stomatal opening via transcriptional regulation in guard cells.
    [PMID: 25588388]
  23. We also demonstrate that a domain of the C-terminal region of ESD7 mediates the binding to the different PRC2 components and this interaction is necessary for the proper recruitment of PRC2 to FT and SOC1 chromatin.
    [PMID: 26980282]
  24. SPL15 and the MADS-box protein SOC1 cooperate to promote transcription of their target genes.
    [PMID: 27134142]
  25. Results indicate that SUPPRESSOR OF OVEREXPRESSION OF CO 1 (SOC1) inhibits chlorophyll degradation via negatively regulating pheophytinase (PPH) expression.
    [PMID: 28096189]
Binding Motif ? help Back to Top
Motif ID Method Source Motif file
Motif logo
Cis-element ? help Back to Top
Regulation -- Description ? help Back to Top
Source Description
UniProtINDUCTION: Up-regulated by gibberellins, vernalization and under long-day conditions. Gradual increase during vegetative growth. Induced by AGL24 at the shoot apex at the floral transitional stage. Repressed by SVP during the early stages of flower development. Inhibited by AP1 in emerging floral meristems (PubMed:17428825, PubMed:18339670, PubMed:19656343). Repressed by SHL to prevent flowering (PubMed:25281686). {ECO:0000269|PubMed:17428825, ECO:0000269|PubMed:18339670, ECO:0000269|PubMed:19656343, ECO:0000269|PubMed:25281686}.
Regulation -- PlantRegMap ? help Back to Top
Source Upstream Regulator Target Gene
Regulation -- ATRM (Manually Curated Upstream Regulators) ? help Back to Top
Source Upstream Regulator (A: Activate/R: Repress)
ATRM AT1G69120 (R), AT1G71692 (A), AT2G22540 (R), AT4G02560 (A), AT4G24540 (A), AT5G10140 (R), AT5G15840 (A), AT5G65050 (R)
Regulation -- ATRM (Manually Curated Target Genes) ? help Back to Top
Source Target Gene (A: Activate/R: Repress)
ATRM AT1G24260(R), AT5G61850(A)
Interaction ? help Back to Top
Source Intact With
BioGRIDAT2G45660, AT3G02310, AT3G57230, AT3G58780, AT3G61120, AT4G11880, AT4G22950, AT4G24540, AT4G37940, AT5G13790, AT5G15800, AT5G22290, AT5G51870, AT5G60910, AT5G62165, AT1G24260, AT1G26310, AT1G69120, AT1G71692
IntActSearch O64645
Phenotype -- Disruption Phenotype ? help Back to Top
Source Description
UniProtDISRUPTION PHENOTYPE: Plants are late-flowering. {ECO:0000269|PubMed:11123798}.
Phenotype -- Mutation ? help Back to Top
Source ID
T-DNA ExpressAT2G45660
Annotation -- Nucleotide ? help Back to Top
Source Hit ID E-value Description
GenBankAF3857310.0AF385731.1 Arabidopsis thaliana At2g45660/F17K2.19 mRNA, complete cds.
GenBankAY0077260.0AY007726.1 Arabidopsis thaliana MADS box protein AGL20 mRNA, complete cds.
GenBankAY0939670.0AY093967.1 Arabidopsis thaliana At2g45660/F17K2.19 mRNA, complete cds.
Annotation -- Protein ? help Back to Top
Source Hit ID E-value Description
RefseqNP_182090.11e-156AGAMOUS-like 20
SwissprotO646451e-157SOC1_ARATH; MADS-box protein SOC1
STRINGAT2G45660.11e-156(Arabidopsis thaliana)
Orthologous Group ? help Back to Top
LineageOrthologous Group IDTaxa NumberGene Number
Representative plantOGRP1617761
Publications ? help Back to Top
  1. Samach A, et al.
    Distinct roles of CONSTANS target genes in reproductive development of Arabidopsis.
    Science, 2000. 288(5471): p. 1613-6
  2. Onouchi H,Ige
    Mutagenesis of plants overexpressing CONSTANS demonstrates novel interactions among Arabidopsis flowering-time genes.
    Plant Cell, 2000. 12(6): p. 885-900
  3. Lee H, et al.
    The AGAMOUS-LIKE 20 MADS domain protein integrates floral inductive pathways in Arabidopsis.
    Genes Dev., 2000. 14(18): p. 2366-76
  4. Bonhomme F,Kurz B,Melzer S,Bernier G,Jacqmard A
    Cytokinin and gibberellin activate SaMADS A, a gene apparently involved in regulation of the floral transition in Sinapis alba.
    Plant J., 2000. 24(1): p. 103-11
  5. Riechmann JL, et al.
    Arabidopsis transcription factors: genome-wide comparative analysis among eukaryotes.
    Science, 2000. 290(5499): p. 2105-10
  6. Borner R, et al.
    A MADS domain gene involved in the transition to flowering in Arabidopsis.
    Plant J., 2000. 24(5): p. 591-9
  7. Michaels SD,Amasino RM
    Loss of FLOWERING LOCUS C activity eliminates the late-flowering phenotype of FRIGIDA and autonomous pathway mutations but not responsiveness to vernalization.
    Plant Cell, 2001. 13(4): p. 935-41
  8. Pelaz S,Gustafson-Brown C,Kohalmi SE,Crosby WL,Yanofsky MF
    APETALA1 and SEPALLATA3 interact to promote flower development.
    Plant J., 2001. 26(4): p. 385-94
  9. Ohto M, et al.
    Effects of sugar on vegetative development and floral transition in Arabidopsis.
    Plant Physiol., 2001. 127(1): p. 252-61
  10. Rouse DT,Sheldon CC,Bagnall DJ,Peacock WJ,Dennis ES
    FLC, a repressor of flowering, is regulated by genes in different inductive pathways.
    Plant J., 2002. 29(2): p. 183-91
  11. Hepworth SR,Valverde F,Ravenscroft D,Mouradov A,Coupland G
    Antagonistic regulation of flowering-time gene SOC1 by CONSTANS and FLC via separate promoter motifs.
    EMBO J., 2002. 21(16): p. 4327-37
  12. Yu H,Xu Y,Tan EL,Kumar PP
    AGAMOUS-LIKE 24, a dosage-dependent mediator of the flowering signals.
    Proc. Natl. Acad. Sci. U.S.A., 2002. 99(25): p. 16336-41
  13. Michaels SD, et al.
    AGL24 acts as a promoter of flowering in Arabidopsis and is positively regulated by vernalization.
    Plant J., 2003. 33(5): p. 867-74
  14. Ratcliffe OJ,Kumimoto RW,Wong BJ,Riechmann JL
    Analysis of the Arabidopsis MADS AFFECTING FLOWERING gene family: MAF2 prevents vernalization by short periods of cold.
    Plant Cell, 2003. 15(5): p. 1159-69
  15. Parenicová L, et al.
    Molecular and phylogenetic analyses of the complete MADS-box transcription factor family in Arabidopsis: new openings to the MADS world.
    Plant Cell, 2003. 15(7): p. 1538-51
  16. Moon J, et al.
    The SOC1 MADS-box gene integrates vernalization and gibberellin signals for flowering in Arabidopsis.
    Plant J., 2003. 35(5): p. 613-23
  17. Hsu HF,Huang CH,Chou LT,Yang CH
    Ectopic expression of an orchid (Oncidium Gower Ramsey) AGL6-like gene promotes flowering by activating flowering time genes in Arabidopsis thaliana.
    Plant Cell Physiol., 2003. 44(8): p. 783-94
  18. Suh SS,Choi KR,Lee I
    Revisiting phase transition during flowering in Arabidopsis.
    Plant Cell Physiol., 2003. 44(8): p. 836-43
  19. Kim KW, et al.
    The function of the flowering time gene AGL20 is conserved in Crucifers.
    Mol. Cells, 2003. 16(1): p. 136-41
  20. Tzeng TY,Hsiao CC,Chi PJ,Yang CH
    Two lily SEPALLATA-like genes cause different effects on floral formation and floral transition in Arabidopsis.
    Plant Physiol., 2003. 133(3): p. 1091-101
  21. Schmid M, et al.
    Dissection of floral induction pathways using global expression analysis.
    Development, 2003. 130(24): p. 6001-12
  22. Yamada K, et al.
    Empirical analysis of transcriptional activity in the Arabidopsis genome.
    Science, 2003. 302(5646): p. 842-6
  23. El-Din El-Assal S, et al.
    The role of cryptochrome 2 in flowering in Arabidopsis.
    Plant Physiol., 2003. 133(4): p. 1504-16
  24. Jack T
    Molecular and genetic mechanisms of floral control.
    Plant Cell, 2004. 16 Suppl: p. S1-17
  25. M
    Changes in gene expression in response to altered SHL transcript levels.
    Plant Mol. Biol., 2003. 53(6): p. 805-20
  26. Lee S,Kim J,Han JJ,Han MJ,An G
    Functional analyses of the flowering time gene OsMADS50, the putative SUPPRESSOR OF OVEREXPRESSION OF CO 1/AGAMOUS-LIKE 20 (SOC1/AGL20) ortholog in rice.
    Plant J., 2004. 38(5): p. 754-64
  27. Farrona S,Hurtado L,Bowman JL,Reyes JC
    The Arabidopsis thaliana SNF2 homolog AtBRM controls shoot development and flowering.
    Development, 2004. 131(20): p. 4965-75
  28. Michaels SD,Himelblau E,Kim SY,Schomburg FM,Amasino RM
    Integration of flowering signals in winter-annual Arabidopsis.
    Plant Physiol., 2005. 137(1): p. 149-56
  29. Moon J,Lee H,Kim M,Lee I
    Analysis of flowering pathway integrators in Arabidopsis.
    Plant Cell Physiol., 2005. 46(2): p. 292-9
  30. de Folter S, et al.
    Comprehensive interaction map of the Arabidopsis MADS Box transcription factors.
    Plant Cell, 2005. 17(5): p. 1424-33
  31. Yamaguchi A,Kobayashi Y,Goto K,Abe M,Araki T
    TWIN SISTER OF FT (TSF) acts as a floral pathway integrator redundantly with FT.
    Plant Cell Physiol., 2005. 46(8): p. 1175-89
  32. Gan Y,Filleur S,Rahman A,Gotensparre S,Forde BG
    Nutritional regulation of ANR1 and other root-expressed MADS-box genes in Arabidopsis thaliana.
    Planta, 2005. 222(4): p. 730-42
  33. Parcy F
    Flowering: a time for integration.
    Int. J. Dev. Biol., 2005. 49(5-6): p. 585-93
  34. Yoo SK, et al.
    CONSTANS activates SUPPRESSOR OF OVEREXPRESSION OF CONSTANS 1 through FLOWERING LOCUS T to promote flowering in Arabidopsis.
    Plant Physiol., 2005. 139(2): p. 770-8
  35. Lee JH, et al.
    Conservation and divergence of FCA function between Arabidopsis and rice.
    Plant Mol. Biol., 2005. 58(6): p. 823-38
  36. Sheldon CC,Finnegan EJ,Dennis ES,Peacock WJ
    Quantitative effects of vernalization on FLC and SOC1 expression.
    Plant J., 2006. 45(6): p. 871-83
  37. Bouveret R,Sch
    Regulation of flowering time by Arabidopsis MSI1.
    Development, 2006. 133(9): p. 1693-702
  38. Searle I, et al.
    The transcription factor FLC confers a flowering response to vernalization by repressing meristem competence and systemic signaling in Arabidopsis.
    Genes Dev., 2006. 20(7): p. 898-912
  39. Helliwell CA,Wood CC,Robertson M,James Peacock W,Dennis ES
    The Arabidopsis FLC protein interacts directly in vivo with SOC1 and FT chromatin and is part of a high-molecular-weight protein complex.
    Plant J., 2006. 46(2): p. 183-92
  40. Schönrock N, et al.
    Polycomb-group proteins repress the floral activator AGL19 in the FLC-independent vernalization pathway.
    Genes Dev., 2006. 20(12): p. 1667-78
  41. Ciannamea S, et al.
    Protein interactions of MADS box transcription factors involved in flowering in Lolium perenne.
    J. Exp. Bot., 2006. 57(13): p. 3419-31
  42. Corbesier L,Coupland G
    The quest for florigen: a review of recent progress.
    J. Exp. Bot., 2006. 57(13): p. 3395-403
  43. March-D
    SEF, a new protein required for flowering repression in Arabidopsis, interacts with PIE1 and ARP6.
    Plant Physiol., 2007. 143(2): p. 893-901
  44. Tadege M, et al.
    Reciprocal control of flowering time by OsSOC1 in transgenic Arabidopsis and by FLC in transgenic rice.
    Plant Biotechnol. J., 2003. 1(5): p. 361-9
  45. Huang MD,Wu WL
    Overexpression of TMAC2, a novel negative regulator of abscisic acid and salinity responses, has pleiotropic effects in Arabidopsis thaliana.
    Plant Mol. Biol., 2007. 63(4): p. 557-69
  46. Takase T,Yasuhara M,Geekiyanage S,Ogura Y,Kiyosue T
    Overexpression of the chimeric gene of the floral regulator CONSTANS and the EAR motif repressor causes late flowering in Arabidopsis.
    Plant Cell Rep., 2007. 26(6): p. 815-21
  47. Wang C, et al.
    The Arabidopsis thaliana AT PRP39-1 gene, encoding a tetratricopeptide repeat protein with similarity to the yeast pre-mRNA processing protein PRP39, affects flowering time.
    Plant Cell Rep., 2007. 26(8): p. 1357-66
  48. Achard P, et al.
    The plant stress hormone ethylene controls floral transition via DELLA-dependent regulation of floral meristem-identity genes.
    Proc. Natl. Acad. Sci. U.S.A., 2007. 104(15): p. 6484-9
  49. Liu C, et al.
    Specification of Arabidopsis floral meristem identity by repression of flowering time genes.
    Development, 2007. 134(10): p. 1901-10
  50. Cai X, et al.
    A putative CCAAT-binding transcription factor is a regulator of flowering timing in Arabidopsis.
    Plant Physiol., 2007. 145(1): p. 98-105
  51. Smykal P,Gennen J,De Bodt S,Ranganath V,Melzer S
    Flowering of strict photoperiodic Nicotiana varieties in non-inductive conditions by transgenic approaches.
    Plant Mol. Biol., 2007. 65(3): p. 233-42
  52. Fan J,Li W,Dong X,Guo W,Shu H
    Ectopic expression of a hyacinth AGL6 homolog caused earlier flowering and homeotic conversion in Arabidopsis.
    Sci. China, C, Life Sci., 2007. 50(5): p. 676-89
  53. Tapia-López R, et al.
    An AGAMOUS-related MADS-box gene, XAL1 (AGL12), regulates root meristem cell proliferation and flowering transition in Arabidopsis.
    Plant Physiol., 2008. 146(3): p. 1182-92
  54. Tan FC,Swain SM
    Functional characterization of AP3, SOC1 and WUS homologues from citrus (Citrus sinensis).
    Physiol Plant, 2007. 131(3): p. 481-95
  55. Xing D,Zhao H,Xu R,Li QQ
    Arabidopsis PCFS4, a homologue of yeast polyadenylation factor Pcf11p, regulates FCA alternative processing and promotes flowering time.
    Plant J., 2008. 54(5): p. 899-910
  56. Liu C, et al.
    Direct interaction of AGL24 and SOC1 integrates flowering signals in Arabidopsis.
    Development, 2008. 135(8): p. 1481-91
  57. Han P,García-Ponce B,Fonseca-Salazar G,Alvarez-Buylla ER,Yu H
    AGAMOUS-LIKE 17, a novel flowering promoter, acts in a FT-independent photoperiod pathway.
    Plant J., 2008. 55(2): p. 253-65
  58. Alexandre CM,Hennig L
    FLC or not FLC: the other side of vernalization.
    J. Exp. Bot., 2008. 59(6): p. 1127-35
  59. Lee J,Oh M,Park H,Lee I
    SOC1 translocated to the nucleus by interaction with AGL24 directly regulates leafy.
    Plant J., 2008. 55(5): p. 832-43
  60. Chia TY,M
    Sugar beet contains a large CONSTANS-LIKE gene family including a CO homologue that is independent of the early-bolting (B) gene locus.
    J. Exp. Bot., 2008. 59(10): p. 2735-48
  61. Li D, et al.
    A repressor complex governs the integration of flowering signals in Arabidopsis.
    Dev. Cell, 2008. 15(1): p. 110-20
  62. Baek IS,Park HY,You MK,Lee JH,Kim JK
    Functional conservation and divergence of FVE genes that control flowering time and cold response in rice and Arabidopsis.
    Mol. Cells, 2008. 26(4): p. 368-72
  63. Gregis V,Sessa A,Colombo L,Kater MM
    AGAMOUS-LIKE24 and SHORT VEGETATIVE PHASE determine floral meristem identity in Arabidopsis.
    Plant J., 2008. 56(6): p. 891-902
  64. Melzer S, et al.
    Flowering-time genes modulate meristem determinacy and growth form in Arabidopsis thaliana.
    Nat. Genet., 2008. 40(12): p. 1489-92
  65. Fujiwara S, et al.
    Circadian clock proteins LHY and CCA1 regulate SVP protein accumulation to control flowering in Arabidopsis.
    Plant Cell, 2008. 20(11): p. 2960-71
  66. Yu JW, et al.
    COP1 and ELF3 control circadian function and photoperiodic flowering by regulating GI stability.
    Mol. Cell, 2008. 32(5): p. 617-30
  67. Strasser B,Alvarez MJ,Califano A,Cerd
    A complementary role for ELF3 and TFL1 in the regulation of flowering time by ambient temperature.
    Plant J., 2009. 58(4): p. 629-40
  68. Cui H,Benfey PN
    Interplay between SCARECROW, GA and LIKE HETEROCHROMATIN PROTEIN 1 in ground tissue patterning in the Arabidopsis root.
    Plant J., 2009. 58(6): p. 1016-27
  69. Mutasa-G
    Gibberellin as a factor in floral regulatory networks.
    J. Exp. Bot., 2009. 60(7): p. 1979-89
  70. Greenup A,Peacock WJ,Dennis ES,Trevaskis B
    The molecular biology of seasonal flowering-responses in Arabidopsis and the cereals.
    Ann. Bot., 2009. 103(8): p. 1165-72
  71. Stangeland B, et al.
    AtMBD8 is involved in control of flowering time in the C24 ecotype of Arabidopsis thaliana.
    Physiol Plant, 2009. 136(1): p. 110-26
  72. Song HR, et al.
    The RNA binding protein ELF9 directly reduces SUPPRESSOR OF OVEREXPRESSION OF CO1 transcript levels in arabidopsis, possibly via nonsense-mediated mRNA decay.
    Plant Cell, 2009. 21(4): p. 1195-211
  73. Zhou Y,Ni M
    SHB1 plays dual roles in photoperiodic and autonomous flowering.
    Dev. Biol., 2009. 331(1): p. 50-7
  74. Liu C,Xi W,Shen L,Tan C,Yu H
    Regulation of floral patterning by flowering time genes.
    Dev. Cell, 2009. 16(5): p. 711-22
  75. Bertoni G
    PUCHI and floral meristem identity.
    Plant Cell, 2009. 21(5): p. 1327
  76. Karim MR,Hirota A,Kwiatkowska D,Tasaka M,Aida M
    A role for Arabidopsis PUCHI in floral meristem identity and bract suppression.
    Plant Cell, 2009. 21(5): p. 1360-72
  77. Hassidim M,Harir Y,Yakir E,Kron I,Green RM
    Over-expression of CONSTANS-LIKE 5 can induce flowering in short-day grown Arabidopsis.
    Planta, 2009. 230(3): p. 481-91
  78. Devaiah BN,Madhuvanthi R,Karthikeyan AS,Raghothama KG
    Phosphate starvation responses and gibberellic acid biosynthesis are regulated by the MYB62 transcription factor in Arabidopsis.
    Mol Plant, 2009. 2(1): p. 43-58
  79. Ryu CH, et al.
    OsMADS50 and OsMADS56 function antagonistically in regulating long day (LD)-dependent flowering in rice.
    Plant Cell Environ., 2009. 32(10): p. 1412-27
  80. Chiang GC,Barua D,Kramer EM,Amasino RM,Donohue K
    Major flowering time gene, flowering locus C, regulates seed germination in Arabidopsis thaliana.
    Proc. Natl. Acad. Sci. U.S.A., 2009. 106(28): p. 11661-6
  81. Mizoguchi T,Yoshida R
    Punctual coordination: switching on and off for flowering during a day.
    Plant Signal Behav, 2009. 4(2): p. 113-5
  82. Jang S,Torti S,Coupland G
    Genetic and spatial interactions between FT, TSF and SVP during the early stages of floral induction in Arabidopsis.
    Plant J., 2009. 60(4): p. 614-25
  83. Gregis V,Sessa A,Dorca-Fornell C,Kater MM
    The Arabidopsis floral meristem identity genes AP1, AGL24 and SVP directly repress class B and C floral homeotic genes.
    Plant J., 2009. 60(4): p. 626-37
  84. Komiya R,Yokoi S,Shimamoto K
    A gene network for long-day flowering activates RFT1 encoding a mobile flowering signal in rice.
    Development, 2009. 136(20): p. 3443-50
  85. Seo E, et al.
    Crosstalk between cold response and flowering in Arabidopsis is mediated through the flowering-time gene SOC1 and its upstream negative regulator FLC.
    Plant Cell, 2009. 21(10): p. 3185-97
  86. del Olmo I, et al.
    EARLY IN SHORT DAYS 7 (ESD7) encodes the catalytic subunit of DNA polymerase epsilon and is required for flowering repression through a mechanism involving epigenetic gene silencing.
    Plant J., 2010. 61(4): p. 623-36
  87. Diallo A,Kane N,Agharbaoui Z,Badawi M,Sarhan F
    Heterologous expression of wheat VERNALIZATION 2 (TaVRN2) gene in Arabidopsis delays flowering and enhances freezing tolerance.
    PLoS ONE, 2010. 5(1): p. e8690
  88. Wang Y,Liu C,Yang D,Yu H,Liou YC
    Pin1At encoding a peptidyl-prolyl cis/trans isomerase regulates flowering time in Arabidopsis.
    Mol. Cell, 2010. 37(1): p. 112-22
  89. Xu M, et al.
    Arabidopsis BLADE-ON-PETIOLE1 and 2 promote floral meristem fate and determinacy in a previously undefined pathway targeting APETALA1 and AGAMOUS-LIKE24.
    Plant J., 2010. 63(6): p. 974-89
  90. Smith HM,Ung N,Lal S,Courtier J
    Specification of reproductive meristems requires the combined function of SHOOT MERISTEMLESS and floral integrators FLOWERING LOCUS T and FD during Arabidopsis inflorescence development.
    J. Exp. Bot., 2011. 62(2): p. 583-93
  91. D'Aloia M, et al.
    Cytokinin promotes flowering of Arabidopsis via transcriptional activation of the FT paralogue TSF.
    Plant J., 2011. 65(6): p. 972-9
  92. Nakano Y,Kawashima H,Kinoshita T,Yoshikawa H,Hisamatsu T
    Characterization of FLC, SOC1 and FT homologs in Eustoma grandiflorum: effects of vernalization and post-vernalization conditions on flowering and gene expression.
    Physiol Plant, 2011. 141(4): p. 383-93
  93. Shen L,Kang YG,Liu L,Yu H
    The J-domain protein J3 mediates the integration of flowering signals in Arabidopsis.
    Plant Cell, 2011. 23(2): p. 499-514
  94. Hori Y,Nishidate K,Nishiyama M,Kanahama K,Kanayama Y
    Flowering and expression of flowering-related genes under long-day conditions with light-emitting diodes.
    Planta, 2011. 234(2): p. 321-30
  95. P
    Expression analysis of phytochromes A, B and floral integrator genes during the entry and exit of grapevine-buds from endodormancy.
    J. Plant Physiol., 2011. 168(14): p. 1659-66
  96. Deng W, et al.
    FLOWERING LOCUS C (FLC) regulates development pathways throughout the life cycle of Arabidopsis.
    Proc. Natl. Acad. Sci. U.S.A., 2011. 108(16): p. 6680-5
  97. Wang R, et al.
    Aa TFL1 confers an age-dependent response to vernalization in perennial Arabis alpina.
    Plant Cell, 2011. 23(4): p. 1307-21
  98. Mai YX,Wang L,Yang HQ
    A gain-of-function mutation in IAA7/AXR2 confers late flowering under short-day light in Arabidopsis.
    J Integr Plant Biol, 2011. 53(6): p. 480-92
  99. Bernier G
    My favourite flowering image: the role of cytokinin as a flowering signal.
    J. Exp. Bot., 2013. 64(18): p. 5795-9
  100. Dorca-Fornell C, et al.
    The Arabidopsis SOC1-like genes AGL42, AGL71 and AGL72 promote flowering in the shoot apical and axillary meristems.
    Plant J., 2011. 67(6): p. 1006-17
  101. Jeon J,Kim J
    FVE, an Arabidopsis homologue of the retinoblastoma-associated protein that regulates flowering time and cold response, binds to chromatin as a large multiprotein complex.
    Mol. Cells, 2011. 32(3): p. 227-34
  102. Laluk K,Mengiste T
    The Arabidopsis extracellular UNUSUAL SERINE PROTEASE INHIBITOR functions in resistance to necrotrophic fungi and insect herbivory.
    Plant J., 2011. 68(3): p. 480-94
  103. Arabidopsis Interactome Mapping Consortium
    Evidence for network evolution in an Arabidopsis interactome map.
    Science, 2011. 333(6042): p. 601-7
  104. Shi Y, et al.
    Influence of EARLI1-like genes on flowering time and lignin synthesis of Arabidopsis thaliana.
    Plant Biol (Stuttg), 2011. 13(5): p. 731-9
  105. Shan H, et al.
    Heterologous expression of the chrysanthemum R2R3-MYB transcription factor CmMYB2 enhances drought and salinity tolerance, increases hypersensitivity to ABA and delays flowering in Arabidopsis thaliana.
    Mol. Biotechnol., 2012. 51(2): p. 160-73
  106. Hoenicka H, et al.
    Influence of over-expression of the Flowering Promoting Factor 1 gene (FPF1) from Arabidopsis on wood formation in hybrid poplar (Populus tremula L.
    Planta, 2012. 235(2): p. 359-73
  107. Jung JH,Ju Y,Seo PJ,Lee JH,Park CM
    The SOC1-SPL module integrates photoperiod and gibberellic acid signals to control flowering time in Arabidopsis.
    Plant J., 2012. 69(4): p. 577-88
  108. Causier B,Ashworth M,Guo W,Davies B
    The TOPLESS interactome: a framework for gene repression in Arabidopsis.
    Plant Physiol., 2012. 158(1): p. 423-38
  109. Heo JB,Sung S,Assmann SM
    Ca2+-dependent GTPase, extra-large G protein 2 (XLG2), promotes activation of DNA-binding protein related to vernalization 1 (RTV1), leading to activation of floral integrator genes and early flowering in Arabidopsis.
    J. Biol. Chem., 2012. 287(11): p. 8242-53
  110. Imura Y, et al.
    CRYPTIC PRECOCIOUS/MED12 is a novel flowering regulator with multiple target steps in Arabidopsis.
    Plant Cell Physiol., 2012. 53(2): p. 287-303
  111. Tao Z, et al.
    Genome-wide identification of SOC1 and SVP targets during the floral transition in Arabidopsis.
    Plant J., 2012. 70(4): p. 549-61
  112. Torti S, et al.
    Analysis of the Arabidopsis shoot meristem transcriptome during floral transition identifies distinct regulatory patterns and a leucine-rich repeat protein that promotes flowering.
    Plant Cell, 2012. 24(2): p. 444-62
  113. Lee JH,Park SH,Ahn JH
    Functional conservation and diversification between rice OsMADS22/OsMADS55 and Arabidopsis SVP proteins.
    Plant Sci., 2012. 185-186: p. 97-104
  114. Zhong X, et al.
    Cloning and expression analysis of GmGAL1, SOC1 homolog gene in soybean.
    Mol. Biol. Rep., 2012. 39(6): p. 6967-74
  115. Li W, et al.
    The U-Box/ARM E3 ligase PUB13 regulates cell death, defense, and flowering time in Arabidopsis.
    Plant Physiol., 2012. 159(1): p. 239-50
  116. Khan MR,Khan IU,Ali GM
    MPF2-like MADS-box genes affecting expression of SOC1 and MAF1 are recruited to control flowering time.
    Mol. Biotechnol., 2013. 54(1): p. 25-36
  117. Seo PJ, et al.
    Targeted inactivation of transcription factors by overexpression of their truncated forms in plants.
    Plant J., 2012. 72(1): p. 162-72
  118. Li G, et al.
    Imitation Switch chromatin remodeling factors and their interacting RINGLET proteins act together in controlling the plant vegetative phase in Arabidopsis.
    Plant J., 2012. 72(2): p. 261-70
  119. Immink RG, et al.
    Characterization of SOC1's central role in flowering by the identification of its upstream and downstream regulators.
    Plant Physiol., 2012. 160(1): p. 433-49
  120. Torti S,Fornara F
    AGL24 acts in concert with SOC1 and FUL during Arabidopsis floral transition.
    Plant Signal Behav, 2012. 7(10): p. 1251-4
  121. Meinke DW
    A survey of dominant mutations in Arabidopsis thaliana.
    Trends Plant Sci., 2013. 18(2): p. 84-91
  122. Zacharaki V, et al.
    The Arabidopsis ortholog of the YEATS domain containing protein YAF9a regulates flowering by controlling H4 acetylation levels at the FLC locus.
    Plant Sci., 2012. 196: p. 44-52
  123. Goldberg-Moeller R, et al.
    Effects of gibberellin treatment during flowering induction period on global gene expression and the transcription of flowering-control genes in Citrus buds.
    Plant Sci., 2013. 198: p. 46-57
  124. Kim W,Latrasse D,Servet C,Zhou DX
    Arabidopsis histone deacetylase HDA9 regulates flowering time through repression of AGL19.
    Biochem. Biophys. Res. Commun., 2013. 432(2): p. 394-8
  125. Takato H,Shimidzu M,Ashizawa Y,Takei H,Suzuki S
    An acyl-CoA-binding protein from grape that is induced through ER stress confers morphological changes and disease resistance in Arabidopsis.
    J. Plant Physiol., 2013. 170(6): p. 591-600
  126. Ding L,Wang Y,Yu H
    Overexpression of DOSOC1, an ortholog of Arabidopsis SOC1, promotes flowering in the orchid Dendrobium Chao Parya Smile.
    Plant Cell Physiol., 2013. 54(4): p. 595-608
  127. Kim HS,Abbasi N,Choi SB
    Bruno-like proteins modulate flowering time via 3' UTR-dependent decay of SOC1 mRNA.
    New Phytol., 2013. 198(3): p. 747-56
  128. Na X, et al.
    Cloning and functional analysis of the flowering gene GmSOC1-like, a putative SUPPRESSOR OF OVEREXPRESSION CO1/AGAMOUS-LIKE 20 (SOC1/AGL20) ortholog in soybean.
    Plant Cell Rep., 2013. 32(8): p. 1219-29
  129. Riboni M,Galbiati M,Tonelli C,Conti L
    GIGANTEA enables drought escape response via abscisic acid-dependent activation of the florigens and SUPPRESSOR OF OVEREXPRESSION OF CONSTANS.
    Plant Physiol., 2013. 162(3): p. 1706-19
  130. Richter R,Bastakis E,Schwechheimer C
    Cross-repressive interactions between SOC1 and the GATAs GNC and GNL/CGA1 in the control of greening, cold tolerance, and flowering time in Arabidopsis.
    Plant Physiol., 2013. 162(4): p. 1992-2004
  131. Ramamoorthy R,Phua EE,Lim SH,Tan HT,Kumar PP
    Identification and characterization of RcMADS1, an AGL24 ortholog from the holoparasitic plant Rafflesia cantleyi Solms-Laubach (Rafflesiaceae).
    PLoS ONE, 2013. 8(6): p. e67243
  132. Heidari B,Nemie-Feyissa D,Kangasjärvi S,Lillo C
    Antagonistic regulation of flowering time through distinct regulatory subunits of protein phosphatase 2A.
    PLoS ONE, 2013. 8(7): p. e67987
  133. Mouhu K, et al.
    The Fragaria vesca homolog of suppressor of overexpression of constans1 represses flowering and promotes vegetative growth.
    Plant Cell, 2013. 25(9): p. 3296-310
  134. Lei HJ, et al.
    Identification and characterization of FaSOC1, a homolog of SUPPRESSOR OF OVEREXPRESSION OF CONSTANS1 from strawberry.
    Gene, 2013. 531(2): p. 158-67
  135. Fu J, et al.
    Photoperiodic control of FT-like gene ClFT initiates flowering in Chrysanthemum lavandulifolium.
    Plant Physiol. Biochem., 2014. 74: p. 230-8
  136. Balanz
    Sequential action of FRUITFULL as a modulator of the activity of the floral regulators SVP and SOC1.
    J. Exp. Bot., 2014. 65(4): p. 1193-203
  137. Steinbach Y,Hennig L
    Arabidopsis MSI1 functions in photoperiodic flowering time control.
    Front Plant Sci, 2014. 5: p. 77
  138. Preston JC,Jorgensen SA,Jha SG
    Functional characterization of duplicated Suppressor of Overexpression of Constans 1-like genes in petunia.
    PLoS ONE, 2014. 9(5): p. e96108
  139. L
    Chromatin-dependent repression of the Arabidopsis floral integrator genes involves plant specific PHD-containing proteins.
    Plant Cell, 2014. 26(10): p. 3922-38
  140. Berr A,Shafiq S,Pinon V,Dong A,Shen WH
    The trxG family histone methyltransferase SET DOMAIN GROUP 26 promotes flowering via a distinctive genetic pathway.
    Plant J., 2015. 81(2): p. 316-28
  141. Kimura Y, et al.
    A flowering integrator, SOC1, affects stomatal opening in Arabidopsis thaliana.
    Plant Cell Physiol., 2015. 56(4): p. 640-9
  142. Leal Valentim F, et al.
    A quantitative and dynamic model of the Arabidopsis flowering time gene regulatory network.
    PLoS ONE, 2015. 10(2): p. e0116973
  143. Jin J, et al.
    An Arabidopsis Transcriptional Regulatory Map Reveals Distinct Functional and Evolutionary Features of Novel Transcription Factors.
    Mol. Biol. Evol., 2015. 32(7): p. 1767-73
  144. Ma X, et al.
    CYCLIN-DEPENDENT KINASE G2 regulates salinity stress response and salt mediated flowering in Arabidopsis thaliana.
    Plant Mol. Biol., 2015. 88(3): p. 287-99
  145. Kang MY, et al.
    Negative regulatory roles of DE-ETIOLATED1 in flowering time in Arabidopsis.
    Sci Rep, 2015. 5: p. 9728
  146. Wang C,Dehesh K
    From retrograde signaling to flowering time.
    Plant Signal Behav, 2015. 10(6): p. e1022012
  147. Lee JH,Jung JH,Park CM
    INDUCER OF CBF EXPRESSION 1 integrates cold signals into FLOWERING LOCUS C-mediated flowering pathways in Arabidopsis.
    Plant J., 2015. 84(1): p. 29-40
  148. Lee JH,Park CM
    Integration of photoperiod and cold temperature signals into flowering genetic pathways in Arabidopsis.
    Plant Signal Behav, 2015. 10(11): p. e1089373
  149. Li M, et al.
    DELLA proteins interact with FLC to repress flowering transition.
    J Integr Plant Biol, 2016. 58(7): p. 642-55
  150. Franks SJ, et al.
    Variation in the flowering time orthologs BrFLC and BrSOC1 in a natural population of Brassica rapa.
    PeerJ, 2015. 3: p. e1339
  151. Liu B, et al.
    Interplay of the histone methyltransferases SDG8 and SDG26 in the regulation of transcription and plant flowering and development.
    Biochim. Biophys. Acta, 2016. 1859(4): p. 581-90
  152. Liu XR, et al.
    Overexpression of an Orchid (Dendrobium nobile) SOC1/TM3-Like Ortholog, DnAGL19, in Arabidopsis Regulates HOS1-FT Expression.
    Front Plant Sci, 2016. 7: p. 99
  153. Davin N, et al.
    Functional network analysis of genes differentially expressed during xylogenesis in soc1ful woody Arabidopsis plants.
    Plant J., 2016. 86(5): p. 376-90
  154. Del Olmo I, et al.
    Arabidopsis DNA polymerase ϵ recruits components of Polycomb repressor complex to mediate epigenetic gene silencing.
    Nucleic Acids Res., 2016. 44(12): p. 5597-614
  155. Mahrez W, et al.
    BRR2a Affects Flowering Time via FLC Splicing.
    PLoS Genet., 2016. 12(4): p. e1005924
  156. Hyun Y, et al.
    Multi-layered Regulation of SPL15 and Cooperation with SOC1 Integrate Endogenous Flowering Pathways at the Arabidopsis Shoot Meristem.
    Dev. Cell, 2016. 37(3): p. 254-66
  157. He L, et al.
    Maize OXIDATIVE STRESS2 Homologs Enhance Cadmium Tolerance in Arabidopsis through Activation of a Putative SAM-Dependent Methyltransferase Gene.
    Plant Physiol., 2016. 171(3): p. 1675-85
  158. Alter P, et al.
    Flowering Time-Regulated Genes in Maize Include the Transcription Factor ZmMADS1.
    Plant Physiol., 2016. 172(1): p. 389-404
  159. Xu C,Yu Y,Zhang Y,Li Y,Wei S
    Gibberellins are involved in effect of near-null magnetic field on Arabidopsis flowering.
    Bioelectromagnetics, 2017. 38(1): p. 1-10
  160. Riboni M,Robustelli Test A,Galbiati M,Tonelli C,Conti L
    ABA-dependent control of GIGANTEA signalling enables drought escape via up-regulation of FLOWERING LOCUS T in Arabidopsis thaliana.
    J. Exp. Bot., 2016. 67(22): p. 6309-6322
  161. Kong X,Luo X,Qu GP,Liu P,Jin JB
    Arabidopsis SUMO protease ASP1 positively regulates flowering time partially through regulating FLC stability .
    J Integr Plant Biol, 2017. 59(1): p. 15-29
  162. Kapolas G, et al.
    APRF1 promotes flowering under long days in Arabidopsis thaliana.
    Plant Sci., 2016. 253: p. 141-153
  163. Li H, et al.
    BZR1 Positively Regulates Freezing Tolerance via CBF-Dependent and CBF-Independent Pathways in Arabidopsis.
    Mol Plant, 2017. 10(4): p. 545-559
  164. Chen J, et al.
    Suppressor of Overexpression of CO 1 Negatively Regulates Dark-Induced Leaf Degreening and Senescence by Directly Repressing Pheophytinase and Other Senescence-Associated Genes in Arabidopsis.
    Plant Physiol., 2017. 173(3): p. 1881-1891
  165. Denis E, et al.
    WOX14 promotes bioactive gibberellin synthesis and vascular cell differentiation in Arabidopsis.
    Plant J., 2017. 90(3): p. 560-572
  166. Nasim Z,Fahim M,Ahn JH
    Possible Role of MADS AFFECTING FLOWERING 3 and B-BOX DOMAIN PROTEIN 19 in Flowering Time Regulation of Arabidopsis Mutants with Defects in Nonsense-Mediated mRNA Decay.
    Front Plant Sci, 2017. 8: p. 191
  167. Wilson DC,Kempthorne CJ,Carella P,Liscombe DK,Cameron RK
    Age-Related Resistance in Arabidopsis thaliana Involves the MADS-Domain Transcription Factor SHORT VEGETATIVE PHASE and Direct Action of Salicylic Acid on Pseudomonas syringae.
    Mol. Plant Microbe Interact., 2017. 30(11): p. 919-929
  168. Zhang GZ, et al.
    Ectopic expression of UGT84A2 delayed flowering by indole-3-butyric acid-mediated transcriptional repression of ARF6 and ARF8 genes in Arabidopsis.
    Plant Cell Rep., 2017. 36(12): p. 1995-2006
  169. Jamge S,Stam M,Angenent GC,Immink RGH
    A cautionary note on the use of chromosome conformation capture in plants.
    Plant Methods, 2017. 13: p. 101
  170. Dotto M,Gómez MS,Soto MS,Casati P
    UV-B radiation delays flowering time through changes in the PRC2 complex activity and miR156 levels in Arabidopsis thaliana.
    Plant Cell Environ., 2018. 41(6): p. 1394-1406