- Riechmann JL, et al.
Arabidopsis transcription factors: genome-wide comparative analysis among eukaryotes. Science, 2000. 290(5499): p. 2105-10 [PMID:11118137] - Nover L, et al.
Arabidopsis and the heat stress transcription factor world: how many heat stress transcription factors do we need? Cell Stress Chaperones, 2001. 6(3): p. 177-89 [PMID:11599559] - Seki M, et al.
Functional annotation of a full-length Arabidopsis cDNA collection. Science, 2002. 296(5565): p. 141-5 [PMID:11910074] - Che P,Gingerich DJ,Lall S,Howell SH
Global and hormone-induced gene expression changes during shoot development in Arabidopsis. Plant Cell, 2002. 14(11): p. 2771-85 [PMID:12417700] - Port M, et al.
Role of Hsp17.4-CII as coregulator and cytoplasmic retention factor of tomato heat stress transcription factor HsfA2. Plant Physiol., 2004. 135(3): p. 1457-70 [PMID:15247379] - Busch W,Wunderlich M,Sch
Identification of novel heat shock factor-dependent genes and biochemical pathways in Arabidopsis thaliana. Plant J., 2005. 41(1): p. 1-14 [PMID:15610345] - Li C, et al.
AtHsfA2 modulates expression of stress responsive genes and enhances tolerance to heat and oxidative stress in Arabidopsis. Sci. China, C, Life Sci., 2005. 48(6): p. 540-50 [PMID:16483133] - Schramm F, et al.
The heat stress transcription factor HsfA2 serves as a regulatory amplifier of a subset of genes in the heat stress response in Arabidopsis. Plant Mol. Biol., 2006. 60(5): p. 759-72 [PMID:16649111] - Nishizawa A, et al.
Arabidopsis heat shock transcription factor A2 as a key regulator in response to several types of environmental stress. Plant J., 2006. 48(4): p. 535-47 [PMID:17059409] - Charng YY, et al.
A heat-inducible transcription factor, HsfA2, is required for extension of acquired thermotolerance in Arabidopsis. Plant Physiol., 2007. 143(1): p. 251-62 [PMID:17085506] - Libault M,Wan J,Czechowski T,Udvardi M,Stacey G
Identification of 118 Arabidopsis transcription factor and 30 ubiquitin-ligase genes responding to chitin, a plant-defense elicitor. Mol. Plant Microbe Interact., 2007. 20(8): p. 900-11 [PMID:17722694] - Ogawa D,Yamaguchi K,Nishiuchi T
High-level overexpression of the Arabidopsis HsfA2 gene confers not only increased themotolerance but also salt/osmotic stress tolerance and enhanced callus growth. J. Exp. Bot., 2007. 58(12): p. 3373-83 [PMID:17890230] - Suzuki N,Bajad S,Shuman J,Shulaev V,Mittler R
The transcriptional co-activator MBF1c is a key regulator of thermotolerance in Arabidopsis thaliana. J. Biol. Chem., 2008. 283(14): p. 9269-75 [PMID:18201973] - Guo J, et al.
Genome-wide analysis of heat shock transcription factor families in rice and Arabidopsis. J Genet Genomics, 2008. 35(2): p. 105-18 [PMID:18407058] - Nishizawa A,Yabuta Y,Shigeoka S
Galactinol and raffinose constitute a novel function to protect plants from oxidative damage. Plant Physiol., 2008. 147(3): p. 1251-63 [PMID:18502973] - Li S,Fu Q,Huang W,Yu D
Functional analysis of an Arabidopsis transcription factor WRKY25 in heat stress. Plant Cell Rep., 2009. 28(4): p. 683-93 [PMID:19125253] - Sugio A,Dreos R,Aparicio F,Maule AJ
The cytosolic protein response as a subcomponent of the wider heat shock response in Arabidopsis. Plant Cell, 2009. 21(2): p. 642-54 [PMID:19244141] - Zhang L,Li Y,Xing D,Gao C
Characterization of mitochondrial dynamics and subcellular localization of ROS reveal that HsfA2 alleviates oxidative damage caused by heat stress in Arabidopsis. J. Exp. Bot., 2009. 60(7): p. 2073-91 [PMID:19342427] - Nishizawa-Yokoi A,Yoshida E,Yabuta Y,Shigeoka S
Analysis of the regulation of target genes by an Arabidopsis heat shock transcription factor, HsfA2. Biosci. Biotechnol. Biochem., 2009. 73(4): p. 890-5 [PMID:19352026] - Meiri D,Breiman A
Arabidopsis ROF1 (FKBP62) modulates thermotolerance by interacting with HSP90.1 and affecting the accumulation of HsfA2-regulated sHSPs. Plant J., 2009. 59(3): p. 387-99 [PMID:19366428] - Nishizawa-Yokoi A,Yabuta Y,Shigeoka S
The contribution of carbohydrates including raffinose family oligosaccharides and sugar alcohols to protection of plant cells from oxidative damage. Plant Signal Behav, 2008. 3(11): p. 1016-8 [PMID:19704439] - Scarpeci TE,Zanor MI,Valle EM
Investigating the role of plant heat shock proteins during oxidative stress. Plant Signal Behav, 2008. 3(10): p. 856-7 [PMID:19704521] - Meiri D, et al.
Involvement of Arabidopsis ROF2 (FKBP65) in thermotolerance. Plant Mol. Biol., 2010. 72(1-2): p. 191-203 [PMID:19876748] - Banti V,Mafessoni F,Loreti E,Alpi A,Perata P
The heat-inducible transcription factor HsfA2 enhances anoxia tolerance in Arabidopsis. Plant Physiol., 2010. 152(3): p. 1471-83 [PMID:20089772] - Nishizawa-Yokoi A, et al.
The 26S proteasome function and Hsp90 activity involved in the regulation of HsfA2 expression in response to oxidative stress. Plant Cell Physiol., 2010. 51(3): p. 486-96 [PMID:20147301] - Hsu SF,Lai HC,Jinn TL
Cytosol-localized heat shock factor-binding protein, AtHSBP, functions as a negative regulator of heat shock response by translocation to the nucleus and is required for seed development in Arabidopsis. Plant Physiol., 2010. 153(2): p. 773-84 [PMID:20388662] - Li M,Berendzen KW,Sch
Promoter specificity and interactions between early and late Arabidopsis heat shock factors. Plant Mol. Biol., 2010. 73(4-5): p. 559-67 [PMID:20458611] - Cohen-Peer R,Schuster S,Meiri D,Breiman A,Avni A
Sumoylation of Arabidopsis heat shock factor A2 (HsfA2) modifies its activity during acquired thermotholerance. Plant Mol. Biol., 2010. 74(1-2): p. 33-45 [PMID:20521085] - Yang CY,Hsu FC,Li JP,Wang NN,Shih MC
The AP2/ERF transcription factor AtERF73/HRE1 modulates ethylene responses during hypoxia in Arabidopsis. Plant Physiol., 2011. 156(1): p. 202-12 [PMID:21398256] - Nishizawa-Yokoi A, et al.
HsfA1d and HsfA1e involved in the transcriptional regulation of HsfA2 function as key regulators for the Hsf signaling network in response to environmental stress. Plant Cell Physiol., 2011. 52(5): p. 933-45 [PMID:21471117] - Enoki Y,Sakurai H
Diversity in DNA recognition by heat shock transcription factors (HSFs) from model organisms. FEBS Lett., 2011. 585(9): p. 1293-8 [PMID:21510947] - Ikeda M,Mitsuda N,Ohme-Takagi M
Arabidopsis HsfB1 and HsfB2b act as repressors of the expression of heat-inducible Hsfs but positively regulate the acquired thermotolerance. Plant Physiol., 2011. 157(3): p. 1243-54 [PMID:21908690] - Gaudinier A, et al.
Enhanced Y1H assays for Arabidopsis. Nat. Methods, 2011. 8(12): p. 1053-5 [PMID:22037706] - Yu HD, et al.
Downregulation of chloroplast RPS1 negatively modulates nuclear heat-responsive expression of HsfA2 and its target genes in Arabidopsis. PLoS Genet., 2012. 8(5): p. e1002669 [PMID:22570631] - Mehterov N, et al.
Oxidative stress provokes distinct transcriptional responses in the stress-tolerant atr7 and stress-sensitive loh2 Arabidopsis thaliana mutants as revealed by multi-parallel quantitative real-time PCR analysis of ROS marker and antioxidant genes. Plant Physiol. Biochem., 2012. 59: p. 20-9 [PMID:22710144] - Shahnejat-Bushehri S,Mueller-Roeber B,Balazadeh S
Arabidopsis NAC transcription factor JUNGBRUNNEN1 affects thermomemory-associated genes and enhances heat stress tolerance in primed and unprimed conditions. Plant Signal Behav, 2012. 7(12): p. 1518-21 [PMID:23073024] - Wang Q,Tu X,Zhang J,Chen X,Rao L
Heat stress-induced BBX18 negatively regulates the thermotolerance in Arabidopsis. Mol. Biol. Rep., 2013. 40(3): p. 2679-88 [PMID:23238922] - Tunc-Ozdemir M, et al.
A cyclic nucleotide-gated channel (CNGC16) in pollen is critical for stress tolerance in pollen reproductive development. Plant Physiol., 2013. 161(2): p. 1010-20 [PMID:23370720] - Liu J, et al.
An autoregulatory loop controlling Arabidopsis HsfA2 expression: role of heat shock-induced alternative splicing. Plant Physiol., 2013. 162(1): p. 512-21 [PMID:23503691] - Evrard A, et al.
Regulation of the heat stress response in Arabidopsis by MPK6-targeted phosphorylation of the heat stress factor HsfA2. PeerJ, 2013. 1: p. e59 [PMID:23638397] - Liu HC,Charng YY
Common and distinct functions of Arabidopsis class A1 and A2 heat shock factors in diverse abiotic stress responses and development. Plant Physiol., 2013. 163(1): p. 276-90 [PMID:23832625] - Jung HS, et al.
Subset of heat-shock transcription factors required for the early response of Arabidopsis to excess light. Proc. Natl. Acad. Sci. U.S.A., 2013. 110(35): p. 14474-9 [PMID:23918368] - Chauhan H,Khurana N,Agarwal P,Khurana JP,Khurana P
A seed preferential heat shock transcription factor from wheat provides abiotic stress tolerance and yield enhancement in transgenic Arabidopsis under heat stress environment. PLoS ONE, 2013. 8(11): p. e79577 [PMID:24265778] - Ding Y, et al.
Four distinct types of dehydration stress memory genes in Arabidopsis thaliana. BMC Plant Biol., 2013. 13: p. 229 [PMID:24377444] - Weng M, et al.
Histone chaperone ASF1 is involved in gene transcription activation in response to heat stress in Arabidopsis thaliana. Plant Cell Environ., 2014. 37(9): p. 2128-38 [PMID:24548003] - Jang YH, et al.
A homolog of splicing factor SF1 is essential for development and is involved in the alternative splicing of pre-mRNA in Arabidopsis thaliana. Plant J., 2014. 78(4): p. 591-603 [PMID:24580679] - Stief A, et al.
Arabidopsis miR156 Regulates Tolerance to Recurring Environmental Stress through SPL Transcription Factors. Plant Cell, 2014. 26(4): p. 1792-1807 [PMID:24769482] - Masuda S,Tokaji Y,Kobayashi Y,Ohta H
Mechanisms of induction of the stress-responsive transcription factors HsfA2 and DREB2A by 12-oxo-phytodienoic acid in Arabidopsis thaliana. Biosci. Biotechnol. Biochem., 2014. 78(4): p. 647-50 [PMID:25036962] - Dobrá J, et al.
The impact of heat stress targeting on the hormonal and transcriptomic response in Arabidopsis. Plant Sci., 2015. 231: p. 52-61 [PMID:25575991] - Yamauchi Y,Kunishima M,Mizutani M,Sugimoto Y
Reactive short-chain leaf volatiles act as powerful inducers of abiotic stress-related gene expression. Sci Rep, 2015. 5: p. 8030 [PMID:25619826] - Shi H, et al.
Melatonin induces class A1 heat-shock factors (HSFA1s) and their possible involvement of thermotolerance in Arabidopsis. J. Pineal Res., 2015. 58(3): p. 335-42 [PMID:25711624] - Jin J, et al.
An Arabidopsis Transcriptional Regulatory Map Reveals Distinct Functional and Evolutionary Features of Novel Transcription Factors. Mol. Biol. Evol., 2015. 32(7): p. 1767-73 [PMID:25750178] - Mueller SP,Krause DM,Mueller MJ,Fekete A
Accumulation of extra-chloroplastic triacylglycerols in Arabidopsis seedlings during heat acclimation. J. Exp. Bot., 2015. 66(15): p. 4517-26 [PMID:25977236] - Nie S,Yue H,Xing D
A Potential Role for Mitochondrial Produced Reactive Oxygen Species in Salicylic Acid-Mediated Plant Acquired Thermotolerance. Plant Physiol., 2016. [PMID:26099269] - Nguyen AH, et al.
Loss of Arabidopsis 5'-3' Exoribonuclease AtXRN4 Function Enhances Heat Stress Tolerance of Plants Subjected to Severe Heat Stress. Plant Cell Physiol., 2015. 56(9): p. 1762-72 [PMID:26136597] - Hu Z, et al.
Histone acetyltransferase GCN5 is essential for heat stress-responsive gene activation and thermotolerance in Arabidopsis. Plant J., 2015. 84(6): p. 1178-91 [PMID:26576681] - Lämke J,Brzezinka K,Bäurle I
HSFA2 orchestrates transcriptional dynamics after heat stress in Arabidopsis thaliana. Transcription, 2016. 7(4): p. 111-4 [PMID:27383578] - Wang X,Huang W,Liu J,Yang Z,Huang B
Molecular regulation and physiological functions of a novel FaHsfA2c cloned from tall fescue conferring plant tolerance to heat stress. Plant Biotechnol. J., 2017. 15(2): p. 237-248 [PMID:27500592] - Chen ST,He NY,Chen JH,Guo FQ
Identification of core subunits of photosystem II as action sites of HSP21, which is activated by the GUN5-mediated retrograde pathway in Arabidopsis. Plant J., 2017. 89(6): p. 1106-1118 [PMID:27943531] - Kataoka R,Takahashi M,Suzuki N
Coordination between bZIP28 and HSFA2 in the regulation of heat response signals in Arabidopsis. Plant Signal Behav, 2017. 12(11): p. e1376159 [PMID:28873003] - Wang X,Zhuang L,Shi Y,Huang B
Up-Regulation of HSFA2c and HSPs by ABA Contributing to Improved Heat Tolerance in Tall Fescue and Arabidopsis. Int J Mol Sci, 2018. [PMID:28914758] - Llamas E,Pulido P,Rodriguez-Concepcion M
Interference with plastome gene expression and Clp protease activity in Arabidopsis triggers a chloroplast unfolded protein response to restore protein homeostasis. PLoS Genet., 2017. 13(9): p. e1007022 [PMID:28937985] - Li X, et al.
Plastid Translation Elongation Factor Tu Is Prone to Heat-Induced Aggregation Despite Its Critical Role in Plant Heat Tolerance. Plant Physiol., 2018. 176(4): p. 3027-3045 [PMID:29444814] - Nover L, et al.
The Hsf world: classification and properties of plant heat stress transcription factors. Cell Stress Chaperones, 1996. 1(4): p. 215-23 [PMID:9222607]
|