PlantRegMap/PlantTFDB v5.0
Plant Transcription Factor Database
Transcription Factor Information
Basic Information | Signature Domain | Sequence | 
Basic Information? help Back to Top
TF ID AT1G56010.2
Common Nameanac021, ANAC022, F14J16.32, NAC021, NAC022, NAC1, T6H22.19
Taxonomic ID
Taxonomic Lineage
cellular organisms; Eukaryota; Viridiplantae; Streptophyta; Streptophytina; Embryophyta; Tracheophyta; Euphyllophyta; Spermatophyta; Magnoliophyta; Mesangiospermae; eudicotyledons; Gunneridae; Pentapetalae; rosids; malvids; Brassicales; Brassicaceae; Camelineae; Arabidopsis
Family NAC
Protein Properties Length: 324aa    MW: 36569.4 Da    PI: 7.2692
Description NAC domain containing protein 1
Gene Model
Gene Model ID Type Source Coding Sequence
AT1G56010.2genomeTAIRView CDS
Signature Domain? help Back to Top
Signature Domain
No. Domain Score E-value Start End HMM Start HMM End
          NAM   1 lppGfrFhPtdeelvveyLkkkvegkkleleevikevdiykvePwdLpkkvkaeekewyfFskrdkkyatgkrknratksgyWkatgkdkevlskkge 98 
                  lppGfrFhP+d+elv++yL ++  +++++   v+ +vd++k+ePwd+pk++  + k+wyf+s+rd+kyatg r+nrat++gyWkatgkd+++l+ kg+
                  79********************9999988777899*************8777799**************************************9.999 PP

          NAM  99 lvglkktLvfykgrapkgektdWvmheyrl 128
                  ****************************98 PP

Protein Features ? help Back to Top
3D Structure
Database Entry ID E-value Start End InterPro ID Description
SuperFamilySSF1019412.48E-617172IPR003441NAC domain
PROSITE profilePS5100556.34419171IPR003441NAC domain
PfamPF023654.0E-2620145IPR003441NAC domain
Gene Ontology ? help Back to Top
GO Term GO Category GO Description
GO:0006355Biological Processregulation of transcription, DNA-templated
GO:0009734Biological Processauxin-activated signaling pathway
GO:0010072Biological Processprimary shoot apical meristem specification
GO:0048527Biological Processlateral root development
GO:0005634Cellular Componentnucleus
GO:0003677Molecular FunctionDNA binding
GO:0003700Molecular Functiontranscription factor activity, sequence-specific DNA binding
Plant Ontology ? help Back to Top
PO Term PO Category PO Description
PO:0000230anatomyinflorescence meristem
PO:0000293anatomyguard cell
PO:0009025anatomyvascular leaf
PO:0007115developmental stageLP.04 four leaves visible stage
PO:0007616developmental stageflowering stage
Sequence ? help Back to Top
Protein Sequence    Length: 324 aa     Download sequence    Send to blast
3D Structure ? help Back to Top
PDB ID Evalue Query Start Query End Hit Start Hit End Description
3ulx_A1e-5171743171Stress-induced transcription factor NAC1
Search in ModeBase
Expression -- UniGene ? help Back to Top
UniGene ID E-value Expressed in
At.483120.0flower| leaf| root
Expression -- Microarray ? help Back to Top
Source ID E-value
Expression AtlasAT1G56010-
Expression -- Description ? help Back to Top
Source Description
UniprotTISSUE SPECIFICITY: Predominantly expressed in the root tip and in lateral root initiation sites. Also detected in expanding cotyledon, and in leaf primordia. {ECO:0000269|PubMed:11114891}.
Functional Description ? help Back to Top
Source Description
TAIREncodes a transcription factor involved in shoot apical meristem formation and auxin-mediated lateral root formation. The gene is thought not to be involved in stress responses (NaCl, auxins, ethylene). NAC1 (NAC1)
UniProtTranscriptional activator that mediates auxin signaling to promote lateral root development. Activates the expression of two downstream auxin-responsive genes, DBP and AIR3. {ECO:0000269|PubMed:11114891}.
Function -- GeneRIF ? help Back to Top
  1. Our results indicate that auxin induction of miR164 provides a homeostatic mechanism to clear NAC1 mRNA to downregulate auxin signals.
    [PMID: 15829603]
  2. up-stream regulatory fragment of NAC1 responded to plant hormones
    [PMID: 17172049]
  3. Molecular mechanisms underlying the cold temperature regulation of flowering time of Arabidopsis are controled by NAC1.
    [PMID: 17653269]
  4. Data indicate that the structure of NAC transcription factor AtNAC1 monomer contained four alpha-helices and eight beta-sheets.
    [PMID: 24570356]
Cis-element ? help Back to Top
Regulation -- Description ? help Back to Top
Source Description
UniProtINDUCTION: Induced by auxin.
Regulation -- PlantRegMap ? help Back to Top
Source Upstream Regulator Target Gene
Regulation -- ATRM (Manually Curated Target Genes) ? help Back to Top
Source Target Gene (A: Activate/R: Repress)
ATRM AT2G04160(A)
Regulation -- Hormone ? help Back to Top
Source Hormone
AHDauxin, ethylene
Phenotype -- Mutation ? help Back to Top
Source ID
T-DNA ExpressAT1G56010
Annotation -- Nucleotide ? help Back to Top
Source Hit ID E-value Description
GenBankAF1980540.0AF198054.1 Arabidopsis thaliana NAC1 (NAC1) mRNA, complete cds.
GenBankAY0859960.0AY085996.1 Arabidopsis thaliana clone 205648 mRNA, complete sequence.
Annotation -- Protein ? help Back to Top
Source Hit ID E-value Description
RefseqNP_175997.10.0NAC domain containing protein 1
SwissprotQ84TE60.0NAC22_ARATH; NAC domain-containing protein 21/22
STRINGAT1G56010.20.0(Arabidopsis thaliana)
Orthologous Group ? help Back to Top
LineageOrthologous Group IDTaxa NumberGene Number
Representative plantOGRP1715800
Publications ? help Back to Top
  1. Xie Q,Frugis G,Colgan D,Chua NH
    Arabidopsis NAC1 transduces auxin signal downstream of TIR1 to promote lateral root development.
    Genes Dev., 2000. 14(23): p. 3024-36
  2. Riechmann JL, et al.
    Arabidopsis transcription factors: genome-wide comparative analysis among eukaryotes.
    Science, 2000. 290(5499): p. 2105-10
  3. Rhoades MW, et al.
    Prediction of plant microRNA targets.
    Cell, 2002. 110(4): p. 513-20
  4. Xie Q, et al.
    SINAT5 promotes ubiquitin-related degradation of NAC1 to attenuate auxin signals.
    Nature, 2002. 419(6903): p. 167-70
  5. Hoth S, et al.
    Genome-wide gene expression profiling in Arabidopsis thaliana reveals new targets of abscisic acid and largely impaired gene regulation in the abi1-1 mutant.
    J. Cell. Sci., 2002. 115(Pt 24): p. 4891-900
  6. Yamada K, et al.
    Empirical analysis of transcriptional activity in the Arabidopsis genome.
    Science, 2003. 302(5646): p. 842-6
  7. Hegedus D, et al.
    Molecular characterization of Brassica napus NAC domain transcriptional activators induced in response to biotic and abiotic stress.
    Plant Mol. Biol., 2003. 53(3): p. 383-97
  8. Ooka H, et al.
    Comprehensive analysis of NAC family genes in Oryza sativa and Arabidopsis thaliana.
    DNA Res., 2003. 10(6): p. 239-47
  9. Mallory AC,Dugas DV,Bartel DP,Bartel B
    MicroRNA regulation of NAC-domain targets is required for proper formation and separation of adjacent embryonic, vegetative, and floral organs.
    Curr. Biol., 2004. 14(12): p. 1035-46
  10. Guo HS,Xie Q,Fei JF,Chua NH
    MicroRNA directs mRNA cleavage of the transcription factor NAC1 to downregulate auxin signals for arabidopsis lateral root development.
    Plant Cell, 2005. 17(5): p. 1376-86
  11. He XJ, et al.
    AtNAC2, a transcription factor downstream of ethylene and auxin signaling pathways, is involved in salt stress response and lateral root development.
    Plant J., 2005. 44(6): p. 903-16
  12. Wang Y, et al.
    Expression of NAC1 up-stream regulatory region and its relationship to the lateral root initiation induced by gibberellins and auxins.
    Sci. China, C, Life Sci., 2006. 49(5): p. 429-35
  13. Yoo SY,Kim Y,Kim SY,Lee JS,Ahn JH
    Control of flowering time and cold response by a NAC-domain protein in Arabidopsis.
    PLoS ONE, 2007. 2(7): p. e642
  14. Yamaguchi M, et al.
    VND-INTERACTING2, a NAC domain transcription factor, negatively regulates xylem vessel formation in Arabidopsis.
    Plant Cell, 2010. 22(4): p. 1249-63
  15. Kim JI, et al.
    YUCCA6 over-expression demonstrates auxin function in delaying leaf senescence in Arabidopsis thaliana.
    J. Exp. Bot., 2011. 62(11): p. 3981-92
  16. D'haeseleer K, et al.
    Transcriptional and post-transcriptional regulation of a NAC1 transcription factor in Medicago truncatula roots.
    New Phytol., 2011. 191(3): p. 647-61
  17. Li J, et al.
    miRNA164-directed cleavage of ZmNAC1 confers lateral root development in maize (Zea mays L.).
    BMC Plant Biol., 2012. 12: p. 220
  18. Pei H, et al.
    An NAC transcription factor controls ethylene-regulated cell expansion in flower petals.
    Plant Physiol., 2013. 163(2): p. 775-91
  19. Le Hénanff G, et al.
    Grapevine NAC1 transcription factor as a convergent node in developmental processes, abiotic stresses, and necrotrophic/biotrophic pathogen tolerance.
    J. Exp. Bot., 2013. 64(16): p. 4877-93
  20. Ding Y, et al.
    Four distinct types of dehydration stress memory genes in Arabidopsis thaliana.
    BMC Plant Biol., 2013. 13: p. 229
  21. Zhu Q, et al.
    In silico analysis on structure and DNA binding mode of AtNAC1, a NAC transcription factor from Arabidopsis thaliana.
    J Mol Model, 2014. 20(3): p. 2117
  22. Jin J, et al.
    An Arabidopsis Transcriptional Regulatory Map Reveals Distinct Functional and Evolutionary Features of Novel Transcription Factors.
    Mol. Biol. Evol., 2015. 32(7): p. 1767-73
  23. Xiao D, et al.
    SENESCENCE-SUPPRESSED PROTEIN PHOSPHATASE Directly Interacts with the Cytoplasmic Domain of SENESCENCE-ASSOCIATED RECEPTOR-LIKE KINASE and Negatively Regulates Leaf Senescence in Arabidopsis.
    Plant Physiol., 2015. 169(2): p. 1275-91
  24. Huo X,Wang C,Teng Y,Liu X
    Identification of miRNAs associated with dark-induced senescence in Arabidopsis.
    BMC Plant Biol., 2015. 15: p. 266
  25. Chen X, et al.
    Auxin-Independent NAC Pathway Acts in Response to Explant-Specific Wounding and Promotes Root Tip Emergence during de Novo Root Organogenesis in Arabidopsis.
    Plant Physiol., 2016. 170(4): p. 2136-45
  26. Liu C,Wang B,Li Z,Peng Z,Zhang J
    TsNAC1 Is a Key Transcription Factor in Abiotic Stress Resistance and Growth.
    Plant Physiol., 2018. 176(1): p. 742-756