PlantTFDB
PlantRegMap/PlantTFDB v5.0
Plant Transcription Factor Database
Transcription Factor Information
Basic Information | Signature Domain | Sequence | 
Basic Information? help Back to Top
TF ID maker-scaffold02441-snap-gene-0.18-mRNA-1
Organism
Taxonomic ID
Taxonomic Lineage
cellular organisms; Eukaryota; Viridiplantae; Streptophyta; Streptophytina; Embryophyta; Tracheophyta; Euphyllophyta; Spermatophyta; Magnoliophyta; Mesangiospermae; eudicotyledons; Gunneridae; Pentapetalae; rosids; fabids; Fagales; Fagaceae; Castanea
Family bHLH
Protein Properties Length: 324aa    MW: 35672.5 Da    PI: 6.9554
Description bHLH family protein
Gene Model
Gene Model ID Type Source Coding Sequence
maker-scaffold02441-snap-gene-0.18-mRNA-1genomeTHGPView Nucleic Acid
Signature Domain? help Back to Top
Signature Domain
No. Domain Score E-value Start End HMM Start HMM End
1HLH41.62.3e-13103154155
                                                CHHHHHHHHHHHHHHHHHHHHHHHCTSCCC...TTS-STCHHHHHHHHHHHHHHH CS
                                        HLH   1 rrrahnerErrRRdriNsafeeLrellPkaskapskKlsKaeiLekAveYIksLq 55 
                                                ++++h  +Er+RR+++N+ ++ Lr+l+P     + k+ + a+i   +v+YI++Lq
  maker-scaffold02441-snap-gene-0.18-mRNA-1 103 QKTSHITVERNRRKQMNEHLSVLRSLMPCF---YVKRGDQASIIGGVVDYINELQ 154
                                                689**************************9...9********************9 PP

Protein Features ? help Back to Top
3D Structure
Database Entry ID E-value Start End InterPro ID Description
CDDcd000831.41E-13100158No hitNo description
SuperFamilySSF474591.7E-17101175IPR011598Myc-type, basic helix-loop-helix (bHLH) domain
PROSITE profilePS5088814.989102153IPR011598Myc-type, basic helix-loop-helix (bHLH) domain
Gene3DG3DSA:4.10.280.101.3E-13102157IPR011598Myc-type, basic helix-loop-helix (bHLH) domain
PfamPF000101.1E-10103154IPR011598Myc-type, basic helix-loop-helix (bHLH) domain
SMARTSM003531.2E-10108159IPR011598Myc-type, basic helix-loop-helix (bHLH) domain
Gene Ontology ? help Back to Top
GO Term GO Category GO Description
GO:0010374Biological Processstomatal complex development
GO:0005634Cellular Componentnucleus
GO:0046983Molecular Functionprotein dimerization activity
Sequence ? help Back to Top
Protein Sequence    Length: 324 aa     Download sequence    Send to blast
MGDSLSGFFD ENEFGESNLG SNDLFSNDLF SIFESLKGVV EFPPADEVVV GSGEETPRLV  60
SQKSASSCSA LRESETELEI SPKSRKRPKL MTTSEEANPE GQQKTSHITV ERNRRKQMNE  120
HLSVLRSLMP CFYVKRGDQA SIIGGVVDYI NELQQILQSL EAKKQRKVYT EVLSPRLIPS  180
PSPRPSPLSP RKPPLSPRLN LPISPRTPQP TSPYKPRVQQ GYLSPTMATS LEPSPSSSST  240
SSNINDNINE LVANSKSPIA DVEVKFSGPN LLLKTVSPPI PGQAVKIIST LEDLSLEILH  300
VKISTVDETM LNFFTIKMKA HNSL
Functional Description ? help Back to Top
Source Description
UniProtTranscription factor acting as an integration node for stomata and brassinosteroid (BR) signaling pathways to control stomatal initiation and development (PubMed:22466366, PubMed:28507175). Activates transcription when in the presence of SCRM/ICE1 (PubMed:28507175). Functions as a dimer with SCRM or SCRM2 during stomatal initiation (PubMed:18641265). Required for the initiation, the spacing and the formation of stomata, by promoting the first asymmetric cell divisions (PubMed:25843888, PubMed:25680231, PubMed:19008449). Together with FMA and MUTE, modulates the stomata formation. Involved in the regulation of growth reduction under osmotic stress (e.g. mannitol), associated with a quick decrease of meristemoid mother cells (MMCs) number lower stomatal index and density (PubMed:25381317). {ECO:0000269|PubMed:17183265, ECO:0000269|PubMed:17183267, ECO:0000269|PubMed:18641265, ECO:0000269|PubMed:19008449, ECO:0000269|PubMed:22466366, ECO:0000269|PubMed:25381317, ECO:0000269|PubMed:25680231, ECO:0000269|PubMed:25843888, ECO:0000269|PubMed:28507175}.
Regulation -- Description ? help Back to Top
Source Description
UniProtINDUCTION: Repressed by brassinazole (BRZ), thus leading to a reduced number of stomata in hypocotyls (PubMed:25680231). Inhibited by low relative humidity (LRH) via epigenetic CG methylation, thus leading to a reduced stomatal index (PubMed:22442411). Repressed by YDA (at protein level) (PubMed:19008449). Post-transcriptional decrease of protein level in response to osmotic stress (e.g. mannitol), through the action of a mitogen-activated protein kinase (MAPK) cascade; this repression is reversed by the MAPK kinase inhibitor PD98059 (PubMed:25381317). {ECO:0000269|PubMed:19008449, ECO:0000269|PubMed:22442411, ECO:0000269|PubMed:25381317, ECO:0000269|PubMed:25680231}.
Regulation -- PlantRegMap ? help Back to Top
Source Upstream Regulator Target Gene
PlantRegMapRetrieve-
Annotation -- Protein ? help Back to Top
Source Hit ID E-value Description
RefseqXP_023899915.10.0transcription factor SPEECHLESS
SwissprotQ700C72e-90SPCH_ARATH; Transcription factor SPEECHLESS
TrEMBLA0A2N9ENA01e-162A0A2N9ENA0_FAGSY; Uncharacterized protein
STRINGEOY234561e-149(Theobroma cacao)
Orthologous Group ? help Back to Top
LineageOrthologous Group IDTaxa NumberGene Number
FabidsOGEF36863463
Best hit in Arabidopsis thaliana ? help Back to Top
Hit ID E-value Description
AT5G53210.11e-79bHLH family protein
Publications ? help Back to Top
  1. Casson S,Gray JE
    Influence of environmental factors on stomatal development.
    New Phytol., 2008. 178(1): p. 9-23
    [PMID:18266617]
  2. Skinner MK,Rawls A,Wilson-Rawls J,Roalson EH
    Basic helix-loop-helix transcription factor gene family phylogenetics and nomenclature.
    Differentiation, 2010. 80(1): p. 1-8
    [PMID:20219281]
  3. Yang K,Jiang M,Le J
    A new loss-of-function allele 28y reveals a role of ARGONAUTE1 in limiting asymmetric division of stomatal lineage ground cell.
    J Integr Plant Biol, 2014. 56(6): p. 539-49
    [PMID:24386951]
  4. Balcerowicz M,Ranjan A,Rupprecht L,Fiene G,Hoecker U
    Auxin represses stomatal development in dark-grown seedlings via Aux/IAA proteins.
    Development, 2014. 141(16): p. 3165-76
    [PMID:25063454]
  5. Lau OS, et al.
    Direct roles of SPEECHLESS in the specification of stomatal self-renewing cells.
    Science, 2014. 345(6204): p. 1605-9
    [PMID:25190717]
  6. Davies KA,Bergmann DC
    Functional specialization of stomatal bHLHs through modification of DNA-binding and phosphoregulation potential.
    Proc. Natl. Acad. Sci. U.S.A., 2014. 111(43): p. 15585-90
    [PMID:25304637]
  7. Zhang Y,Wang P,Shao W,Zhu JK,Dong J
    The BASL polarity protein controls a MAPK signaling feedback loop in asymmetric cell division.
    Dev. Cell, 2015. 33(2): p. 136-49
    [PMID:25843888]
  8. de Marcos A, et al.
    Transcriptional profiles of Arabidopsis stomataless mutants reveal developmental and physiological features of life in the absence of stomata.
    Front Plant Sci, 2015. 6: p. 456
    [PMID:26157447]
  9. Horst RJ, et al.
    Molecular Framework of a Regulatory Circuit Initiating Two-Dimensional Spatial Patterning of Stomatal Lineage.
    PLoS Genet., 2015. 11(7): p. e1005374
    [PMID:26203655]
  10. Klermund C, et al.
    LLM-Domain B-GATA Transcription Factors Promote Stomatal Development Downstream of Light Signaling Pathways in Arabidopsis thaliana Hypocotyls.
    Plant Cell, 2016. 28(3): p. 646-60
    [PMID:26917680]
  11. Gu F, et al.
    Arabidopsis CSLD5 Functions in Cell Plate Formation in a Cell Cycle-Dependent Manner.
    Plant Cell, 2016. 28(7): p. 1722-37
    [PMID:27354558]
  12. Raissig MT,Abrash E,Bettadapur A,Vogel JP,Bergmann DC
    Grasses use an alternatively wired bHLH transcription factor network to establish stomatal identity.
    Proc. Natl. Acad. Sci. U.S.A., 2016. 113(29): p. 8326-31
    [PMID:27382177]
  13. Castorina G,Fox S,Tonelli C,Galbiati M,Conti L
    A novel role for STOMATAL CARPENTER 1 in stomata patterning.
    BMC Plant Biol., 2016. 16(1): p. 172
    [PMID:27484174]
  14. Fu ZW,Wang YL,Lu YT,Yuan TT
    Nitric oxide is involved in stomatal development by modulating the expression of stomatal regulator genes in Arabidopsis.
    Plant Sci., 2016. 252: p. 282-289
    [PMID:27717464]
  15. Zhang Y,Guo X,Dong J
    Phosphorylation of the Polarity Protein BASL Differentiates Asymmetric Cell Fate through MAPKs and SPCH.
    Curr. Biol., 2016. 26(21): p. 2957-2965
    [PMID:27746029]
  16. Sakai Y, et al.
    The chemical compound bubblin induces stomatal mispatterning in Arabidopsis by disrupting the intrinsic polarity of stomatal lineage cells.
    Development, 2017. 144(3): p. 499-506
    [PMID:28087627]
  17. de Marcos A, et al.
    A Mutation in the bHLH Domain of the SPCH Transcription Factor Uncovers a BR-Dependent Mechanism for Stomatal Development.
    Plant Physiol., 2017. 174(2): p. 823-842
    [PMID:28507175]
  18. Dow GJ,Berry JA,Bergmann DC
    Disruption of stomatal lineage signaling or transcriptional regulators has differential effects on mesophyll development, but maintains coordination of gas exchange.
    New Phytol., 2017. 216(1): p. 69-75
    [PMID:28833173]
  19. Lee JH,Jung JH,Park CM
    Light Inhibits COP1-Mediated Degradation of ICE Transcription Factors to Induce Stomatal Development in Arabidopsis.
    Plant Cell, 2017. 29(11): p. 2817-2830
    [PMID:29070509]
  20. Zoulias N,Harrison EL,Casson SA,Gray JE
    Molecular control of stomatal development.
    Biochem. J., 2018. 475(2): p. 441-454
    [PMID:29386377]
  21. Han X, et al.
    Jasmonate Negatively Regulates Stomatal Development in Arabidopsis Cotyledons.
    Plant Physiol., 2018. 176(4): p. 2871-2885
    [PMID:29496884]
  22. Houbaert A, et al.
    POLAR-guided signalling complex assembly and localization drive asymmetric cell division.
    Nature, 2018. 563(7732): p. 574-578
    [PMID:30429609]