PlantRegMap/PlantTFDB v5.0
Plant Transcription Factor Database
Transcription Factor Information
Basic Information | Signature Domain | Sequence | 
Basic Information? help Back to Top
TF ID AT1G43160.1
Common NameERF108, F1I21.18, RAP2-6, RAP2.6
Taxonomic ID
Taxonomic Lineage
cellular organisms; Eukaryota; Viridiplantae; Streptophyta; Streptophytina; Embryophyta; Tracheophyta; Euphyllophyta; Spermatophyta; Magnoliophyta; Mesangiospermae; eudicotyledons; Gunneridae; Pentapetalae; rosids; malvids; Brassicales; Brassicaceae; Camelineae; Arabidopsis
Family ERF
Protein Properties Length: 192aa    MW: 21962.7 Da    PI: 7.5022
Description related to AP2 6
Gene Model
Gene Model ID Type Source Coding Sequence
AT1G43160.1genomeTAIRView CDS
Signature Domain? help Back to Top
Signature Domain
No. Domain Score E-value Start End HMM Start HMM End
          AP2   1 sgykGVrwdkkrgrWvAeIrdpsengkr..krfslgkfgtaeeAakaaiaarkkleg 55 
                  ++y+GVr+++ +g+W+AeIrdp     +  +r++lg+f tae Aa+a++aa+++++g
                  59********.**********7.....337************************998 PP

Protein Features ? help Back to Top
3D Structure
Database Entry ID E-value Start End InterPro ID Description
CDDcd000188.43E-2459119No hitNo description
PfamPF008472.6E-1460109IPR001471AP2/ERF domain
SMARTSM003804.5E-3960123IPR001471AP2/ERF domain
SuperFamilySSF541711.77E-2360119IPR016177DNA-binding domain
Gene3DG3DSA:3.30.730.104.0E-3460118IPR001471AP2/ERF domain
PROSITE profilePS5103225.81860117IPR001471AP2/ERF domain
PRINTSPR003672.9E-126172IPR001471AP2/ERF domain
PRINTSPR003672.9E-128399IPR001471AP2/ERF domain
Gene Ontology ? help Back to Top
GO Term GO Category GO Description
GO:0009409Biological Processresponse to cold
GO:0009414Biological Processresponse to water deprivation
GO:0009611Biological Processresponse to wounding
GO:0009651Biological Processresponse to salt stress
GO:0009658Biological Processchloroplast organization
GO:0009737Biological Processresponse to abscisic acid
GO:0009751Biological Processresponse to salicylic acid
GO:0009753Biological Processresponse to jasmonic acid
GO:0009873Biological Processethylene-activated signaling pathway
GO:0034605Biological Processcellular response to heat
GO:0045893Biological Processpositive regulation of transcription, DNA-templated
GO:0005634Cellular Componentnucleus
GO:0003677Molecular FunctionDNA binding
GO:0003700Molecular Functiontranscription factor activity, sequence-specific DNA binding
Plant Ontology ? help Back to Top
PO Term PO Category PO Description
PO:0000293anatomyguard cell
PO:0020137anatomyleaf apex
PO:0007611developmental stagepetal differentiation and expansion stage
PO:0007616developmental stageflowering stage
Sequence ? help Back to Top
Protein Sequence    Length: 192 aa     Download sequence    Send to blast
3D Structure ? help Back to Top
PDB ID Evalue Query Start Query End Hit Start Hit End Description
Search in ModeBase
Expression -- UniGene ? help Back to Top
UniGene ID E-value Expressed in
Expression -- Microarray ? help Back to Top
Source ID E-value
Expression AtlasAT1G43160-
Expression -- Description ? help Back to Top
Source Description
UniprotTISSUE SPECIFICITY: Expressed in petals, carpels and valves of immature siliques (PubMed:21069430). Expressed at high levels in stems. Expressed in roots, rosette leaves, flowers and siliques (PubMed:20193749, PubMed:23510309). {ECO:0000269|PubMed:20193749, ECO:0000269|PubMed:21069430, ECO:0000269|PubMed:23510309}.
Functional Description ? help Back to Top
Source Description
TAIRencodes a member of the ERF (ethylene response factor) subfamily B-4 of ERF/AP2 transcription factor family (RAP2.6). The protein contains one AP2 domain. There are 7 members in this subfamily.
UniProtTranscriptional activator involved in the regulation of plant development and tolerance to abiotic stresses (PubMed:21069430). Binds to the GCC-box pathogenesis-related promoter element and the cis-element CE1 (coupling element 1). Involved in the regulation of gene expression in response to abiotic stresses, possibly through the abscisic acid (ABA) signaling pathway (PubMed:20193749). Involved in resistance to the beet cyst nematode Heterodera schachtii in roots. May promote callose deposition at syncytia which may interfere with nutrient import into syncytia and inhibit the development of nematodes (PubMed:23510309). {ECO:0000269|PubMed:20193749, ECO:0000269|PubMed:21069430, ECO:0000269|PubMed:23510309}.
Function -- GeneRIF ? help Back to Top
  1. RAP2.6 participates in abiotic stress, possibly through the ABA-dependent pathway.
    [PMID: 20193749]
  2. Data demonstrate that RAP2.6 (At1g43160), RAP2.6L (At5g13330), DREB 26 (At1g21910) and DREB19 (At2g38340) are transactivators, they exhibit tissue specific expression, and participate in developmental processes as well as biotic/abiotic stress signaling.
    [PMID: 21069430]
  3. Results showed that H. schachtii infection is accompanied by a downregulation of RAP2.6.
    [PMID: 23510309]
  4. Study illustrates that protein stability controlled by dynamic post-transcriptional modification is a critical regulatory mechanism for receptor for activated c kinase 1B which functions as scaffold protein for RAP2.6 in ABA signaling.
    [PMID: 28272518]
Binding Motif ? help Back to Top
Motif ID Method Source Motif file
Motif logo
Cis-element ? help Back to Top
Regulation -- Description ? help Back to Top
Source Description
UniProtINDUCTION: Induced by salt, heat and drought stresses (PubMed:21069430). Induced by osmotic stress (PubMed:20193749). Induced by jasmonate (JA) (PubMed:21069430, PubMed:14756769, PubMed:17786451). Induced by salicylic acid (SA) (PubMed:14756769, PubMed:21069430). Induced by abscisic acid (ABA) (PubMed:20193749, PubMed:21069430). Induced by ethylene (PubMed:14756769). Induced by infection with the bacterial pathogen Pseudomonas syringae pv. tomato DC3000 (PubMed:14756769, PubMed:23510309). Induced by the bacterial pathogen Pseudomonas syringae pv. maculicola ES4326 (PubMed:14756769). Induced by wounding (PubMed:17786451). Down-regulated by infection with the beet cyst nematode Heterodera schachtii (PubMed:23510309). {ECO:0000269|PubMed:14756769, ECO:0000269|PubMed:17786451, ECO:0000269|PubMed:20193749, ECO:0000269|PubMed:21069430, ECO:0000269|PubMed:23510309}.
Regulation -- PlantRegMap ? help Back to Top
Source Upstream Regulator Target Gene
Regulation -- ATRM (Manually Curated Upstream Regulators) ? help Back to Top
Source Upstream Regulator (A: Activate/R: Repress)
ATRM AT4G25470 (A), AT4G25480 (A), AT4G25490 (A)
Regulation -- Hormone ? help Back to Top
Source Hormone
AHDabscisic acid
Phenotype -- Mutation ? help Back to Top
Source ID
T-DNA ExpressAT1G43160
Annotation -- Nucleotide ? help Back to Top
Source Hit ID E-value Description
GenBankAY0628470.0AY062847.1 Arabidopsis thaliana RAP2.6 (At1g43160) mRNA, complete cds.
GenBankAY1145820.0AY114582.1 Arabidopsis thaliana RAP2.6 (At1g43160) mRNA, complete cds.
Annotation -- Protein ? help Back to Top
Source Hit ID E-value Description
RefseqNP_175008.11e-144related to AP2 6
SwissprotQ7G1L21e-145RAP26_ARATH; Ethylene-responsive transcription factor RAP2-6
TrEMBLA0A178W8591e-141A0A178W859_ARATH; RAP2.6
STRINGAT1G43160.11e-143(Arabidopsis thaliana)
Orthologous Group ? help Back to Top
LineageOrthologous Group IDTaxa NumberGene Number
Representative plantOGRP6161718
Publications ? help Back to Top
  1. Riechmann JL, et al.
    Arabidopsis transcription factors: genome-wide comparative analysis among eukaryotes.
    Science, 2000. 290(5499): p. 2105-10
  2. Ma L, et al.
    Genomic evidence for COP1 as a repressor of light-regulated gene expression and development in Arabidopsis.
    Plant Cell, 2002. 14(10): p. 2383-98
  3. Rashotte AM,Carson SD,To JP,Kieber JJ
    Expression profiling of cytokinin action in Arabidopsis.
    Plant Physiol., 2003. 132(4): p. 1998-2011
  4. Folta KM,Pontin MA,Karlin-Neumann G,Bottini R,Spalding EP
    Genomic and physiological studies of early cryptochrome 1 action demonstrate roles for auxin and gibberellin in the control of hypocotyl growth by blue light.
    Plant J., 2003. 36(2): p. 203-14
  5. Yamada K, et al.
    Empirical analysis of transcriptional activity in the Arabidopsis genome.
    Science, 2003. 302(5646): p. 842-6
  6. He P, et al.
    Activation of a COI1-dependent pathway in Arabidopsis by Pseudomonas syringae type III effectors and coronatine.
    Plant J., 2004. 37(4): p. 589-602
  7. Goda H, et al.
    Comprehensive comparison of auxin-regulated and brassinosteroid-regulated genes in Arabidopsis.
    Plant Physiol., 2004. 134(4): p. 1555-73
  8. Tepperman JM, et al.
    Expression profiling of phyB mutant demonstrates substantial contribution of other phytochromes to red-light-regulated gene expression during seedling de-etiolation.
    Plant J., 2004. 38(5): p. 725-39
  9. Zhang JZ,Creelman RA,Zhu JK
    From laboratory to field. Using information from Arabidopsis to engineer salt, cold, and drought tolerance in crops.
    Plant Physiol., 2004. 135(2): p. 615-21
  10. Zhang X, et al.
    Freezing-sensitive tomato has a functional CBF cold response pathway, but a CBF regulon that differs from that of freezing-tolerant Arabidopsis.
    Plant J., 2004. 39(6): p. 905-19
  11. Kiba T,Aoki K,Sakakibara H,Mizuno T
    Arabidopsis response regulator, ARR22, ectopic expression of which results in phenotypes similar to the wol cytokinin-receptor mutant.
    Plant Cell Physiol., 2004. 45(8): p. 1063-77
  12. Devoto A, et al.
    Expression profiling reveals COI1 to be a key regulator of genes involved in wound- and methyl jasmonate-induced secondary metabolism, defence, and hormone interactions.
    Plant Mol. Biol., 2005. 58(4): p. 497-513
  13. Hannah MA,Heyer AG,Hincha DK
    A global survey of gene regulation during cold acclimation in Arabidopsis thaliana.
    PLoS Genet., 2005. 1(2): p. e26
  14. Kim S,Soltis PS,Wall K,Soltis DE
    Phylogeny and domain evolution in the APETALA2-like gene family.
    Mol. Biol. Evol., 2006. 23(1): p. 107-20
  15. Nakano T,Suzuki K,Fujimura T,Shinshi H
    Genome-wide analysis of the ERF gene family in Arabidopsis and rice.
    Plant Physiol., 2006. 140(2): p. 411-32
  16. Oono Y, et al.
    Monitoring expression profiles of Arabidopsis genes during cold acclimation and deacclimation using DNA microarrays.
    Funct. Integr. Genomics, 2006. 6(3): p. 212-34
  17. Truman W,de Zabala MT,Grant M
    Type III effectors orchestrate a complex interplay between transcriptional networks to modify basal defence responses during pathogenesis and resistance.
    Plant J., 2006. 46(1): p. 14-33
  18. Thilmony R,Underwood W,He SY
    Genome-wide transcriptional analysis of the Arabidopsis thaliana interaction with the plant pathogen Pseudomonas syringae pv. tomato DC3000 and the human pathogen Escherichia coli O157:H7.
    Plant J., 2006. 46(1): p. 34-53
  19. Che P,Lall S,Nettleton D,Howell SH
    Gene expression programs during shoot, root, and callus development in Arabidopsis tissue culture.
    Plant Physiol., 2006. 141(2): p. 620-37
  20. Benedict C,Geisler M,Trygg J,Huner N,Hurry V
    Consensus by democracy. Using meta-analyses of microarray and genomic data to model the cold acclimation signaling pathway in Arabidopsis.
    Plant Physiol., 2006. 141(4): p. 1219-32
  21. Jung J, et al.
    The barley ERF-type transcription factor HvRAF confers enhanced pathogen resistance and salt tolerance in Arabidopsis.
    Planta, 2007. 225(3): p. 575-88
  22. Lee DJ, et al.
    Genome-wide expression profiling of ARABIDOPSIS RESPONSE REGULATOR 7(ARR7) overexpression in cytokinin response.
    Mol. Genet. Genomics, 2007. 277(2): p. 115-37
  23. Horiuchi J, et al.
    The floral volatile, methyl benzoate, from snapdragon (Antirrhinum majus) triggers phytotoxic effects in Arabidopsis thaliana.
    Planta, 2007. 226(1): p. 1-10
  24. Ma S,Bohnert HJ
    Integration of Arabidopsis thaliana stress-related transcript profiles, promoter structures, and cell-specific expression.
    Genome Biol., 2007. 8(4): p. R49
  25. Yan Y, et al.
    A downstream mediator in the growth repression limb of the jasmonate pathway.
    Plant Cell, 2007. 19(8): p. 2470-83
  26. Wang Z, et al.
    Identification and characterization of COI1-dependent transcription factor genes involved in JA-mediated response to wounding in Arabidopsis plants.
    Plant Cell Rep., 2008. 27(1): p. 125-35
  27. Catala R, et al.
    The Arabidopsis E3 SUMO ligase SIZ1 regulates plant growth and drought responses.
    Plant Cell, 2007. 19(9): p. 2952-66
  28. Rossel JB, et al.
    Systemic and intracellular responses to photooxidative stress in Arabidopsis.
    Plant Cell, 2007. 19(12): p. 4091-110
  29. Ehlting J, et al.
    Comparative transcriptome analysis of Arabidopsis thaliana infested by diamond back moth (Plutella xylostella) larvae reveals signatures of stress response, secondary metabolism, and signalling.
    BMC Genomics, 2008. 9: p. 154
  30. Magome H,Yamaguchi S,Hanada A,Kamiya Y,Oda K
    The DDF1 transcriptional activator upregulates expression of a gibberellin-deactivating gene, GA2ox7, under high-salinity stress in Arabidopsis.
    Plant J., 2008. 56(4): p. 613-26
  31. Krishnaswamy SS, et al.
    Transcriptional profiling of pea ABR17 mediated changes in gene expression in Arabidopsis thaliana.
    BMC Plant Biol., 2008. 8: p. 91
  32. Zhu Q, et al.
    The Arabidopsis AP2/ERF transcription factor RAP2.6 participates in ABA, salt and osmotic stress responses.
    Gene, 2010. 457(1-2): p. 1-12
  33. Dong CJ,Liu JY
    The Arabidopsis EAR-motif-containing protein RAP2.1 functions as an active transcriptional repressor to keep stress responses under tight control.
    BMC Plant Biol., 2010. 10: p. 47
  34. Krishnaswamy S,Verma S,Rahman MH,Kav NN
    Functional characterization of four APETALA2-family genes (RAP2.6, RAP2.6L, DREB19 and DREB26) in Arabidopsis.
    Plant Mol. Biol., 2011. 75(1-2): p. 107-27
  35. Ruckle ME,Burgoon LD,Lawrence LA,Sinkler CA,Larkin RM
    Plastids are major regulators of light signaling in Arabidopsis.
    Plant Physiol., 2012. 159(1): p. 366-90
  36. Ali MA,Abbas A,Kreil DP,Bohlmann H
    Overexpression of the transcription factor RAP2.6 leads to enhanced callose deposition in syncytia and enhanced resistance against the beet cyst nematode Heterodera schachtii in Arabidopsis roots.
    BMC Plant Biol., 2013. 13: p. 47
  37. Ding Y, et al.
    Four distinct types of dehydration stress memory genes in Arabidopsis thaliana.
    BMC Plant Biol., 2013. 13: p. 229
  38. Jin J, et al.
    An Arabidopsis Transcriptional Regulatory Map Reveals Distinct Functional and Evolutionary Features of Novel Transcription Factors.
    Mol. Biol. Evol., 2015. 32(7): p. 1767-73
  39. Zou Y, et al.
    A gain-of-function mutation in Msl10 triggers cell death and wound-induced hyperaccumulation of jasmonic acid in Arabidopsis.
    J Integr Plant Biol, 2016. 58(6): p. 600-9
  40. Guo R,Sun W
    Sumoylation stabilizes RACK1B and enhance its interaction with RAP2.6 in the abscisic acid response.
    Sci Rep, 2017. 7: p. 44090
  41. Imran QM, et al.
    Transcriptome profile of NO-induced Arabidopsis transcription factor genes suggests their putative regulatory role in multiple biological processes.
    Sci Rep, 2018. 8(1): p. 771
  42. Huang KC,Lin WC,Cheng WH
    Salt hypersensitive mutant 9, a nucleolar APUM23 protein, is essential for salt sensitivity in association with the ABA signaling pathway in Arabidopsis.
    BMC Plant Biol., 2018. 18(1): p. 40
  43. Okamuro JK,Caster B,Villarroel R,Van Montagu M,Jofuku KD
    The AP2 domain of APETALA2 defines a large new family of DNA binding proteins in Arabidopsis.
    Proc. Natl. Acad. Sci. U.S.A., 1997. 94(13): p. 7076-81