PlantRegMap/PlantTFDB v5.0
Plant Transcription Factor Database
Transcription Factor Information
Basic Information | Signature Domain | Sequence | 
Basic Information? help Back to Top
TF ID AT1G69120.1
Common NameAGL7, AP1, AtAP1, F4N2.9
Taxonomic ID
Taxonomic Lineage
cellular organisms; Eukaryota; Viridiplantae; Streptophyta; Streptophytina; Embryophyta; Tracheophyta; Euphyllophyta; Spermatophyta; Magnoliophyta; Mesangiospermae; eudicotyledons; Gunneridae; Pentapetalae; rosids; malvids; Brassicales; Brassicaceae; Camelineae; Arabidopsis
Protein Properties Length: 256aa    MW: 30182.5 Da    PI: 8.5763
Description MIKC_MADS family protein
Gene Model
Gene Model ID Type Source Coding Sequence
AT1G69120.1genomeTAIRView CDS
Signature Domain? help Back to Top
Signature Domain
No. Domain Score E-value Start End HMM Start HMM End
       SRF-TF  1 krienksnrqvtfskRrngilKKAeELSvLCdaevaviifsstgklyeyss 51
                 79***********************************************96 PP

        K-box   5 sgksleeakaeslqqelakLkkeienLqreqRhllGedLesLslkeLqqLeqqLekslkkiRskKnellleqieelqkkekelqeenkaLrkklee 100
                  +  + e+  + +++ e+++Lk++ie L+r+qRh+lGedL+ +s keLq+LeqqL+++lk+iR++Kn+l++e+i+elqkkek++qe+n +L+k+++e
                  555556667889*********************************************************************************987 PP

Protein Features ? help Back to Top
3D Structure
Database Entry ID E-value Start End InterPro ID Description
SMARTSM004323.8E-40160IPR002100Transcription factor, MADS-box
PROSITE profilePS5006632.184161IPR002100Transcription factor, MADS-box
CDDcd002652.30E-42279No hitNo description
SuperFamilySSF554556.28E-34289IPR002100Transcription factor, MADS-box
PRINTSPR004048.5E-31323IPR002100Transcription factor, MADS-box
PROSITE patternPS003500357IPR002100Transcription factor, MADS-box
PfamPF003199.2E-261057IPR002100Transcription factor, MADS-box
PRINTSPR004048.5E-312338IPR002100Transcription factor, MADS-box
PRINTSPR004048.5E-313859IPR002100Transcription factor, MADS-box
PfamPF014865.9E-3085172IPR002487Transcription factor, K-box
PROSITE profilePS5129717.07988178IPR002487Transcription factor, K-box
Gene Ontology ? help Back to Top
GO Term GO Category GO Description
GO:0009933Biological Processmeristem structural organization
GO:0010076Biological Processmaintenance of floral meristem identity
GO:0010582Biological Processfloral meristem determinacy
GO:0030154Biological Processcell differentiation
GO:0045893Biological Processpositive regulation of transcription, DNA-templated
GO:0005634Cellular Componentnucleus
GO:0003677Molecular FunctionDNA binding
GO:0003700Molecular Functiontranscription factor activity, sequence-specific DNA binding
GO:0046982Molecular Functionprotein heterodimerization activity
Plant Ontology ? help Back to Top
PO Term PO Category PO Description
PO:0000037anatomyshoot apex
PO:0009009anatomyplant embryo
PO:0025022anatomycollective leaf structure
PO:0001078developmental stageplant embryo cotyledonary stage
PO:0001081developmental stagemature plant embryo stage
PO:0004507developmental stageplant embryo bilateral stage
PO:0007611developmental stagepetal differentiation and expansion stage
PO:0007616developmental stageflowering stage
Sequence ? help Back to Top
Protein Sequence    Length: 256 aa     Download sequence    Send to blast
3D Structure ? help Back to Top
PDB ID Evalue Query Start Query End Hit Start Hit End Description
6byy_A8e-22174173MEF2 CHIMERA
6byy_B8e-22174173MEF2 CHIMERA
6byy_C8e-22174173MEF2 CHIMERA
6byy_D8e-22174173MEF2 CHIMERA
6bz1_A9e-22174173MEF2 CHIMERA
6bz1_B9e-22174173MEF2 CHIMERA
6bz1_C9e-22174173MEF2 CHIMERA
6bz1_D9e-22174173MEF2 CHIMERA
Search in ModeBase
Expression -- Microarray ? help Back to Top
Source ID E-value
Expression AtlasAT1G69120-
Expression -- Description ? help Back to Top
Source Description
UniprotDEVELOPMENTAL STAGE: Expressed at an early stage of floral initiation.
UniprotTISSUE SPECIFICITY: Expressed in young flower primordia, later becomes localized to sepals and petals.
Functional Description ? help Back to Top
Source Description
TAIRFloral homeotic gene encoding a MADS domain protein homologous to SRF transcription factors. Specifies floral meristem and sepal identity. Required for the transcriptional activation of AGAMOUS. Interacts with LEAFY.Binds to promoter and regulates the expression of flowering time genes SVP, SOC1 and AGL24.
UniProtTranscription factor that promotes early floral meristem identity in synergy with LEAFY. Is required subsequently for the transition of an inflorescence meristem into a floral meristem. Is indispensable for normal development of sepals and petals in flowers. Regulates positively the B class homeotic proteins APETALA3 and PISTILLATA with the cooperation of LEAFY and UFO. Interacts with SEPALLATA3 or AP3/PI heterodimer to form complexes that could be involved in genes regulation during floral meristem development. Regulates positively AGAMOUS in cooperation with LEAFY. Displays a redundant function with CAULIFLOWER in the up-regulation of LEAFY. Together with AGL24 and SVP, controls the identity of the floral meristem and regulates expression of class B, C and E genes. Represses flowering time genes AGL24, SVP and SOC1 in emerging floral meristems. {ECO:0000269|PubMed:11283333, ECO:0000269|PubMed:17428825, ECO:0000269|PubMed:17794879, ECO:0000269|PubMed:19656343, ECO:0000269|Ref.8}.
Function -- GeneRIF ? help Back to Top
  1. The floral homeotic PISTILLATA (PI) protein and its interacting partner APETALA3 directly act, in combination with other factors, to restrict the expression of AP1 during early stages of floral development.
    [PMID: 16640596]
  2. The data provides genetic evidence for the role of AP1 in these interactions by showing that the floral phenotype in the ap1 agl24 svp triple mutant is significantly enhanced.
    [PMID: 16679456]
  3. The unique and redundant functions of the APETALA1 and CAULIFLOWER genes have been mapped to the four protein domains that characterize type-II MADS-domain proteins.
    [PMID: 16893974]
  4. once AP1 is activated during the floral transition, it acts partly as a master repressor in floral meristems by directly suppressing the expression of flowering time genes SVP, AGL24 and SOC1, preventing continuation of the shoot developmental program
    [PMID: 17428825]
  5. 'Activating' H3K4me3 and 'silencing' H3K27me3 modifications co-exist at 5'-end nucleosomes of transcriptionally active FLC-gene, while highly transcribed AP1 displays neither of the two marks.
    [PMID: 18638531]
  6. AP1, AGL24 and SVP redundantly control floral meristem identity.
    [PMID: 18694458]
  7. Angiostatin K1-3 induced E-selectin expression via AP1 and Ets-1 binding to the proximal E-selectin promoter (-356/+1), which was positively mediated by JNK activation.
    [PMID: 18761727]
  8. AGL24, AP1 and SVP directly and redundantly regulate class B, C and E floral homeotic genes.
    [PMID: 19656343]
  9. Data show that LEAFY, FRUITFULL, and APETALA1 are directly activated by the microRNA-targeted transcription factor SQUAMOSA PROMOTER BINDING PROTEIN-LIKE 3 (SPL3) to control the timing of flower formation.
    [PMID: 19686687]
  10. results suggest distinct functions of AP1 during the initiation of flower development
    [PMID: 20360106]
  11. Interaction between the ABRUPTUS/PINOID and APETALA1 genes regulating the inflorescence development in Arabidopsis thaliana
    [PMID: 20391782]
  12. Data show that BOP1/2 function distinctly from LFY to upregulate AP1 in floral primordia and that all three activities converge to down-regulate flowering-time regulators including AGAMOUS-LIKE24 in stage 2 floral meristems.
    [PMID: 20626659]
  13. LEAFY binding site is essential for proper photoperiodic activation of APETALA1
    [PMID: 21623976]
  14. Data show that the direct LEAFY target LATE MERISTEM IDENTITY2 (LMI2) has a role in the meristem identity transition, and acts together with LEAFY to activate APETALA1.
    [PMID: 21750030]
  15. Different action of the APETALA1 gene on the development of reproductive organs in flowers of the abruptus mutant of Arabidopsis thaliana
    [PMID: 21950056]
  16. Co-expression analysis identifies CRC and AP1 the regulator of Arabidopsis fatty acid biosynthesis.
    [PMID: 22676405]
  17. Approximately 90% of the binding sites of two well-characterized MADS domain transcription factors, APETALA1 and SEPALLATA3, were covered by the DNase I hypersensitive (DH) sites.
    [PMID: 22773751]
  18. suppression of cytokinin biosynthesis and activation of cytokinin degradation mediates AP1 function in establishing determinate floral meristems
    [PMID: 24753595]
  19. Data suggest that helix-turn-helix transcription factor LEAFY (LFY) and the MADS box transcription factor APETALA1 (AP1)together orchestrate the switch to flower formation and morphogenesis by altering transcriptional programs.
    [PMID: 26096587]
  20. APETALA1 establishes determinate floral meristem through regulating cytokinins homeostasis in Arabidopsis.
    [PMID: 26359644]
  21. the differences between the Arabidopsis (Arabidopsis thaliana) APETALA1 (AP1) and CAULIFLOWER (CAL) duplicate genes in the time, space, and level of expression were determined by the presence or absence of functionally important transcription factor-binding sites (TFBSs) in regulatory regions.
    [PMID: 27208240]
  22. AcMFT from a non-flowering plant could interact with FD to regulate the floral transition and that this function was reduced due to the weakened ability of AcMFT-FD to activate the downstream gene AP1.
    [PMID: 27216814]
  23. LFY and AP1 are conserved floral regulators that act nonredundantly in C. hirsuta, such that LFY has more obvious roles in floral and leaf development in C. hirsuta than in A. thaliana.
    [PMID: 28098947]
  24. LFY and AP1/CAL act as part of an incoherent feed-forward loop, a network motif where two interconnected pathways or transcription factors act in opposite directions on a target gene, to control the establishment of a stable developmental program for the formation of flowers.
    [PMID: 28385730]
  25. Here the authors show that divergence in the pleiotropic floral regulator APETALA1 (AP1) can account for the species-specific difference in petal number robustness.
    [PMID: 30334736]
Binding Motif ? help Back to Top
Motif ID Method Source Motif file
Motif logo
Cis-element ? help Back to Top
Regulation -- Description ? help Back to Top
Source Description
UniProtINDUCTION: Negatively regulated by TFL1 and by the C class floral homeotic protein AGAMOUS. Positively regulated by CAULIFLOWER. {ECO:0000269|PubMed:9783581}.
Regulation -- PlantRegMap ? help Back to Top
Source Upstream Regulator Target Gene
Regulation -- ATRM (Manually Curated Upstream Regulators) ? help Back to Top
Source Upstream Regulator (A: Activate/R: Repress)
ATRM AT1G24260 (R), AT1G26310 (A), AT2G22630 (A), AT2G27990 (A), AT2G33810 (A), AT2G45190 (A), AT3G54340 (R), AT4G18960 (R), AT4G25530 (A), AT4G35900 (A), AT5G02030 (A), AT5G15840 (A), AT5G20240 (R), AT5G61850 (A)
Regulation -- ATRM (Manually Curated Target Genes) ? help Back to Top
Source Target Gene (A: Activate/R: Repress)
ATRM AT1G30950(A), AT1G68480(R), AT2G22540(R), AT2G45660(R), AT2G47730(A), AT3G54340(A), AT4G16280(R), AT4G18960(R), AT4G24540(R), AT5G03840(R), AT5G20240(A), AT5G60910(R), AT5G61850(A)
Interaction -- BIND ? help Back to Top
Source Intact With Description
BINDAT1G69120AP1 interacts with itself.
Interaction ? help Back to Top
Source Intact With
BioGRIDAT1G69120, AT1G77080
IntActSearch P35631
Phenotype -- Disruption Phenotype ? help Back to Top
Source Description
UniProtDISRUPTION PHENOTYPE: Partial conversion of flowers into shoots and a disruption of sepal and petal development. {ECO:0000269|PubMed:17428825}.
Phenotype -- Mutation ? help Back to Top
Source ID
T-DNA ExpressAT1G69120
Annotation -- Nucleotide ? help Back to Top
Source Hit ID E-value Description
GenBankBT0041130.0BT004113.1 Arabidopsis thaliana clone RAFL15-06-D15 (R20604) putative floral homeotic protein APETALA1 (At1g69120) mRNA, complete cds.
GenBankBT0049510.0BT004951.1 Arabidopsis thaliana clone U20604 putative floral homeotic protein APETALA1 (At1g69120) mRNA, complete cds.
Annotation -- Protein ? help Back to Top
Source Hit ID E-value Description
RefseqNP_177074.10.0K-box region and MADS-box transcription factor family protein
SwissprotP356310.0AP1_ARATH; Floral homeotic protein APETALA 1
TrEMBLA0A178W8460.0A0A178W846_ARATH; AP1
STRINGAT1G69120.10.0(Arabidopsis thaliana)
Orthologous Group ? help Back to Top
LineageOrthologous Group IDTaxa NumberGene Number
Representative plantOGRP1617761
Publications ? help Back to Top
  1. Ratcliffe OJ,Bradley DJ,Coen ES
    Separation of shoot and floral identity in Arabidopsis.
    Development, 1999. 126(6): p. 1109-20
  2. Page T,Macknight R,Yang CH,Dean C
    Genetic interactions of the Arabidopsis flowering time gene FCA, with genes regulating floral initiation.
    Plant J., 1999. 17(3): p. 231-9
  3. Sawa S, et al.
    FILAMENTOUS FLOWER, a meristem and organ identity gene of Arabidopsis, encodes a protein with a zinc finger and HMG-related domains.
    Genes Dev., 1999. 13(9): p. 1079-88
  4. Aukerman MJ,Lee I,Weigel D,Amasino RM
    The Arabidopsis flowering-time gene LUMINIDEPENDENS is expressed primarily in regions of cell proliferation and encodes a nuclear protein that regulates LEAFY expression.
    Plant J., 1999. 18(2): p. 195-203
  5. Liljegren SJ,Gustafson-Brown C,Pinyopich A,Ditta GS,Yanofsky MF
    Interactions among APETALA1, LEAFY, and TERMINAL FLOWER1 specify meristem fate.
    Plant Cell, 1999. 11(6): p. 1007-18
  6. Melzer S,Kampmann G,Chandler J,Apel K
    FPF1 modulates the competence to flowering in Arabidopsis.
    Plant J., 1999. 18(4): p. 395-405
  7. Wagner D,Sablowski RW,Meyerowitz EM
    Transcriptional activation of APETALA1 by LEAFY.
    Science, 1999. 285(5427): p. 582-4
  8. Cho S, et al.
    Analysis of the C-terminal region of Arabidopsis thaliana APETALA1 as a transcription activation domain.
    Plant Mol. Biol., 1999. 40(3): p. 419-29
  9. Amaya I,Ratcliffe OJ,Bradley DJ
    Expression of CENTRORADIALIS (CEN) and CEN-like genes in tobacco reveals a conserved mechanism controlling phase change in diverse species.
    Plant Cell, 1999. 11(8): p. 1405-18
  10. Lawton-Rauh AL,Buckler ES,Purugganan MD
    Patterns of molecular evolution among paralogous floral homeotic genes.
    Mol. Biol. Evol., 1999. 16(8): p. 1037-45
  11. Lowman AC,Purugganan MD
    Duplication of the Brassica oleracea APETALA1 floral homeotic gene and the evolution of domesticated cauliflower.
    J. Hered., 1999 Sep-Oct. 90(5): p. 514-20
  12. Kardailsky I, et al.
    Activation tagging of the floral inducer FT.
    Science, 1999. 286(5446): p. 1962-5
  13. Ezhova TA
    [Arabidopsis thaliana (L.) Heynh. as a model object for studying genetic control of morphogenesis].
    Genetika, 1999. 35(11): p. 1522-37
  14. Hempel FD,Welch DR,Feldman LJ
    Floral induction and determination: where is flowering controlled?
    Trends Plant Sci., 2000. 5(1): p. 17-21
  15. Ferrándiz C,Gu Q,Martienssen R,Yanofsky MF
    Redundant regulation of meristem identity and plant architecture by FRUITFULL, APETALA1 and CAULIFLOWER.
    Development, 2000. 127(4): p. 725-34
  16. Chuang CF,Meyerowitz EM
    Specific and heritable genetic interference by double-stranded RNA in Arabidopsis thaliana.
    Proc. Natl. Acad. Sci. U.S.A., 2000. 97(9): p. 4985-90
  17. Onouchi H,Ige
    Mutagenesis of plants overexpressing CONSTANS demonstrates novel interactions among Arabidopsis flowering-time genes.
    Plant Cell, 2000. 12(6): p. 885-900
  18. Sessions A,Yanofsky MF,Weigel D
    Cell-cell signaling and movement by the floral transcription factors LEAFY and APETALA1.
    Science, 2000. 289(5480): p. 779-82
  19. Kyozuka J,Kobayashi T,Morita M,Shimamoto K
    Spatially and temporally regulated expression of rice MADS box genes with similarity to Arabidopsis class A, B and C genes.
    Plant Cell Physiol., 2000. 41(6): p. 710-8
  20. Yalovsky S,Rodríguez-Concepción M,Bracha K,Toledo-Ortiz G,Gruissem W
    Prenylation of the floral transcription factor APETALA1 modulates its function.
    Plant Cell, 2000. 12(8): p. 1257-66
  21. Riechmann JL, et al.
    Arabidopsis transcription factors: genome-wide comparative analysis among eukaryotes.
    Science, 2000. 290(5499): p. 2105-10
  22. Honma T,Goto K
    Complexes of MADS-box proteins are sufficient to convert leaves into floral organs.
    Nature, 2001. 409(6819): p. 525-9
  23. Pe
    Constitutive expression of Arabidopsis LEAFY or APETALA1 genes in citrus reduces their generation time.
    Nat. Biotechnol., 2001. 19(3): p. 263-7
  24. Berbel A, et al.
    Analysis of PEAM4, the pea AP1 functional homologue, supports a model for AP1-like genes controlling both floral meristem and floral organ identity in different plant species.
    Plant J., 2001. 25(4): p. 441-51
  25. Ng M,Yanofsky MF
    Activation of the Arabidopsis B class homeotic genes by APETALA1.
    Plant Cell, 2001. 13(4): p. 739-53
  26. Gocal GF, et al.
    Evolution of floral meristem identity genes. Analysis of Lolium temulentum genes related to APETALA1 and LEAFY of Arabidopsis.
    Plant Physiol., 2001. 125(4): p. 1788-801
  27. Elo A,Lemmetyinen J,Turunen ML,Tikka L,Sopanen T
    Three MADS-box genes similar to APETALA1 and FRUITFULL from silver birch (Betula pendula).
    Physiol Plant, 2001. 112(1): p. 95-103
  28. Chou ML,Haung MD,Yang CH
    EMF genes interact with late-flowering genes in regulating floral initiation genes during shoot development in Arabidopsis thaliana.
    Plant Cell Physiol., 2001. 42(5): p. 499-507
  29. Pelaz S,Gustafson-Brown C,Kohalmi SE,Crosby WL,Yanofsky MF
    APETALA1 and SEPALLATA3 interact to promote flower development.
    Plant J., 2001. 26(4): p. 385-94
  30. Cremer F,L
    The delayed terminal flower phenotype is caused by a conditional mutation in the CENTRORADIALIS gene of snapdragon.
    Plant Physiol., 2001. 126(3): p. 1031-41
  31. Prasad K,Sriram P,Kumar CS,Kushalappa K,Vijayraghavan U
    Ectopic expression of rice OsMADS1 reveals a role in specifying the lemma and palea, grass floral organs analogous to sepals.
    Dev. Genes Evol., 2001. 211(6): p. 281-90
  32. Yun JY,Weigel D,Lee I
    Ectopic expression of SUPERMAN suppresses development of petals and stamens.
    Plant Cell Physiol., 2002. 43(1): p. 52-7
  33. Western TL,Cheng Y,Liu J,Chen X
    HUA ENHANCER2, a putative DExH-box RNA helicase, maintains homeotic B and C gene expression in Arabidopsis.
    Development, 2002. 129(7): p. 1569-81
  34. Lamb RS,Hill TA,Tan QK,Irish VF
    Regulation of APETALA3 floral homeotic gene expression by meristem identity genes.
    Development, 2002. 129(9): p. 2079-86
  35. Olsen KM,Womack A,Garrett AR,Suddith JI,Purugganan MD
    Contrasting evolutionary forces in the Arabidopsis thaliana floral developmental pathway.
    Genetics, 2002. 160(4): p. 1641-50
  36. Vranov
    Signal transduction during oxidative stress.
    J. Exp. Bot., 2002. 53(372): p. 1227-36
  37. Nakagawa M,Shimamoto K,Kyozuka J
    Overexpression of RCN1 and RCN2, rice TERMINAL FLOWER 1/CENTRORADIALIS homologs, confers delay of phase transition and altered panicle morphology in rice.
    Plant J., 2002. 29(6): p. 743-50
  38. Wilkinson MD,Haughn GW
    UNUSUAL FLORAL ORGANS Controls Meristem Identity and Organ Primordia Fate in Arabidopsis.
    Plant Cell, 1995. 7(9): p. 1485-1499
  39. Shannon S,Meeks-Wagner DR
    Genetic Interactions That Regulate Inflorescence Development in Arabidopsis.
    Plant Cell, 1993. 5(6): p. 639-655
  40. Guan X, et al.
    Heritable endogenous gene regulation in plants with designed polydactyl zinc finger transcription factors.
    Proc. Natl. Acad. Sci. U.S.A., 2002. 99(20): p. 13296-301
  41. Huala E,Sussex IM
    LEAFY Interacts with Floral Homeotic Genes to Regulate Arabidopsis Floral Development.
    Plant Cell, 1992. 4(8): p. 901-913
  42. Shannon S,Meeks-Wagner DR
    A Mutation in the Arabidopsis TFL1 Gene Affects Inflorescence Meristem Development.
    Plant Cell, 1991. 3(9): p. 877-892
  43. Urban M,Daniels S,Mott E,Hammond-Kosack K
    Arabidopsis is susceptible to the cereal ear blight fungal pathogens Fusarium graminearum and Fusarium culmorum.
    Plant J., 2002. 32(6): p. 961-73
  44. Alvarez-Venegas R, et al.
    ATX-1, an Arabidopsis homolog of trithorax, activates flower homeotic genes.
    Curr. Biol., 2003. 13(8): p. 627-37
  45. Yan L, et al.
    Positional cloning of the wheat vernalization gene VRN1.
    Proc. Natl. Acad. Sci. U.S.A., 2003. 100(10): p. 6263-8
  46. Durfee T, et al.
    The F-box-containing protein UFO and AGAMOUS participate in antagonistic pathways governing early petal development in Arabidopsis.
    Proc. Natl. Acad. Sci. U.S.A., 2003. 100(14): p. 8571-6
  47. Kim SJ,Moon J,Lee I,Maeng J,Kim SR
    Molecular cloning and expression analysis of a CONSTANS homologue, PnCOL1, from Pharbitis nil.
    J. Exp. Bot., 2003. 54(389): p. 1879-87
  48. Parenicová L, et al.
    Molecular and phylogenetic analyses of the complete MADS-box transcription factor family in Arabidopsis: new openings to the MADS world.
    Plant Cell, 2003. 15(7): p. 1538-51
  49. Hsu HF,Huang CH,Chou LT,Yang CH
    Ectopic expression of an orchid (Oncidium Gower Ramsey) AGL6-like gene promotes flowering by activating flowering time genes in Arabidopsis thaliana.
    Plant Cell Physiol., 2003. 44(8): p. 783-94
  50. Weigel D,Alvarez J,Smyth DR,Yanofsky MF,Meyerowitz EM
    LEAFY controls floral meristem identity in Arabidopsis.
    Cell, 1992. 69(5): p. 843-59
  51. Mandel MA,Gustafson-Brown C,Savidge B,Yanofsky MF
    Molecular characterization of the Arabidopsis floral homeotic gene APETALA1.
    Nature, 1992. 360(6401): p. 273-7
  52. Byzova M,Verduyn C,De Brouwer D,De Block M
    Transforming petals into sepaloid organs in Arabidopsis and oilseed rape: implementation of the hairpin RNA-mediated gene silencing technology in an organ-specific manner.
    Planta, 2004. 218(3): p. 379-87
  53. Litt A,Irish VF
    Duplication and diversification in the APETALA1/FRUITFULL floral homeotic gene lineage: implications for the evolution of floral development.
    Genetics, 2003. 165(2): p. 821-33
  54. Yamada K, et al.
    Empirical analysis of transcriptional activity in the Arabidopsis genome.
    Science, 2003. 302(5646): p. 842-6
  55. Takeda S,Matsumoto N,Okada K
    RABBIT EARS, encoding a SUPERMAN-like zinc finger protein, regulates petal development in Arabidopsis thaliana.
    Development, 2004. 131(2): p. 425-34
  56. Chujo A,Zhang Z,Kishino H,Shimamoto K,Kyozuka J
    Partial conservation of LFY function between rice and Arabidopsis.
    Plant Cell Physiol., 2003. 44(12): p. 1311-9
  57. Yu H,Ito T,Wellmer F,Meyerowitz EM
    Repression of AGAMOUS-LIKE 24 is a crucial step in promoting flower development.
    Nat. Genet., 2004. 36(2): p. 157-61
  58. William DA, et al.
    Genomic identification of direct target genes of LEAFY.
    Proc. Natl. Acad. Sci. U.S.A., 2004. 101(6): p. 1775-80
  59. Baum DA,Day CD
    Cryptic bracts exposed: insights into the regulation of leaf expansion.
    Dev. Cell, 2004. 6(3): p. 318-9
  60. Boss PK,Bastow RM,Mylne JS,Dean C
    Multiple pathways in the decision to flower: enabling, promoting, and resetting.
    Plant Cell, 2004. 16 Suppl: p. S18-31
  61. Shchennikova AV,Shulga OA,Immink R,Skryabin KG,Angenent GC
    Identification and characterization of four chrysanthemum MADS-box genes, belonging to the APETALA1/FRUITFULL and SEPALLATA3 subfamilies.
    Plant Physiol., 2004. 134(4): p. 1632-41
  62. Sreekantan L, et al.
    Flowering genes in Metrosideros fit a broad herbaceous model encompassing Arabidopsis and Antirrhinum.
    Physiol Plant, 2004. 121(1): p. 163-173
  63. Yoon HS,Baum DA
    Transgenic study of parallelism in plant morphological evolution.
    Proc. Natl. Acad. Sci. U.S.A., 2004. 101(17): p. 6524-9
  64. Wellmer F,Riechmann JL,Alves-Ferreira M,Meyerowitz EM
    Genome-wide analysis of spatial gene expression in Arabidopsis flowers.
    Plant Cell, 2004. 16(5): p. 1314-26
  65. Smith HM,Campbell BC,Hake S
    Competence to respond to floral inductive signals requires the homeobox genes PENNYWISE and POUND-FOOLISH.
    Curr. Biol., 2004. 14(9): p. 812-7
  66. Petersen K,Didion T,Andersen CH,Nielsen KK
    MADS-box genes from perennial ryegrass differentially expressed during transition from vegetative to reproductive growth.
    J. Plant Physiol., 2004. 161(4): p. 439-47
  67. Yu H, et al.
    Floral homeotic genes are targets of gibberellin signaling in flower development.
    Proc. Natl. Acad. Sci. U.S.A., 2004. 101(20): p. 7827-32
  68. Wagner D, et al.
    Floral induction in tissue culture: a system for the analysis of LEAFY-dependent gene regulation.
    Plant J., 2004. 39(2): p. 273-82
  69. Calonje M,Cubas P,Martínez-Zapater JM,Carmona MJ
    Floral meristem identity genes are expressed during tendril development in grapevine.
    Plant Physiol., 2004. 135(3): p. 1491-501
  70. Fornara F, et al.
    Functional characterization of OsMADS18, a member of the AP1/SQUA subfamily of MADS box genes.
    Plant Physiol., 2004. 135(4): p. 2207-19
  71. Espinosa-Soto C,Padilla-Longoria P,Alvarez-Buylla ER
    A gene regulatory network model for cell-fate determination during Arabidopsis thaliana flower development that is robust and recovers experimental gene expression profiles.
    Plant Cell, 2004. 16(11): p. 2923-39
  72. Yang Y,Jack T
    Defining subdomains of the K domain important for protein-protein interactions of plant MADS proteins.
    Plant Mol. Biol., 2004. 55(1): p. 45-59
  73. de Folter S, et al.
    Comprehensive interaction map of the Arabidopsis MADS Box transcription factors.
    Plant Cell, 2005. 17(5): p. 1424-33
  74. Maizel A, et al.
    The floral regulator LEAFY evolves by substitutions in the DNA binding domain.
    Science, 2005. 308(5719): p. 260-3
  75. Kidner CA,Martienssen RA
    The role of ARGONAUTE1 (AGO1) in meristem formation and identity.
    Dev. Biol., 2005. 280(2): p. 504-17
  76. Teixeira RT,Farbos I,Glimelius K
    Expression levels of meristem identity and homeotic genes are modified by nuclear-mitochondrial interactions in alloplasmic male-sterile lines of Brassica napus.
    Plant J., 2005. 42(5): p. 731-42
  77. Kaufmann K,Anfang N,Saedler H,Theissen G
    Mutant analysis, protein-protein interactions and subcellular localization of the Arabidopsis B sister (ABS) protein.
    Mol. Genet. Genomics, 2005. 274(2): p. 103-18
  78. Castillejo C,Romera-Branchat M,Pelaz S
    A new role of the Arabidopsis SEPALLATA3 gene revealed by its constitutive expression.
    Plant J., 2005. 43(4): p. 586-96
  79. Abe M, et al.
    FD, a bZIP protein mediating signals from the floral pathway integrator FT at the shoot apex.
    Science, 2005. 309(5737): p. 1052-6
  80. Wigge PA, et al.
    Integration of spatial and temporal information during floral induction in Arabidopsis.
    Science, 2005. 309(5737): p. 1056-9
  81. Kim S, et al.
    Expression of floral MADS-box genes in basal angiosperms: implications for the evolution of floral regulators.
    Plant J., 2005. 43(5): p. 724-44
  82. Tooke F,Ordidge M,Chiurugwi T,Battey N
    Mechanisms and function of flower and inflorescence reversion.
    J. Exp. Bot., 2005. 56(420): p. 2587-99
  83. Teper-Bamnolker P,Samach A
    The flowering integrator FT regulates SEPALLATA3 and FRUITFULL accumulation in Arabidopsis leaves.
    Plant Cell, 2005. 17(10): p. 2661-75
  84. Fernando DD,Zhang S
    Constitutive expression of the SAP1 gene from willow (Salix discolor) causes early flowering in Arabidopsis thaliana.
    Dev. Genes Evol., 2006. 216(1): p. 19-28
  85. Hepworth SR,Klenz JE,Haughn GW
    UFO in the Arabidopsis inflorescence apex is required for floral-meristem identity and bract suppression.
    Planta, 2006. 223(4): p. 769-78
  86. Duarte JM, et al.
    Expression pattern shifts following duplication indicative of subfunctionalization and neofunctionalization in regulatory genes of Arabidopsis.
    Mol. Biol. Evol., 2006. 23(2): p. 469-78
  87. Ordidge M,Chiurugwi T,Tooke F,Battey NH
    LEAFY, TERMINAL FLOWER1 and AGAMOUS are functionally conserved but do not regulate terminal flowering and floral determinacy in Impatiens balsamina.
    Plant J., 2005. 44(6): p. 985-1000
  88. Saddic LA, et al.
    The LEAFY target LMI1 is a meristem identity regulator and acts together with LEAFY to regulate expression of CAULIFLOWER.
    Development, 2006. 133(9): p. 1673-82
  89. Sundström JF,Nakayama N,Glimelius K,Irish VF
    Direct regulation of the floral homeotic APETALA1 gene by APETALA3 and PISTILLATA in Arabidopsis.
    Plant J., 2006. 46(4): p. 593-600
  90. Gregis V,Sessa A,Colombo L,Kater MM
    AGL24, SHORT VEGETATIVE PHASE, and APETALA1 redundantly control AGAMOUS during early stages of flower development in Arabidopsis.
    Plant Cell, 2006. 18(6): p. 1373-82
  91. Schönrock N, et al.
    Polycomb-group proteins repress the floral activator AGL19 in the FLC-independent vernalization pathway.
    Genes Dev., 2006. 20(12): p. 1667-78
  92. Sridhar VV,Surendrarao A,Liu Z
    APETALA1 and SEPALLATA3 interact with SEUSS to mediate transcription repression during flower development.
    Development, 2006. 133(16): p. 3159-66
  93. Alvarez-Buylla ER,García-Ponce B,Garay-Arroyo A
    Unique and redundant functional domains of APETALA1 and CAULIFLOWER, two recently duplicated Arabidopsis thaliana floral MADS-box genes.
    J. Exp. Bot., 2006. 57(12): p. 3099-107
  94. Szécsi J, et al.
    BIGPETALp, a bHLH transcription factor is involved in the control of Arabidopsis petal size.
    EMBO J., 2006. 25(16): p. 3912-20
  95. Benlloch R, et al.
    Isolation of mtpim proves Tnt1 a useful reverse genetics tool in Medicago truncatula and uncovers new aspects of AP1-like functions in legumes.
    Plant Physiol., 2006. 142(3): p. 972-83
  96. Kellogg EA
    Progress and challenges in studies of the evolution of development.
    J. Exp. Bot., 2006. 57(13): p. 3505-16
  97. Trevaskis B, et al.
    Short vegetative phase-like MADS-box genes inhibit floral meristem identity in barley.
    Plant Physiol., 2007. 143(1): p. 225-35
  98. Bernier G,P
    A physiological overview of the genetics of flowering time control.
    Plant Biotechnol. J., 2005. 3(1): p. 3-16
  99. Sablowski R
    Flowering and determinacy in Arabidopsis.
    J. Exp. Bot., 2007. 58(5): p. 899-907
  100. He C,Saedler H
    Hormonal control of the inflated calyx syndrome, a morphological novelty, in Physalis.
    Plant J., 2007. 49(5): p. 935-46
  101. Yadav SR,Prasad K,Vijayraghavan U
    Divergent regulatory OsMADS2 functions control size, shape and differentiation of the highly derived rice floret second-whorl organ.
    Genetics, 2007. 176(1): p. 283-94
  102. Liu C, et al.
    Specification of Arabidopsis floral meristem identity by repression of flowering time genes.
    Development, 2007. 134(10): p. 1901-10
  103. Penin AA,Budaev RA,Ezhova TA
    [Interaction of the BRACTEA gene with the TERMINAL FLOWER1, LEAFY, and APETALA1 genes during inflorescence and flower development in Arabidopsis thaliana].
    Genetika, 2007. 43(3): p. 370-6
  104. Filichkin SA, et al.
    Efficiency of gene silencing in Arabidopsis: direct inverted repeats vs. transitive RNAi vectors.
    Plant Biotechnol. J., 2007. 5(5): p. 615-26
  105. Adam H, et al.
    Overexpression of TaVRN1 in Arabidopsis promotes early flowering and alters development.
    Plant Cell Physiol., 2007. 48(8): p. 1192-206
  106. Preston JC,Kellogg EA
    Conservation and divergence of APETALA1/FRUITFULL-like gene function in grasses: evidence from gene expression analyses.
    Plant J., 2007. 52(1): p. 69-81
  107. Ikeda K,Ito M,Nagasawa N,Kyozuka J,Nagato Y
    Rice ABERRANT PANICLE ORGANIZATION 1, encoding an F-box protein, regulates meristem fate.
    Plant J., 2007. 51(6): p. 1030-40
  108. Weigel D,Meyerowitz EM
    Activation of floral homeotic genes in Arabidopsis.
    Science, 1993. 261(5129): p. 1723-6
  109. Saleh A,Al-Abdallat A,Ndamukong I,Alvarez-Venegas R,Avramova Z
    The Arabidopsis homologs of trithorax (ATX1) and enhancer of zeste (CLF) establish 'bivalent chromatin marks' at the silent AGAMOUS locus.
    Nucleic Acids Res., 2007. 35(18): p. 6290-6
  110. Weber A, et al.
    Major regulatory genes in maize contribute to standing variation in teosinte (Zea mays ssp. parviglumis).
    Genetics, 2007. 177(4): p. 2349-59
  111. Verweire D,Verleyen K,De Buck S,Claeys M,Angenon G
    Marker-free transgenic plants through genetically programmed auto-excision.
    Plant Physiol., 2007. 145(4): p. 1220-31
  112. Komiya R,Ikegami A,Tamaki S,Yokoi S,Shimamoto K
    Hd3a and RFT1 are essential for flowering in rice.
    Development, 2008. 135(4): p. 767-74
  113. Furner I,Ellis L,Bakht S,Mirza B,Sheikh M
    CAUT lines: a novel resource for studies of cell autonomy in Arabidopsis.
    Plant J., 2008. 53(4): p. 645-60
  114. Kanrar S,Bhattacharya M,Arthur B,Courtier J,Smith HM
    Regulatory networks that function to specify flower meristems require the function of homeobox genes PENNYWISE and POUND-FOOLISH in Arabidopsis.
    Plant J., 2008. 54(5): p. 924-37
  115. Han P,García-Ponce B,Fonseca-Salazar G,Alvarez-Buylla ER,Yu H
    AGAMOUS-LIKE 17, a novel flowering promoter, acts in a FT-independent photoperiod pathway.
    Plant J., 2008. 55(2): p. 253-65
  116. Chen MK,Lin IC,Yang CH
    Functional analysis of three lily (Lilium longiflorum) APETALA1-like MADS box genes in regulating floral transition and formation.
    Plant Cell Physiol., 2008. 49(5): p. 704-17
  117. Mara CD,Irish VF
    Two GATA transcription factors are downstream effectors of floral homeotic gene action in Arabidopsis.
    Plant Physiol., 2008. 147(2): p. 707-18
  118. Peiffer JA, et al.
    A spatial dissection of the Arabidopsis floral transcriptome by MPSS.
    BMC Plant Biol., 2008. 8: p. 43
  119. Leseberg CH, et al.
    Interaction study of MADS-domain proteins in tomato.
    J. Exp. Bot., 2008. 59(8): p. 2253-65
  120. Zhang L,Xu Y,Ma R
    Molecular cloning, identification, and chromosomal localization of two MADS box genes in peach (Prunus persica).
    J Genet Genomics, 2008. 35(6): p. 365-72
  121. Saleh A,Alvarez-Venegas R,Avramova Z
    Dynamic and stable histone H3 methylation patterns at the Arabidopsis FLC and AP1 loci.
    Gene, 2008. 423(1): p. 43-7
  122. Gregis V,Sessa A,Colombo L,Kater MM
    AGAMOUS-LIKE24 and SHORT VEGETATIVE PHASE determine floral meristem identity in Arabidopsis.
    Plant J., 2008. 56(6): p. 891-902
  123. Chen YH, et al.
    Angiostatin K1-3 induces E-selectin via AP1 and Ets1: a mediator for anti-angiogenic action of K1-3.
    J. Thromb. Haemost., 2008. 6(11): p. 1953-61
  124. Notaguchi M, et al.
    Long-distance, graft-transmissible action of Arabidopsis FLOWERING LOCUS T protein to promote flowering.
    Plant Cell Physiol., 2008. 49(11): p. 1645-58
  125. Sather DN,Golenberg EM
    Duplication of AP1 within the Spinacia oleracea L. AP1/FUL clade is followed by rapid amino acid and regulatory evolution.
    Planta, 2009. 229(3): p. 507-21
  126. Melzer R,Verelst W,Theissen G
    The class E floral homeotic protein SEPALLATA3 is sufficient to loop DNA in 'floral quartet'-like complexes in vitro.
    Nucleic Acids Res., 2009. 37(1): p. 144-57
  127. Park W,Zhai J,Lee JY
    Highly efficient gene silencing using perfect complementary artificial miRNA targeting AP1 or heteromeric artificial miRNA targeting AP1 and CAL genes.
    Plant Cell Rep., 2009. 28(3): p. 469-80
  128. Ondar UN,Vu ChKh,Ezhova TA
    [A new Arabidopsis thaliana deletion mutant apetala1-20].
    Ontogenez, 2008 Nov-Dec. 39(6): p. 430-6
  129. Urbanus SL, et al.
    In planta localisation patterns of MADS domain proteins during floral development in Arabidopsis thaliana.
    BMC Plant Biol., 2009. 9: p. 5
  130. Jackson SD
    Plant responses to photoperiod.
    New Phytol., 2009. 181(3): p. 517-31
  131. Winfield MO,Lu C,Wilson ID,Coghill JA,Edwards KJ
    Cold- and light-induced changes in the transcriptome of wheat leading to phase transition from vegetative to reproductive growth.
    BMC Plant Biol., 2009. 9: p. 55
  132. D'Aloia M, et al.
    Gene activation cascade triggered by a single photoperiodic cycle inducing flowering in Sinapis alba.
    Plant J., 2009. 59(6): p. 962-73
  133. Bertoni G
    PUCHI and floral meristem identity.
    Plant Cell, 2009. 21(5): p. 1327
  134. Karim MR,Hirota A,Kwiatkowska D,Tasaka M,Aida M
    A role for Arabidopsis PUCHI in floral meristem identity and bract suppression.
    Plant Cell, 2009. 21(5): p. 1360-72
  135. Chiang GC,Barua D,Kramer EM,Amasino RM,Donohue K
    Major flowering time gene, flowering locus C, regulates seed germination in Arabidopsis thaliana.
    Proc. Natl. Acad. Sci. U.S.A., 2009. 106(28): p. 11661-6
  136. Hou CJ,Yang CH
    Functional analysis of FT and TFL1 orthologs from orchid (Oncidium Gower Ramsey) that regulate the vegetative to reproductive transition.
    Plant Cell Physiol., 2009. 50(8): p. 1544-57
  137. Gregis V,Sessa A,Dorca-Fornell C,Kater MM
    The Arabidopsis floral meristem identity genes AP1, AGL24 and SVP directly repress class B and C floral homeotic genes.
    Plant J., 2009. 60(4): p. 626-37
  138. Yamaguchi A, et al.
    The microRNA-regulated SBP-Box transcription factor SPL3 is a direct upstream activator of LEAFY, FRUITFULL, and APETALA1.
    Dev. Cell, 2009. 17(2): p. 268-78
  139. Mouhu K, et al.
    Identification of flowering genes in strawberry, a perennial SD plant.
    BMC Plant Biol., 2009. 9: p. 122
  140. Irish VF,Sussex IM
    Function of the apetala-1 gene during Arabidopsis floral development.
    Plant Cell, 1990. 2(8): p. 741-53
  141. Lin EP, et al.
    Identification and characterization of two bamboo (Phyllostachys praecox) AP1/SQUA-like MADS-box genes during floral transition.
    Planta, 2009. 231(1): p. 109-20
  142. Li XG, et al.
    Cytokinin overproduction-caused alteration of flower development is partially mediated by CUC2 and CUC3 in Arabidopsis.
    Gene, 2010. 450(1-2): p. 109-20
  143. Grini PE, et al.
    The ASH1 HOMOLOG 2 (ASHH2) histone H3 methyltransferase is required for ovule and anther development in Arabidopsis.
    PLoS ONE, 2009. 4(11): p. e7817
  144. McCullough E, et al.
    Photoperiod-dependent floral reversion in the natural allopolyploid Arabidopsis suecica.
    New Phytol., 2010. 186(1): p. 239-50
  145. Preston JC,Hileman LC
    SQUAMOSA-PROMOTER BINDING PROTEIN 1 initiates flowering in Antirrhinum majus through the activation of meristem identity genes.
    Plant J., 2010. 62(4): p. 704-12
  146. Kaufmann K, et al.
    Orchestration of floral initiation by APETALA1.
    Science, 2010. 328(5974): p. 85-9
  147. KavaÄ­-ool UN,Karpenko OIu,Ezhova TA
    [Interaction between the ABRUPTUS/PINOID and APETALA1 genes regulating the inflorescence development in Arabidopsis thaliana]
    Genetika, 2010. 46(3): p. 373-82
  148. Yoo SJ, et al.
    BROTHER OF FT AND TFL1 (BFT) has TFL1-like activity and functions redundantly with TFL1 in inflorescence meristem development in Arabidopsis.
    Plant J., 2010. 63(2): p. 241-53
  149. Irish VF
    The flowering of Arabidopsis flower development.
    Plant J., 2010. 61(6): p. 1014-28
  150. Ruokolainen S, et al.
    Characterization of SQUAMOSA-like genes in Gerbera hybrida, including one involved in reproductive transition.
    BMC Plant Biol., 2010. 10: p. 128
  151. Matias-Hernandez L, et al.
    VERDANDI is a direct target of the MADS domain ovule identity complex and affects embryo sac differentiation in Arabidopsis.
    Plant Cell, 2010. 22(6): p. 1702-15
  152. Li ZM, et al.
    PtSVP, an SVP homolog from trifoliate orange (Poncirus trifoliata L. Raf.), shows seasonal periodicity of meristem determination and affects flower development in transgenic Arabidopsis and tobacco plants.
    Plant Mol. Biol., 2010. 74(1-2): p. 129-42
  153. Xu M, et al.
    Arabidopsis BLADE-ON-PETIOLE1 and 2 promote floral meristem fate and determinacy in a previously undefined pathway targeting APETALA1 and AGAMOUS-LIKE24.
    Plant J., 2010. 63(6): p. 974-89
  154. Wellmer F,Riechmann JL
    Gene networks controlling the initiation of flower development.
    Trends Genet., 2010. 26(12): p. 519-27
  155. Yang Y,Karlson DT
    Overexpression of AtCSP4 affects late stages of embryo development in Arabidopsis.
    J. Exp. Bot., 2011. 62(6): p. 2079-91
  156. Chu T,Xie H,Xu Y,Ma R
    [Regulation pattern of the FRUITFULL (FUL) gene of Arabidopsis thaliana].
    Sheng Wu Gong Cheng Xue Bao, 2010. 26(11): p. 1546-54
  157. Deng W, et al.
    FLOWERING LOCUS C (FLC) regulates development pathways throughout the life cycle of Arabidopsis.
    Proc. Natl. Acad. Sci. U.S.A., 2011. 108(16): p. 6680-5
  158. Benlloch R, et al.
    Integrating long-day flowering signals: a LEAFY binding site is essential for proper photoperiodic activation of APETALA1.
    Plant J., 2011. 67(6): p. 1094-102
  159. Kaufmann K,Nagasaki M,J
    Modelling the Molecular Interactions in the Flower Developmental Network of Arabidopsis thaliana.
    Stud Health Technol Inform, 2011. 162: p. 279-97
  160. Li Y, et al.
    A cotton gene encoding novel MADS-box protein is preferentially expressed in fibers and functions in cell elongation.
    Acta Biochim. Biophys. Sin. (Shanghai), 2011. 43(8): p. 607-17
  161. Pastore JJ, et al.
    LATE MERISTEM IDENTITY2 acts together with LEAFY to activate APETALA1.
    Development, 2011. 138(15): p. 3189-98
  162. Arabidopsis Interactome Mapping Consortium
    Evidence for network evolution in an Arabidopsis interactome map.
    Science, 2011. 333(6042): p. 601-7
  163. Taoka K, et al.
    14-3-3 proteins act as intracellular receptors for rice Hd3a florigen.
    Nature, 2011. 476(7360): p. 332-5
  164. Ryu JY,Park CM,Seo PJ
    The floral repressor BROTHER OF FT AND TFL1 (BFT) modulates flowering initiation under high salinity in Arabidopsis.
    Mol. Cells, 2011. 32(3): p. 295-303
  165. Kawanabe T,Fujimoto R
    Inflorescence abnormalities occur with overexpression of Arabidopsis lyrata FT in the fwa mutant of Arabidopsis thaliana.
    Plant Sci., 2011. 181(4): p. 496-503
  166. Shan H, et al.
    Heterologous expression of the chrysanthemum R2R3-MYB transcription factor CmMYB2 enhances drought and salinity tolerance, increases hypersensitivity to ABA and delays flowering in Arabidopsis thaliana.
    Mol. Biotechnol., 2012. 51(2): p. 160-73
  167. Kavaĭ-ool UN,Kupriianova EV,Ezhova TA
    [Different action of the APETALA1 gene on the development of reproductive organs in flowers of the abruptus mutant of Arabidopsis thaliana (L.) Heynh].
    Ontogenez, 2011 Jul-Aug. 42(4): p. 307-11
  168. Chi Y,Huang F,Liu H,Yang S,Yu D
    An APETALA1-like gene of soybean regulates flowering time and specifies floral organs.
    J. Plant Physiol., 2011. 168(18): p. 2251-9
  169. Grandi V,Gregis V,Kater MM
    Uncovering genetic and molecular interactions among floral meristem identity genes in Arabidopsis thaliana.
    Plant J., 2012. 69(5): p. 881-93
  170. Smaczniak C, et al.
    Characterization of MADS-domain transcription factor complexes in Arabidopsis flower development.
    Proc. Natl. Acad. Sci. U.S.A., 2012. 109(5): p. 1560-5
  171. Imura Y, et al.
    CRYPTIC PRECOCIOUS/MED12 is a novel flowering regulator with multiple target steps in Arabidopsis.
    Plant Cell Physiol., 2012. 53(2): p. 287-303
  172. Kinjo H,Shitsukawa N,Takumi S,Murai K
    Diversification of three APETALA1/FRUITFULL-like genes in wheat.
    Mol. Genet. Genomics, 2012. 287(4): p. 283-94
  173. Lee JH,Park SH,Ahn JH
    Functional conservation and diversification between rice OsMADS22/OsMADS55 and Arabidopsis SVP proteins.
    Plant Sci., 2012. 185-186: p. 97-104
  174. Kaufmann K,Nagasaki M,J
    Modelling the molecular interactions in the flower developmental network of Arabidopsis thaliana.
    In Silico Biol. (Gedrukt), 2010. 10(1): p. 125-43
  175. Wagner D,Meyerowitz EM
    Switching on Flowers: Transient LEAFY Induction Reveals Novel Aspects of the Regulation of Reproductive Development in Arabidopsis.
    Front Plant Sci, 2011. 2: p. 60
  176. Han X,Yin L,Xue H
    Co-expression analysis identifies CRC and AP1 the regulator of Arabidopsis fatty acid biosynthesis.
    J Integr Plant Biol, 2012. 54(7): p. 486-99
  177. Huang NC,Jane WN,Chen J,Yu TS
    Arabidopsis thaliana CENTRORADIALIS homologue (ATC) acts systemically to inhibit floral initiation in Arabidopsis.
    Plant J., 2012. 72(2): p. 175-84
  178. Zhang W,Zhang T,Wu Y,Jiang J
    Genome-wide identification of regulatory DNA elements and protein-binding footprints using signatures of open chromatin in Arabidopsis.
    Plant Cell, 2012. 24(7): p. 2719-31
  179. Simonini S, et al.
    Basic pentacysteine proteins mediate MADS domain complex binding to the DNA for tissue-specific expression of target genes in Arabidopsis.
    Plant Cell, 2012. 24(10): p. 4163-72
  180. Huang W, et al.
    Molecular cloning and functional analysis of Three FLOWERING LOCUS T (FT) homologous genes from Chinese Cymbidium.
    Int J Mol Sci, 2012. 13(9): p. 11385-98
  181. Zhu L,Liu D,Li Y,Li N
    Functional phosphoproteomic analysis reveals that a serine-62-phosphorylated isoform of ethylene response factor110 is involved in Arabidopsis bolting.
    Plant Physiol., 2013. 161(2): p. 904-17
  182. Goldberg-Moeller R, et al.
    Effects of gibberellin treatment during flowering induction period on global gene expression and the transcription of flowering-control genes in Citrus buds.
    Plant Sci., 2013. 198: p. 46-57
  183. Wang J,Zhang X,Yan G,Zhou Y,Zhang K
    Over-expression of the PaAP1 gene from sweet cherry (Prunus avium L.) causes early flowering in Arabidopsis thaliana.
    J. Plant Physiol., 2013. 170(3): p. 315-20
  184. Chen A,Dubcovsky J
    Wheat TILLING mutants show that the vernalization gene VRN1 down-regulates the flowering repressor VRN2 in leaves but is not essential for flowering.
    PLoS Genet., 2012. 8(12): p. e1003134
  185. Wei B, et al.
    Functional divergence of two duplicated D-lineage MADS-box genes BdMADS2 and BdMADS4 from Brachypodium distachyon.
    J. Plant Physiol., 2013. 170(4): p. 424-31
  186. Tsuji H,Nakamura H,Taoka K,Shimamoto K
    Functional diversification of FD transcription factors in rice, components of florigen activation complexes.
    Plant Cell Physiol., 2013. 54(3): p. 385-97
  187. Kim HS,Abbasi N,Choi SB
    Bruno-like proteins modulate flowering time via 3' UTR-dependent decay of SOC1 mRNA.
    New Phytol., 2013. 198(3): p. 747-56
  188. Liu C, et al.
    A conserved genetic pathway determines inflorescence architecture in Arabidopsis and rice.
    Dev. Cell, 2013. 24(6): p. 612-22
  189. Qu GZ, et al.
    Overexpression of a MADS-box gene from birch (Betula platyphylla) promotes flowering and enhances chloroplast development in transgenic tobacco.
    PLoS ONE, 2013. 8(5): p. e63398
  190. Winterhagen P,Tiyayon P,Samach A,Hegele M,Wünsche JN
    Isolation and characterization of FLOWERING LOCUS T subforms and APETALA1 of the subtropical fruit tree Dimocarpus longan.
    Plant Physiol. Biochem., 2013. 71: p. 184-90
  191. Lei HJ, et al.
    Identification and characterization of FaSOC1, a homolog of SUPPRESSOR OF OVEREXPRESSION OF CONSTANS1 from strawberry.
    Gene, 2013. 531(2): p. 158-67
  192. Yu Y, et al.
    MlWRKY12, a novel Miscanthus transcription factor, participates in pith secondary cell wall formation and promotes flowering.
    Plant Sci., 2013. 212: p. 1-9
  193. Qian H, et al.
    The circadian clock gene regulatory module enantioselectively mediates imazethapyr-induced early flowering in Arabidopsis thaliana.
    J. Plant Physiol., 2014. 171(5): p. 92-8
  194. Maejima K, et al.
    Recognition of floral homeotic MADS domain transcription factors by a phytoplasmal effector, phyllogen, induces phyllody.
    Plant J., 2014. 78(4): p. 541-54
  195. Azeez A,Miskolczi P,Tylewicz S,Bhalerao RP
    A tree ortholog of APETALA1 mediates photoperiodic control of seasonal growth.
    Curr. Biol., 2014. 24(7): p. 717-24
  196. MacLean AM, et al.
    Phytoplasma effector SAP54 hijacks plant reproduction by degrading MADS-box proteins and promotes insect colonization in a RAD23-dependent manner.
    PLoS Biol., 2014. 12(4): p. e1001835
  197. Han Y,Zhang C,Yang H,Jiao Y
    Cytokinin pathway mediates APETALA1 function in the establishment of determinate floral meristems in Arabidopsis.
    Proc. Natl. Acad. Sci. U.S.A., 2014. 111(18): p. 6840-5
  198. Yamaguchi N, et al.
    Gibberellin acts positively then negatively to control onset of flower formation in Arabidopsis.
    Science, 2014. 344(6184): p. 638-41
  199. Ji H, et al.
    Downregulation of leaf flavin content induces early flowering and photoperiod gene expression in Arabidopsis.
    BMC Plant Biol., 2014. 14: p. 237
  200. Wang X, et al.
    Trans-Golgi network-located AP1 gamma adaptins mediate dileucine motif-directed vacuolar targeting in Arabidopsis.
    Plant Cell, 2014. 26(10): p. 4102-18
  201. Zheng T, et al.
    Overexpression of two PsnAP1 genes from Populus simonii × P. nigra causes early flowering in transgenic tobacco and Arabidopsis.
    PLoS ONE, 2014. 9(10): p. e111725
  202. Zhao S, et al.
    ZmSOC1, a MADS-box transcription factor from Zea mays, promotes flowering in Arabidopsis.
    Int J Mol Sci, 2014. 15(11): p. 19987-20003
  203. Li L, et al.
    Expression of turtle riboflavin-binding protein represses mitochondrial electron transport gene expression and promotes flowering in Arabidopsis.
    BMC Plant Biol., 2014. 14: p. 381
  204. Leal Valentim F, et al.
    A quantitative and dynamic model of the Arabidopsis flowering time gene regulatory network.
    PLoS ONE, 2015. 10(2): p. e0116973
  205. Jin J, et al.
    An Arabidopsis Transcriptional Regulatory Map Reveals Distinct Functional and Evolutionary Features of Novel Transcription Factors.
    Mol. Biol. Evol., 2015. 32(7): p. 1767-73
  206. Thoma R,Chandler JW
    Polarity in the early floral meristem of Arabidopsis.
    Plant Signal Behav, 2015. 10(4): p. e992733
  207. Chen Z, et al.
    Overexpression of AtAP1M3 regulates flowering time and floral development in Arabidopsis and effects key flowering-related genes in poplar.
    Transgenic Res., 2015. 24(4): p. 705-15
  208. Ma X, et al.
    CYCLIN-DEPENDENT KINASE G2 regulates salinity stress response and salt mediated flowering in Arabidopsis thaliana.
    Plant Mol. Biol., 2015. 88(3): p. 287-99
  209. Winter CM,Yamaguchi N,Wu MF,Wagner D
    Transcriptional programs regulated by both LEAFY and APETALA1 at the time of flower formation.
    Physiol Plant, 2015. 155(1): p. 55-73
  210. Sacharowski SP, et al.
    SWP73 Subunits of Arabidopsis SWI/SNF Chromatin Remodeling Complexes Play Distinct Roles in Leaf and Flower Development.
    Plant Cell, 2015. 27(7): p. 1889-906
  211. Minguet EG,Segard S,Charavay C,Parcy F
    MORPHEUS, a Webtool for Transcription Factor Binding Analysis Using Position Weight Matrices with Dependency.
    PLoS ONE, 2015. 10(8): p. e0135586
  212. Han Y,Jiao Y
    APETALA1 establishes determinate floral meristem through regulating cytokinins homeostasis in Arabidopsis.
    Plant Signal Behav, 2015. 10(11): p. e989039
  213. Andrés F, et al.
    Floral Induction in Arabidopsis by FLOWERING LOCUS T Requires Direct Repression of BLADE-ON-PETIOLE Genes by the Homeodomain Protein PENNYWISE.
    Plant Physiol., 2015. 169(3): p. 2187-99
  214. Xie W, et al.
    Exploring potential new floral organ morphogenesis genes of Arabidopsis thaliana using systems biology approach.
    Front Plant Sci, 2015. 6: p. 829
  215. Yu Y, et al.
    WRKY71 accelerates flowering via the direct activation of FLOWERING LOCUS T and LEAFY in Arabidopsis thaliana.
    Plant J., 2016. 85(1): p. 96-106
  216. McCarthy EW,Mohamed A,Litt A
    Functional Divergence of APETALA1 and FRUITFULL is due to Changes in both Regulation and Coding Sequence.
    Front Plant Sci, 2015. 6: p. 1076
  217. Saleh A,Alvarez-Venegas R,Liu N,Avramova Z
    Corrigendum to "Dynamic and stable histone H3 methylation patterns at the Arabidopsis FLC and AP1 loci" [Gene. 2008 Oct. 15; 423(1):43-47].
    Gene, 2016. 585(2): p. 266-7
  218. Tang M,Tao YB,Xu ZF
    Ectopic expression of Jatropha curcas APETALA1 (JcAP1) caused early flowering in Arabidopsis, but not in Jatropha.
    PeerJ, 2016. 4: p. e1969
  219. Ye L,Wang B,Zhang W,Shan H,Kong H
    Gains and Losses of Cis-regulatory Elements Led to Divergence of the Arabidopsis APETALA1 and CAULIFLOWER Duplicate Genes in the Time, Space, and Level of Expression and Regulation of One Paralog by the Other.
    Plant Physiol., 2016. 171(2): p. 1055-69
  220. Hou CJ,Yang CH
    Comparative analysis of the pteridophyte Adiantum MFT ortholog reveals the specificity of combined FT/MFT C and N terminal interaction with FD for the regulation of the downstream gene AP1.
    Plant Mol. Biol., 2016. 91(4-5): p. 563-79
  221. Monniaux M, et al.
    Conservation vs divergence in LEAFY and APETALA1 functions between Arabidopsis thaliana and Cardamine hirsuta.
    New Phytol., 2017. 216(2): p. 549-561
  222. Goslin K, et al.
    Transcription Factor Interplay between LEAFY and APETALA1/CAULIFLOWER during Floral Initiation.
    Plant Physiol., 2017. 174(2): p. 1097-1109
  223. Sawettalake N,Bunnag S,Wang Y,Shen L,Yu H
    DOAP1 Promotes Flowering in the Orchid Dendrobium Chao Praya Smile.
    Front Plant Sci, 2017. 8: p. 400
  224. Kim D,Abdelaziz ME,Ntui VO,Guo X,Al-Babili S
    Colonization by the endophyte Piriformospora indica leads to early flowering in Arabidopsis thaliana likely by triggering gibberellin biosynthesis.
    Biochem. Biophys. Res. Commun., 2017. 490(4): p. 1162-1167
  225. Serrano-Mislata A, et al.
    Regulatory interplay between LEAFY, APETALA1/CAULIFLOWER and TERMINAL FLOWER1: New insights into an old relationship.
    Plant Signal Behav, 2017. 12(10): p. e1370164
  226. Zhang GZ, et al.
    Ectopic expression of UGT84A2 delayed flowering by indole-3-butyric acid-mediated transcriptional repression of ARF6 and ARF8 genes in Arabidopsis.
    Plant Cell Rep., 2017. 36(12): p. 1995-2006
  227. Shimada T, et al.
    The AP-1 Complex is Required for Proper Mucilage Formation in Arabidopsis Seeds.
    Plant Cell Physiol., 2018. 59(11): p. 2331-2338
  228. Monniaux M, et al.
    The role of APETALA1 in petal number robustness.
    Elife, 2019.
  229. Gustafson-Brown C,Savidge B,Yanofsky MF
    Regulation of the arabidopsis floral homeotic gene APETALA1.
    Cell, 1994. 76(1): p. 131-43
  230. Mandel MA,Yanofsky MF
    A gene triggering flower formation in Arabidopsis.
    Nature, 1995. 377(6549): p. 522-4
  231. Smyth DR
    Flower development. Origin of the cauliflower.
    Curr. Biol., 1995. 5(4): p. 361-3
  232. Purugganan MD,Rounsley SD,Schmidt RJ,Yanofsky MF
    Molecular evolution of flower development: diversification of the plant MADS-box regulatory gene family.
    Genetics, 1995. 140(1): p. 345-56
  233. Mizukami Y,Ma H
    Separation of AG function in floral meristem determinacy from that in reproductive organ identity by expressing antisense AG RNA.
    Plant Mol. Biol., 1995. 28(5): p. 767-84
  234. Vijayraghavan U,Siddiqi I,Meyerowitz E
    Isolation of an 800 kb contiguous DNA fragment encompassing a 3.5-cM region of chromosome 1 in Arabidopsis using YAC clones.
    Genome, 1995. 38(4): p. 817-23
  235. Liu Z,Meyerowitz EM
    LEUNIG regulates AGAMOUS expression in Arabidopsis flowers.
    Development, 1995. 121(4): p. 975-91
  236. Yang CH,Chen LJ,Sung ZR
    Genetic regulation of shoot development in Arabidopsis: role of the EMF genes.
    Dev. Biol., 1995. 169(2): p. 421-35
  237. Anthony RG,James PE,Jordan BR
    The cDNA sequence of a cauliflower apetala-1/squamosa homolog.
    Plant Physiol., 1995. 108(1): p. 441-2
  238. Kempin SA,Savidge B,Yanofsky MF
    Molecular basis of the cauliflower phenotype in Arabidopsis.
    Science, 1995. 267(5197): p. 522-5
  239. Clark SE,Running MP,Meyerowitz EM
    CLAVATA1, a regulator of meristem and flower development in Arabidopsis.
    Development, 1993. 119(2): p. 397-418
  240. Mandel MA,Yanofsky MF
    The Arabidopsis AGL8 MADS box gene is expressed in inflorescence meristems and is negatively regulated by APETALA1.
    Plant Cell, 1995. 7(11): p. 1763-71
  241. Krizek BA,Meyerowitz EM
    Mapping the protein regions responsible for the functional specificities of the Arabidopsis MADS domain organ-identity proteins.
    Proc. Natl. Acad. Sci. U.S.A., 1996. 93(9): p. 4063-70
  242. Riechmann JL,Krizek BA,Meyerowitz EM
    Dimerization specificity of Arabidopsis MADS domain homeotic proteins APETALA1, APETALA3, PISTILLATA, and AGAMOUS.
    Proc. Natl. Acad. Sci. U.S.A., 1996. 93(10): p. 4793-8
  243. Venglat SP,Sawhney VK
    Benzylaminopurine induces phenocopies of floral meristem and organ identity mutants in wild-type Arabidopsis plants.
    Planta, 1996. 198(3): p. 480-7
  244. Kang SG,Hannapel DJ
    A novel MADS-box gene of potato (Solanum tuberosum L.) expressed during the early stages of tuberization.
    Plant Mol. Biol., 1996. 31(2): p. 379-86
  245. Riechmann JL,Wang M,Meyerowitz EM
    DNA-binding properties of Arabidopsis MADS domain homeotic proteins APETALA1, APETALA3, PISTILLATA and AGAMOUS.
    Nucleic Acids Res., 1996. 24(16): p. 3134-41
  246. Ray A,Lang JD,Golden T,Ray S
    SHORT INTEGUMENT (SIN1), a gene required for ovule development in Arabidopsis, also controls flowering time.
    Development, 1996. 122(9): p. 2631-8
  247. Simon R,Ige
    Activation of floral meristem identity genes in Arabidopsis.
    Nature, 1996. 384(6604): p. 59-62
  248. Liljegren SJ,Yanofsky MF
    Genetic control of shoot and flower meristem behavior.
    Curr. Opin. Cell Biol., 1996. 8(6): p. 865-9
  249. Okamuro JK,Szeto W,Lotys-Prass C,Jofuku KD
    Photo and hormonal control of meristem identity in the Arabidopsis flower mutants apetala2 and apetala1.
    Plant Cell, 1997. 9(1): p. 37-47
  250. Carr SM,Irish VF
    Floral homeotic gene expression defines developmental arrest stages in Brassica oleracea L. vars. botrytis and italica.
    Planta, 1997. 201(2): p. 179-88
  251. Mizukami Y,Ma H
    Determination of Arabidopsis floral meristem identity by AGAMOUS.
    Plant Cell, 1997. 9(3): p. 393-408
  252. Jack T,Sieburth L,Meyerowitz E
    Targeted misexpression of AGAMOUS in whorl 2 of Arabidopsis flowers.
    Plant J., 1997. 11(4): p. 825-39
  253. Riechmann JL,Meyerowitz EM
    Determination of floral organ identity by Arabidopsis MADS domain homeotic proteins AP1, AP3, PI, and AG is independent of their DNA-binding specificity.
    Mol. Biol. Cell, 1997. 8(7): p. 1243-59
  254. Cardon GH,Höhmann S,Nettesheim K,Saedler H,Huijser P
    Functional analysis of the Arabidopsis thaliana SBP-box gene SPL3: a novel gene involved in the floral transition.
    Plant J., 1997. 12(2): p. 367-77
  255. Kyozuka J,Harcourt R,Peacock WJ,Dennis ES
    Eucalyptus has functional equivalents of the Arabidopsis AP1 gene.
    Plant Mol. Biol., 1997. 35(5): p. 573-84
  256. Hempel FD, et al.
    Floral determination and expression of floral regulatory genes in Arabidopsis.
    Development, 1997. 124(19): p. 3845-53
  257. Ruiz-García L, et al.
    Different roles of flowering-time genes in the activation of floral initiation genes in Arabidopsis.
    Plant Cell, 1997. 9(11): p. 1921-34
  258. Chen L,Cheng JC,Castle L,Sung ZR
    EMF genes regulate Arabidopsis inflorescence development.
    Plant Cell, 1997. 9(11): p. 2011-24
  259. Ratcliffe OJ, et al.
    A common mechanism controls the life cycle and architecture of plants.
    Development, 1998. 125(9): p. 1609-15
  260. Hill TA,Day CD,Zondlo SC,Thackeray AG,Irish VF
    Discrete spatial and temporal cis-acting elements regulate transcription of the Arabidopsis floral homeotic gene APETALA3.
    Development, 1998. 125(9): p. 1711-21
  261. Telfer A,Poethig RS
    HASTY: a gene that regulates the timing of shoot maturation in Arabidopsis thaliana.
    Development, 1998. 125(10): p. 1889-98
  262. Larsson AS,Landberg K,Meeks-Wagner DR
    The TERMINAL FLOWER2 (TFL2) gene controls the reproductive transition and meristem identity in Arabidopsis thaliana.
    Genetics, 1998. 149(2): p. 597-605
  263. Haung MD,Yang CH
    EMF genes interact with late-flowering genes to regulate Arabidopsis shoot development.
    Plant Cell Physiol., 1998. 39(4): p. 382-93
  264. Chou ML,Yang CH
    FLD interacts with genes that affect different developmental phase transitions to regulate Arabidopsis shoot development.
    Plant J., 1998. 15(2): p. 231-42
  265. Hempel FD,Zambryski PC,Feldman LJ
    Photoinduction of flower identity in vegetatively biased primordia.
    Plant Cell, 1998. 10(10): p. 1663-76
  266. Parcy F,Nilsson O,Busch MA,Lee I,Weigel D
    A genetic framework for floral patterning.
    Nature, 1998. 395(6702): p. 561-6
  267. Sawa S,Ito T,Shimura Y,Okada K
    FILAMENTOUS FLOWER controls the formation and development of arabidopsis inflorescences and floral meristems.
    Plant Cell, 1999. 11(1): p. 69-86