PlantRegMap/PlantTFDB v5.0
Plant Transcription Factor Database
Transcription Factor Information
Basic Information | Signature Domain | Sequence | 
Basic Information? help Back to Top
TF ID AT1G19850.1
Common NameARF5, F6F9.10, IAA24, MP
Taxonomic ID
Taxonomic Lineage
cellular organisms; Eukaryota; Viridiplantae; Streptophyta; Streptophytina; Embryophyta; Tracheophyta; Euphyllophyta; Spermatophyta; Magnoliophyta; Mesangiospermae; eudicotyledons; Gunneridae; Pentapetalae; rosids; malvids; Brassicales; Brassicaceae; Camelineae; Arabidopsis
Family ARF
Protein Properties Length: 902aa    MW: 99650.3 Da    PI: 5.9295
Description ARF family protein
Gene Model
Gene Model ID Type Source Coding Sequence
AT1G19850.1genomeTAIRView CDS
Signature Domain? help Back to Top
Signature Domain
No. Domain Score E-value Start End HMM Start HMM End
           B3   1 ffkvltpsdvlksgrlvlpkkfaeeh......ggkkeesktltledesgrsWevkliyrkksgryvltkGWkeFvkangLkegDfvvFkldgrsefel 92 
                  f+k+lt sd++++g +++p++ ae+       + ++++ ++l+++d++ ++W++++iyr++++r++lt+GW+ Fv +++L++gD+v+F   ++++ +l
                  99*********************999*****9444444.49************************************************..4577778 PP

                  EEEEE-S CS
           B3  93 vvkvfrk 99 
  AT1G19850.1 253 MVGVRRA 259
                  *****97 PP

   Auxin_resp   1 aahaastksvFevvYnPrastseFvvkvekvekalk.vkvsvGmRfkmafetedsserrlsGtvvgvsdldpvrWpnSkWrsLk 83 
                  aaha++++++F ++YnPra+++eFv++++k++ka+  +++svGmRf m+feteds +rr++Gt+vg+sdldp+rWp+SkWr+L+
                  79********************************9989********************************************97 PP

Protein Features ? help Back to Top
3D Structure
Database Entry ID E-value Start End InterPro ID Description
SuperFamilySSF1019367.72E-46148287IPR015300DNA-binding pseudobarrel domain
Gene3DG3DSA:2.40.330.102.5E-42150272IPR015300DNA-binding pseudobarrel domain
CDDcd100176.75E-23157258No hitNo description
PfamPF023623.1E-22158259IPR003340B3 DNA binding domain
PROSITE profilePS5086313.183158260IPR003340B3 DNA binding domain
SMARTSM010199.2E-26158260IPR003340B3 DNA binding domain
PfamPF065078.9E-32284367IPR010525Auxin response factor
PfamPF023092.2E-9785879IPR033389AUX/IAA domain
PROSITE profilePS5174523.118793877IPR000270PB1 domain
SuperFamilySSF542775.1E-7807872No hitNo description
Gene Ontology ? help Back to Top
GO Term GO Category GO Description
GO:0006355Biological Processregulation of transcription, DNA-templated
GO:0009733Biological Processresponse to auxin
GO:0009734Biological Processauxin-activated signaling pathway
GO:0009908Biological Processflower development
GO:0009942Biological Processlongitudinal axis specification
GO:0010305Biological Processleaf vascular tissue pattern formation
GO:0048364Biological Processroot development
GO:0048507Biological Processmeristem development
GO:0005634Cellular Componentnucleus
GO:0016020Cellular Componentmembrane
GO:0003700Molecular Functiontranscription factor activity, sequence-specific DNA binding
GO:0042802Molecular Functionidentical protein binding
GO:0044212Molecular Functiontranscription regulatory region DNA binding
Plant Ontology ? help Back to Top
PO Term PO Category PO Description
PO:0000013anatomycauline leaf
PO:0000037anatomyshoot apex
PO:0000230anatomyinflorescence meristem
PO:0000293anatomyguard cell
PO:0008019anatomyleaf lamina base
PO:0009006anatomyshoot system
PO:0009009anatomyplant embryo
PO:0009025anatomyvascular leaf
PO:0009052anatomyflower pedicel
PO:0020137anatomyleaf apex
PO:0025022anatomycollective leaf structure
PO:0001054developmental stagevascular leaf senescent stage
PO:0001078developmental stageplant embryo cotyledonary stage
PO:0001081developmental stagemature plant embryo stage
PO:0001185developmental stageplant embryo globular stage
PO:0004507developmental stageplant embryo bilateral stage
PO:0007064developmental stageLP.12 twelve leaves visible stage
PO:0007095developmental stageLP.08 eight leaves visible stage
PO:0007098developmental stageLP.02 two leaves visible stage
PO:0007103developmental stageLP.10 ten leaves visible stage
PO:0007611developmental stagepetal differentiation and expansion stage
PO:0007616developmental stageflowering stage
Sequence ? help Back to Top
Protein Sequence    Length: 902 aa     Download sequence    Send to blast
3D Structure ? help Back to Top
PDB ID Evalue Query Start Query End Hit Start Hit End Description
4ldu_A0.013921392Auxin response factor 5
Search in ModeBase
Expression -- UniGene ? help Back to Top
UniGene ID E-value Expressed in
At.104940.0floral meristem| flower| silique
Expression -- Microarray ? help Back to Top
Source ID E-value
Expression AtlasAT1G19850-
Expression -- Description ? help Back to Top
Source Description
UniprotDEVELOPMENTAL STAGE: In early embryo and during organ development.
UniprotTISSUE SPECIFICITY: Expressed in the whole plant with a lower expression in leaves. Detected in embryo axis, provascular tissues, procambium and some differentiated vascular regions of mature organs. {ECO:0000269|PubMed:10476078}.
Functional Description ? help Back to Top
Source Description
TAIREncodes a transcription factor (IAA24) mediating embryo axis formation and vascular development. Similar to AUXIN RESPONSIVE FACTOR 1 (ARF1) shown to bind to auxin responsive elements (AREs), and to the maize transcriptional activator VIVIPAROUS 1( VP1). In situ hybridization shows expression in provascular tissue of embryos, the emerging shoot primordia, then is restricted to provascular tissue, and in the root central vascular cylinder.
UniProtAuxin response factors (ARFs) are transcriptional factors that bind specifically to the DNA sequence 5'-TGTCTC-3' found in the auxin-responsive promoter elements (AuxREs). Seems to act as transcriptional activator. Formation of heterodimers with Aux/IAA proteins may alter their ability to modulate early auxin response genes expression. Mediates embryo axis formation and vascular tissues differentiation. Functionally redundant with ARF7. May be necessary to counteract AMP1 activity. {ECO:0000269|PubMed:12036261, ECO:0000269|PubMed:14973283, ECO:0000269|PubMed:17553903}.
Function -- GeneRIF ? help Back to Top
  1. expression can be activated by auxin exposure
    [PMID: 17217464]
  2. auxin-derived positional information through MP carves out meristematic niches by locally overcoming a general differentiation-promoting activity involving AMP1.
    [PMID: 17553903]
  3. MONOPTEROS promotes the focusing of auxin and leaf initiation in part through pathways not affected by auxin efflux inhibitors.
    [PMID: 18685044]
  4. MP binds in vivo to two AuxRE-spanning fragments in the DRN promoter; MP is required for expression of DRN in cotyledon tips. Hence, DRN represents a direct target of MP and functions downstream of MP in cotyledon development
    [PMID: 19369397]
  5. TARGET OF MP 5 (TMO5) and TMO7 encode basic helix-loop-helix (bHLH) transcription factors that are expressed in the hypophysis-adjacent embryo cells, and are required and partially sufficient for MONOPTEROS-dependent root initiation
    [PMID: 20220754]
  6. Here we discuss putative mechanisms by which wide domains of MP expression could activate ATHB8 transcription in single cell files.
    [PMID: 20592815]
  7. MP with the domains III and IV eliminated can selectively uncouple a single ARF from regulation by Aux/IAA proteins.
    [PMID: 22320407]
  8. A semi-dominant, gain-of-function allele of MONOPTEROS is identified, which results in vein proliferation of leaves and cotyledons.
    [PMID: 22349732]
  9. MP mutant plant exhibits an adaxial-abaxial asymmetry in its ability to influence organ development.
    [PMID: 22751359]
  10. Characterization of Columbia alleles of mp, shows four new alleles among which one is a low-expression allele of mp and the another the strongest Columbia allele of mp.
    [PMID: 24281793]
  11. Study shows that ARF DNA-binding domains ahomodimerize to generate cooperative DNA binding, which is critical for in vivo ARF5/MP function. Strikingly, DNA-contacting residues are conserved between ARFs, and found that monomers have the same intrinsic specificity; ARF1 and ARF5 homodimers, however, differ in spacing tolerated between binding sites.
    [PMID: 24485461]
  12. A report or the crystal structure of ARF5 domain III/IV and the molecular determinants of ARF-IAA interactions.
    [PMID: 24710426]
  13. MONOPTEROS directly binds to the STOMAGEN promoter to suppress its expression in mesophyll and inhibit stomatal development.
    [PMID: 25002510]
  14. The involvement of ARF5 in the transcriptional regulation of the entire Aux/IAA family in Arabidopsis thaliana was studied.
    [PMID: 25145395]
  15. It was concluded that the MPDelta genotype can promote de novo shoot formation and can be used to probe corresponding signaling pathways.
    [PMID: 25274430]
  16. In this study, it is shown that MONOPTEROS (MP) directly activates the Dof5.8 promoter. Phenotypic analysis with the mp dof5.8 double mutants revealed that mutations within Dof5.8 enhanced the phenotype of a weak allele of mp.
    [PMID: 25336688]
  17. IAA17 and ARF5 associate to form homo- or hetero-oligomers using a common scaffold and binding interfaces, but their affinities vary significantly
    [PMID: 25512488]
  18. Analyses of the expression pattern of ARF7 and ARF5 targets suggest that this patterning mechanism controls flanking and central zone specification in Arabidopsis LR primordia.
    [PMID: 25944102]
  19. activating a steroid-inducible variant of the auxin response factor (ARF) MONOPTEROS (MP) is sufficient to restore patterning and PIN gene expression.
    [PMID: 27441727]
  20. TIR1/AFB-Aux/IAA auxin perception mediates rapid cell wall acidification and growth of Arabidopsis hypocotyls.
    [PMID: 27627746]
  21. These findings reveal a patterning module in plants that determines organ position by orienting transport of the hormone auxin toward cells with high levels of MP-mediated auxin signaling.
    [PMID: 27818174]
  22. MP plays a critical role in Arabidopsis embryonic root initiation.
    [PMID: 28265057]
  23. Adaxial-expressed MONOPTEROS (MP) and abaxial-enriched auxin together act as positional cues for patterning the WOX domain. MP directly binds to the WOX1 and PRS promoters and activates their expression.
    [PMID: 28943086]
  24. Auxin signaling in stem cells is mediated, at least in part, by AUXIN RESPONSE FACTOR 5/MONOPTEROS (ARF5/MP), which directly represses the transcription of DORNROSCHEN/ENHANCER OF SHOOT REGENERATION 1 (DRN/ESR1). DRN expressed in stem cells positively regulates CLAVATA3 (CLV3) expression and has important meristematic functions.
    [PMID: 29730265]
Binding Motif ? help Back to Top
Motif ID Method Source Motif file
Motif logo
Cis-element ? help Back to Top
Regulation -- PlantRegMap ? help Back to Top
Source Upstream Regulator Target Gene
Regulation -- ATRM (Manually Curated Upstream Regulators) ? help Back to Top
Source Upstream Regulator (A: Activate/R: Repress)
ATRM AT1G19850 (A)
Regulation -- ATRM (Manually Curated Target Genes) ? help Back to Top
Source Target Gene (A: Activate/R: Repress)
ATRM AT1G01480(A), AT1G04550(A), AT1G12980(A), AT1G19850(A), AT1G73590(A), AT3G20840(A), AT4G11280(A), AT4G32880(A), AT4G37770(A)
Regulation -- Hormone ? help Back to Top
Source Hormone
Interaction ? help Back to Top
Source Intact With
BioGRIDAT1G19850, AT1G34310
IntActSearch P93024
Phenotype -- Mutation ? help Back to Top
Source ID
T-DNA ExpressAT1G19850
Annotation -- Nucleotide ? help Back to Top
Source Hit ID E-value Description
GenBankAF3347160.0AF334716.1 Arabidopsis thaliana clone C00027 (h) auxin response factor 5 (At1g19850) mRNA, complete cds.
GenBankBT0020500.0BT002050.1 Arabidopsis thaliana transcription factor (At1g19850) mRNA, complete cds.
GenBankBT0088050.0BT008805.1 Arabidopsis thaliana At1g19850 gene, complete cds.
Annotation -- Protein ? help Back to Top
Source Hit ID E-value Description
RefseqNP_173414.10.0Transcriptional factor B3 family protein / auxin-responsive factor AUX/IAA-like protein
SwissprotP930240.0ARFE_ARATH; Auxin response factor 5
TrEMBLA0A178W9930.0A0A178W993_ARATH; Auxin response factor
STRINGAT1G19850.10.0(Arabidopsis thaliana)
Orthologous Group ? help Back to Top
LineageOrthologous Group IDTaxa NumberGene Number
Representative plantOGRP82601216
Publications ? help Back to Top
  1. Hamann T,Mayer U,J
    The auxin-insensitive bodenlos mutation affects primary root formation and apical-basal patterning in the Arabidopsis embryo.
    Development, 1999. 126(7): p. 1387-95
  2. Ulmasov T,Hagen G,Guilfoyle TJ
    Activation and repression of transcription by auxin-response factors.
    Proc. Natl. Acad. Sci. U.S.A., 1999. 96(10): p. 5844-9
  3. Ulmasov T,Hagen G,Guilfoyle TJ
    Dimerization and DNA binding of auxin response factors.
    Plant J., 1999. 19(3): p. 309-19
  4. Deyholos MK,Cordner G,Beebe D,Sieburth LE
    The SCARFACE gene is required for cotyledon and leaf vein patterning.
    Development, 2000. 127(15): p. 3205-13
  5. Riechmann JL, et al.
    Arabidopsis transcription factors: genome-wide comparative analysis among eukaryotes.
    Science, 2000. 290(5499): p. 2105-10
  6. Ouellet F,Overvoorde PJ,Theologis A
    IAA17/AXR3: biochemical insight into an auxin mutant phenotype.
    Plant Cell, 2001. 13(4): p. 829-41
  7. Hagen G,Guilfoyle T
    Auxin-responsive gene expression: genes, promoters and regulatory factors.
    Plant Mol. Biol., 2002 Jun-Jul. 49(3-4): p. 373-85
  8. Long JA,Woody S,Poethig S,Meyerowitz EM,Barton MK
    Transformation of shoots into roots in Arabidopsis embryos mutant at the TOPLESS locus.
    Development, 2002. 129(12): p. 2797-806
  9. Hamann T,Benkova E,Bäurle I,Kientz M,Jürgens G
    The Arabidopsis BODENLOS gene encodes an auxin response protein inhibiting MONOPTEROS-mediated embryo patterning.
    Genes Dev., 2002. 16(13): p. 1610-5
  10. Aida M,Vernoux T,Furutani M,Traas J,Tasaka M
    Roles of PIN-FORMED1 and MONOPTEROS in pattern formation of the apical region of the Arabidopsis embryo.
    Development, 2002. 129(17): p. 3965-74
  11. Mattsson J,Ckurshumova W,Berleth T
    Auxin signaling in Arabidopsis leaf vascular development.
    Plant Physiol., 2003. 131(3): p. 1327-39
  12. Dharmasiri S,Dharmasiri N,Hellmann H,Estelle M
    The RUB/Nedd8 conjugation pathway is required for early development in Arabidopsis.
    EMBO J., 2003. 22(8): p. 1762-70
  13. Yamada K, et al.
    Empirical analysis of transcriptional activity in the Arabidopsis genome.
    Science, 2003. 302(5646): p. 842-6
  14. Tatematsu K, et al.
    MASSUGU2 encodes Aux/IAA19, an auxin-regulated protein that functions together with the transcriptional activator NPH4/ARF7 to regulate differential growth responses of hypocotyl and formation of lateral roots in Arabidopsis thaliana.
    Plant Cell, 2004. 16(2): p. 379-93
  15. Hardtke CS, et al.
    Overlapping and non-redundant functions of the Arabidopsis auxin response factors MONOPTEROS and NONPHOTOTROPIC HYPOCOTYL 4.
    Development, 2004. 131(5): p. 1089-100
  16. Nishimura T,Wada T,Okada K
    A key factor of translation reinitiation, ribosomal protein L24, is involved in gynoecium development in Arabidopsis.
    Biochem. Soc. Trans., 2004. 32(Pt 4): p. 611-3
  17. Okushima Y, et al.
    Functional genomic analysis of the AUXIN RESPONSE FACTOR gene family members in Arabidopsis thaliana: unique and overlapping functions of ARF7 and ARF19.
    Plant Cell, 2005. 17(2): p. 444-63
  18. Koizumi K, et al.
    VAN3 ARF-GAP-mediated vesicle transport is involved in leaf vascular network formation.
    Development, 2005. 132(7): p. 1699-711
  19. Weijers D, et al.
    Developmental specificity of auxin response by pairs of ARF and Aux/IAA transcriptional regulators.
    EMBO J., 2005. 24(10): p. 1874-85
  20. Okushima Y,Mitina I,Quach HL,Theologis A
    AUXIN RESPONSE FACTOR 2 (ARF2): a pleiotropic developmental regulator.
    Plant J., 2005. 43(1): p. 29-46
  21. Dharmasiri N, et al.
    Plant development is regulated by a family of auxin receptor F box proteins.
    Dev. Cell, 2005. 9(1): p. 109-19
  22. Wang JW, et al.
    Control of root cap formation by MicroRNA-targeted auxin response factors in Arabidopsis.
    Plant Cell, 2005. 17(8): p. 2204-16
  23. Nishimura T,Wada T,Yamamoto KT,Okada K
    The Arabidopsis STV1 protein, responsible for translation reinitiation, is required for auxin-mediated gynoecium patterning.
    Plant Cell, 2005. 17(11): p. 2940-53
  24. Fukaki H,Nakao Y,Okushima Y,Theologis A,Tasaka M
    Tissue-specific expression of stabilized SOLITARY-ROOT/IAA14 alters lateral root development in Arabidopsis.
    Plant J., 2005. 44(3): p. 382-95
  25. Weijers D, et al.
    Auxin triggers transient local signaling for cell specification in Arabidopsis embryogenesis.
    Dev. Cell, 2006. 10(2): p. 265-70
  26. Dreher KA,Brown J,Saw RE,Callis J
    The Arabidopsis Aux/IAA protein family has diversified in degradation and auxin responsiveness.
    Plant Cell, 2006. 18(3): p. 699-714
  27. Muto H, et al.
    Fluorescence cross-correlation analyses of the molecular interaction between an Aux/IAA protein, MSG2/IAA19, and protein-protein interaction domains of auxin response factors of arabidopsis expressed in HeLa cells.
    Plant Cell Physiol., 2006. 47(8): p. 1095-101
  28. Wenzel CL,Schuetz M,Yu Q,Mattsson J
    Dynamics of MONOPTEROS and PIN-FORMED1 expression during leaf vein pattern formation in Arabidopsis thaliana.
    Plant J., 2007. 49(3): p. 387-98
  29. Mitra SK,Gantt JA,Ruby JF,Clouse SD,Goshe MB
    Membrane proteomic analysis of Arabidopsis thaliana using alternative solubilization techniques.
    J. Proteome Res., 2007. 6(5): p. 1933-50
  30. Ehrenreich IM,Stafford PA,Purugganan MD
    The genetic architecture of shoot branching in Arabidopsis thaliana: a comparative assessment of candidate gene associations vs. quantitative trait locus mapping.
    Genetics, 2007. 176(2): p. 1223-36
  31. Vidaurre DP,Ploense S,Krogan NT,Berleth T
    AMP1 and MP antagonistically regulate embryo and meristem development in Arabidopsis.
    Development, 2007. 134(14): p. 2561-7
  32. Cheng Y,Qin G,Dai X,Zhao Y
    NPY1, a BTB-NPH3-like protein, plays a critical role in auxin-regulated organogenesis in Arabidopsis.
    Proc. Natl. Acad. Sci. U.S.A., 2007. 104(47): p. 18825-9
  33. Szemenyei H,Hannon M,Long JA
    TOPLESS mediates auxin-dependent transcriptional repression during Arabidopsis embryogenesis.
    Science, 2008. 319(5868): p. 1384-6
  34. Schuetz M,Berleth T,Mattsson J
    Multiple MONOPTEROS-dependent pathways are involved in leaf initiation.
    Plant Physiol., 2008. 148(2): p. 870-80
  35. Swaminathan K,Peterson K,Jack T
    The plant B3 superfamily.
    Trends Plant Sci., 2008. 13(12): p. 647-55
  36. Whitford R,Fernandez A,De Groodt R,Ortega E,Hilson P
    Plant CLE peptides from two distinct functional classes synergistically induce division of vascular cells.
    Proc. Natl. Acad. Sci. U.S.A., 2008. 105(47): p. 18625-30
  37. Ploense SE,Wu MF,Nagpal P,Reed JW
    A gain-of-function mutation in IAA18 alters Arabidopsis embryonic apical patterning.
    Development, 2009. 136(9): p. 1509-17
  38. Cole M, et al.
    DORNROSCHEN is a direct target of the auxin response factor MONOPTEROS in the Arabidopsis embryo.
    Development, 2009. 136(10): p. 1643-51
  39. Thomas CL,Schmidt D,Bayer EM,Dreos R,Maule AJ
    Arabidopsis plant homeodomain finger proteins operate downstream of auxin accumulation in specifying the vasculature and primary root meristem.
    Plant J., 2009. 59(3): p. 426-36
  40. Scacchi E, et al.
    Dynamic, auxin-responsive plasma membrane-to-nucleus movement of Arabidopsis BRX.
    Development, 2009. 136(12): p. 2059-67
  41. Sato A,Yamamoto KT
    What's the physiological role of domain II-less Aux/IAA proteins?
    Plant Signal Behav, 2008. 3(7): p. 496-7
  42. Donner TJ,Sherr I,Scarpella E
    Regulation of preprocambial cell state acquisition by auxin signaling in Arabidopsis leaves.
    Development, 2009. 136(19): p. 3235-46
  43. De Smet I, et al.
    Bimodular auxin response controls organogenesis in Arabidopsis.
    Proc. Natl. Acad. Sci. U.S.A., 2010. 107(6): p. 2705-10
  44. Schlereth A, et al.
    MONOPTEROS controls embryonic root initiation by regulating a mobile transcription factor.
    Nature, 2010. 464(7290): p. 913-6
  45. Zhao Z, et al.
    Hormonal control of the shoot stem-cell niche.
    Nature, 2010. 465(7301): p. 1089-92
  46. Donner TJ,Sherr I,Scarpella E
    Auxin signal transduction in Arabidopsis vein formation.
    Plant Signal Behav, 2010. 5(1): p. 70-2
  47. Nawy T, et al.
    The GATA factor HANABA TARANU is required to position the proembryo boundary in the early Arabidopsis embryo.
    Dev. Cell, 2010. 19(1): p. 103-13
  48. Bureau M,Rast MI,Illmer J,Simon R
    JAGGED LATERAL ORGAN (JLO) controls auxin dependent patterning during development of the Arabidopsis embryo and root.
    Plant Mol. Biol., 2010. 74(4-5): p. 479-91
  49. Scacchi E, et al.
    Spatio-temporal sequence of cross-regulatory events in root meristem growth.
    Proc. Natl. Acad. Sci. U.S.A., 2010. 107(52): p. 22734-9
  50. De Smet I
    Multimodular auxin response controls lateral root development in Arabidopsis.
    Plant Signal Behav, 2010. 5(5): p. 580-2
  51. Varaud E, et al.
    AUXIN RESPONSE FACTOR8 regulates Arabidopsis petal growth by interacting with the bHLH transcription factor BIGPETALp.
    Plant Cell, 2011. 23(3): p. 973-83
  52. Lau S,De Smet I,Kolb M,Meinhardt H,J
    Auxin triggers a genetic switch.
    Nat. Cell Biol., 2011. 13(5): p. 611-5
  53. Vernoux T, et al.
    The auxin signalling network translates dynamic input into robust patterning at the shoot apex.
    Mol. Syst. Biol., 2011. 7: p. 508
  54. Li JF,Bush J,Xiong Y,Li L,McCormack M
    Large-scale protein-protein interaction analysis in Arabidopsis mesophyll protoplasts by split firefly luciferase complementation.
    PLoS ONE, 2011. 6(11): p. e27364
  55. Walcher CL,Nemhauser JL
    Bipartite promoter element required for auxin response.
    Plant Physiol., 2012. 158(1): p. 273-82
  56. Xiang D, et al.
    POPCORN functions in the auxin pathway to regulate embryonic body plan and meristem organization in Arabidopsis.
    Plant Cell, 2011. 23(12): p. 4348-67
  57. Rademacher EH, et al.
    Different auxin response machineries control distinct cell fates in the early plant embryo.
    Dev. Cell, 2012. 22(1): p. 211-22
  58. Krogan NT,Ckurshumova W,Marcos D,Caragea AE,Berleth T
    Deletion of MP/ARF5 domains III and IV reveals a requirement for Aux/IAA regulation in Arabidopsis leaf vascular patterning.
    New Phytol., 2012. 194(2): p. 391-401
  59. Garrett JJ, et al.
    A novel, semi-dominant allele of MONOPTEROS provides insight into leaf initiation and vein pattern formation.
    Planta, 2012. 236(1): p. 297-312
  60. Saiga S, et al.
    Control of embryonic meristem initiation in Arabidopsis by PHD-finger protein complexes.
    Development, 2012. 139(8): p. 1391-8
  61. Goh T,Kasahara H,Mimura T,Kamiya Y,Fukaki H
    Multiple AUX/IAA-ARF modules regulate lateral root formation: the role of Arabidopsis SHY2/IAA3-mediated auxin signalling.
    Philos. Trans. R. Soc. Lond., B, Biol. Sci., 2012. 367(1595): p. 1461-8
  62. Krogan NT,Berleth T
    A dominant mutation reveals asymmetry in MP/ARF5 function along the adaxial-abaxial axis of shoot lateral organs.
    Plant Signal Behav, 2012. 7(8): p. 940-3
  63. Arase F, et al.
    IAA8 involved in lateral root formation interacts with the TIR1 auxin receptor and ARF transcription factors in Arabidopsis.
    PLoS ONE, 2012. 7(8): p. e43414
  64. Esteve-Bruna D,P
    incurvata13, a novel allele of AUXIN RESISTANT6, reveals a specific role for auxin and the SCF complex in Arabidopsis embryogenesis, vascular specification, and leaf flatness.
    Plant Physiol., 2013. 161(3): p. 1303-20
  65. Ohashi-Ito K,Oguchi M,Kojima M,Sakakibara H,Fukuda H
    Auxin-associated initiation of vascular cell differentiation by LONESOME HIGHWAY.
    Development, 2013. 140(4): p. 765-9
  66. Yamaguchi N, et al.
    A molecular framework for auxin-mediated initiation of flower primordia.
    Dev. Cell, 2013. 24(3): p. 271-82
  67. Wang J,Yan DW,Yuan TT,Gao X,Lu YT
    A gain-of-function mutation in IAA8 alters Arabidopsis floral organ development by change of jasmonic acid level.
    Plant Mol. Biol., 2013. 82(1-2): p. 71-83
  68. Chen MK,Wilson RL,Palme K,Ditengou FA,Shpak ED
    ERECTA family genes regulate auxin transport in the shoot apical meristem and forming leaf primordia.
    Plant Physiol., 2013. 162(4): p. 1978-91
  69. Odat O, et al.
    Characterization of an allelic series in the MONOPTEROS gene of Arabidopsis.
    Genesis, 2014. 52(2): p. 127-33
  70. Boer DR, et al.
    Structural basis for DNA binding specificity by the auxin-dependent ARF transcription factors.
    Cell, 2014. 156(3): p. 577-89
  71. Nanao MH, et al.
    Structural basis for oligomerization of auxin transcriptional regulators.
    Nat Commun, 2014. 5: p. 3617
  72. Zhang JY,He SB,Li L,Yang HQ
    Auxin inhibits stomatal development through MONOPTEROS repression of a mobile peptide gene STOMAGEN in mesophyll.
    Proc. Natl. Acad. Sci. U.S.A., 2014. 111(29): p. E3015-23
  73. Krogan NT,Yin X,Ckurshumova W,Berleth T
    Distinct subclades of Aux/IAA genes are direct targets of ARF5/MP transcriptional regulation.
    New Phytol., 2014. 204(3): p. 474-83
  74. Huang JB, et al.
    ROP3 GTPase contributes to polar auxin transport and auxin responses and is important for embryogenesis and seedling growth in Arabidopsis.
    Plant Cell, 2014. 26(9): p. 3501-18
  75. Ckurshumova W,Smirnova T,Marcos D,Zayed Y,Berleth T
    Irrepressible MONOPTEROS/ARF5 promotes de novo shoot formation.
    New Phytol., 2014. 204(3): p. 556-66
  76. Konishi M,Donner TJ,Scarpella E,Yanagisawa S
    MONOPTEROS directly activates the auxin-inducible promoter of the Dof5.8 transcription factor gene in Arabidopsis thaliana leaf provascular cells.
    J. Exp. Bot., 2015. 66(1): p. 283-91
  77. Han M, et al.
    Structural basis for the auxin-induced transcriptional regulation by Aux/IAA17.
    Proc. Natl. Acad. Sci. U.S.A., 2014. 111(52): p. 18613-8
  78. Qi J, et al.
    Auxin depletion from leaf primordia contributes to organ patterning.
    Proc. Natl. Acad. Sci. U.S.A., 2014. 111(52): p. 18769-74
  79. Piya S,Shrestha SK,Binder B,Stewart CN,Hewezi T
    Protein-protein interaction and gene co-expression maps of ARFs and Aux/IAAs in Arabidopsis.
    Front Plant Sci, 2014. 5: p. 744
  80. Crawford BC, et al.
    Plant development. Genetic control of distal stem cell fate within root and embryonic meristems.
    Science, 2015. 347(6222): p. 655-9
  81. Zhang Y, et al.
    Regulation of oncogene expression in T-DNA-transformed host plant cells.
    PLoS Pathog., 2015. 11(1): p. e1004620
  82. Robert HS, et al.
    Plant embryogenesis requires AUX/LAX-mediated auxin influx.
    Development, 2015. 142(4): p. 702-11
  83. Jin J, et al.
    An Arabidopsis Transcriptional Regulatory Map Reveals Distinct Functional and Evolutionary Features of Novel Transcription Factors.
    Mol. Biol. Evol., 2015. 32(7): p. 1767-73
  84. Krogan NT,Berleth T
    The identification and characterization of specific ARF-Aux/IAA regulatory modules in plant growth and development.
    Plant Signal Behav, 2015. 10(4): p. e992748
  85. Lavenus J, et al.
    Inference of the Arabidopsis lateral root gene regulatory network suggests a bifurcation mechanism that defines primordia flanking and central zones.
    Plant Cell, 2015. 27(5): p. 1368-88
  86. Ckurshumova W,Berleth T
    Overcoming recalcitrance - Auxin response factor functions in plant regeneration.
    Plant Signal Behav, 2015. 10(7): p. e993293
  87. Wendrich JR, et al.
    A set of domain-specific markers in the Arabidopsis embryo.
    Plant Reprod, 2015. 28(3-4): p. 153-60
  88. Wu MF, et al.
    Auxin-regulated chromatin switch directs acquisition of flower primordium founder fate.
    Elife, 2015. 4: p. e09269
  89. Yamaguchi N,Jeong CW,Nole-Wilson S,Krizek BA,Wagner D
    AINTEGUMENTA and AINTEGUMENTA-LIKE6/PLETHORA3 Induce LEAFY Expression in Response to Auxin to Promote the Onset of Flower Formation in Arabidopsis.
    Plant Physiol., 2016. 170(1): p. 283-93
  90. Müller CJ, et al.
    PHABULOSA Mediates an Auxin Signaling Loop to Regulate Vascular Patterning in Arabidopsis.
    Plant Physiol., 2016. 170(2): p. 956-70
  91. Herud O,Weijers D,Lau S,Jürgens G
    Auxin responsiveness of the MONOPTEROS-BODENLOS module in primary root initiation critically depends on the nuclear import kinetics of the Aux/IAA inhibitor BODENLOS.
    Plant J., 2016. 85(2): p. 269-77
  92. Luo S, et al.
    Constitutive Expression of OsIAA9 Affects Starch Granules Accumulation and Root Gravitropic Response in Arabidopsis.
    Front Plant Sci, 2015. 6: p. 1156
  93. Yamaguchi N,Wu MF,Winter CM,Wagner D
    LEAFY and Polar Auxin Transport Coordinately Regulate Arabidopsis Flower Development.
    Plants (Basel), 2014. 3(2): p. 251-65
  94. Krogan NT,Marcos D,Weiner AI,Berleth T
    The auxin response factor MONOPTEROS controls meristem function and organogenesis in both the shoot and root through the direct regulation of PIN genes.
    New Phytol., 2016. 212(1): p. 42-50
  95. Fendrych M,Leung J,Friml J
    TIR1/AFB-Aux/IAA auxin perception mediates rapid cell wall acidification and growth of Arabidopsis hypocotyls.
    Elife, 2018.
  96. Matthes M,Torres-Ruiz RA
    Boronic acid treatment phenocopies monopteros by affecting PIN1 membrane stability and polar auxin transport in Arabidopsis thaliana embryos.
    Development, 2016. 143(21): p. 4053-4062
  97. Bhatia N, et al.
    Auxin Acts through MONOPTEROS to Regulate Plant Cell Polarity and Pattern Phyllotaxis.
    Curr. Biol., 2016. 26(23): p. 3202-3208
  98. Wójcikowska B,Gaj MD
    Expression profiling of AUXIN RESPONSE FACTOR genes during somatic embryogenesis induction in Arabidopsis.
    Plant Cell Rep., 2017. 36(6): p. 843-858
  99. Möller BK, et al.
    Auxin response cell-autonomously controls ground tissue initiation in the early Arabidopsis embryo.
    Proc. Natl. Acad. Sci. U.S.A., 2017. 114(12): p. E2533-E2539
  100. Carey NS,Krogan NT
    The role of AUXIN RESPONSE FACTORs in the development and differential growth of inflorescence stems.
    Plant Signal Behav, 2017. 12(4): p. e1307492
  101. Guan C, et al.
    Spatial Auxin Signaling Controls Leaf Flattening in Arabidopsis.
    Curr. Biol., 2017. 27(19): p. 2940-2950.e4
  102. Gaillochet C, et al.
    Control of plant cell fate transitions by transcriptional and hormonal signals.
    Elife, 2018.
  103. Zheng K, et al.
    Involvement of PACLOBUTRAZOL RESISTANCE6/KIDARI, an Atypical bHLH Transcription Factor, in Auxin Responses in Arabidopsis.
    Front Plant Sci, 2017. 8: p. 1813
  104. Liu Z, et al.
    ARF2-ARF4 and ARF5 are Essential for Female and Male Gametophyte Development in Arabidopsis.
    Plant Cell Physiol., 2018. 59(1): p. 179-189
  105. Luo L,Zeng J,Wu H,Tian Z,Zhao Z
    A Molecular Framework for Auxin-Controlled Homeostasis of Shoot Stem Cells in Arabidopsis.
    Mol Plant, 2018. 11(7): p. 899-913
  106. Przemeck GK,Mattsson J,Hardtke CS,Sung ZR,Berleth T
    Studies on the role of the Arabidopsis gene MONOPTEROS in vascular development and plant cell axialization.
    Planta, 1996. 200(2): p. 229-37
  107. Hardtke CS,Berleth T
    Genetic and contig map of a 2200-kb region encompassing 5.5 cM on chromosome 1 of Arabidopsis thaliana.
    Genome, 1996. 39(6): p. 1086-92
  108. Kim J,Harter K,Theologis A
    Protein-protein interactions among the Aux/IAA proteins.
    Proc. Natl. Acad. Sci. U.S.A., 1997. 94(22): p. 11786-91
  109. Hardtke CS,Berleth T
    The Arabidopsis gene MONOPTEROS encodes a transcription factor mediating embryo axis formation and vascular development.
    EMBO J., 1998. 17(5): p. 1405-11