PlantTFDB
PlantRegMap/PlantTFDB v5.0
Plant Transcription Factor Database
Transcription Factor Information
Basic Information | Signature Domain | Sequence | 
Basic Information? help Back to Top
TF ID Zmw_sc01355.1.g00220.1
Organism
Taxonomic ID
Taxonomic Lineage
cellular organisms; Eukaryota; Viridiplantae; Streptophyta; Streptophytina; Embryophyta; Tracheophyta; Euphyllophyta; Spermatophyta; Magnoliophyta; Mesangiospermae; Liliopsida; Petrosaviidae; commelinids; Poales; Poaceae; PACMAD clade; Chloridoideae; Zoysieae; Zoysiinae; Zoysia
Family bHLH
Protein Properties Length: 206aa    MW: 22579.4 Da    PI: 5.7354
Description bHLH family protein
Gene Model
Gene Model ID Type Source Coding Sequence
Zmw_sc01355.1.g00220.1genomeZGD-
Signature Domain? help Back to Top
Signature Domain
No. Domain Score E-value Start End HMM Start HMM End
1HLH30.85.3e-105797954
                                  HHHHHHHHHHHHHHHHCTSCCC...TTS-STCHHHHHHHHHHHHHH CS
                           HLH  9 ErrRRdriNsafeeLrellPkaskapskKlsKaeiLekAveYIksL 54
                                   r RR+ri ++f  Lr+l+P        K++ +++Le+A++Y+k L
  Zmw_sc01355.1.g00220.1.sm.mk 57 ARERRHRISDRFRVLRSLVPGG-----SKMDTVSMLEQAIHYVKFL 97
                                  699*****************95.....5****************98 PP

Protein Features ? help Back to Top
3D Structure
Database Entry ID E-value Start End InterPro ID Description
PROSITE profilePS5088815.3134897IPR011598Myc-type, basic helix-loop-helix (bHLH) domain
SuperFamilySSF474599.42E-1553114IPR011598Myc-type, basic helix-loop-helix (bHLH) domain
SMARTSM003536.3E-1354103IPR011598Myc-type, basic helix-loop-helix (bHLH) domain
CDDcd000835.41E-1454102No hitNo description
Gene3DG3DSA:4.10.280.107.4E-1354110IPR011598Myc-type, basic helix-loop-helix (bHLH) domain
PfamPF000102.3E-75797IPR011598Myc-type, basic helix-loop-helix (bHLH) domain
Gene Ontology ? help Back to Top
GO Term GO Category GO Description
GO:0046983Molecular Functionprotein dimerization activity
Sequence ? help Back to Top
Protein Sequence    Length: 206 aa     Download sequence    Send to blast
MDPYHYPNMH DPLGFPITHQ QPYIIHPAAA FSDTRGRGGG RRRPGAKLST DPQSVAARER  60
RHRISDRFRV LRSLVPGGSK MDTVSMLEQA IHYVKFLKAQ VSLHQAALMQ HEEGCNHELA  120
AAYSGVDEVI SASNGHDASD VAMQPLQLPV PEAASYAAMV ADQLELLDPW QMSGGSNELP  180
PLPSCVFVEE PATTCYSEEV DLLGSY
Functional Description ? help Back to Top
Source Description
UniProtTranscription factor that seems to regulate organogenesis in postembryonic development. Involved in the regulation of shoot branching by controlling axillary meristem initiation. Functions in association with LAX2 to regulate the process of AM formation. Possesses transactivation activity in yeast (PubMed:21963665). {ECO:0000269|PubMed:13130077, ECO:0000269|PubMed:21963665}.
Annotation -- Protein ? help Back to Top
Source Hit ID E-value Description
RefseqNP_001105271.19e-75barren stalk 1
RefseqXP_020406751.19e-75transcription factor LAX PANICLE 1
SwissprotQ7XAQ62e-61LAX1_ORYSJ; Transcription factor LAX PANICLE 1
TrEMBLQ5MP562e-73Q5MP56_MAIZE; BHLH transcription factor
STRINGGRMZM2G397518_P014e-74(Zea mays)
Orthologous Group ? help Back to Top
LineageOrthologous Group IDTaxa NumberGene Number
MonocotsOGMP85533243
Publications ? help Back to Top
  1. Kaur P, et al.
    Genes controlling plant growth habit in Leymus (Triticeae): maize barren stalk1 (ba1), rice lax panicle, and wheat tiller inhibition (tin3) genes as possible candidates.
    Funct. Integr. Genomics, 2008. 8(4): p. 375-86
    [PMID:18543009]
  2. Oikawa T,Kyozuka J
    Two-Step Regulation of LAX PANICLE1 Protein Accumulation in Axillary Meristem Formation in Rice.
    Plant Cell, 2009. 21(4): p. 1095-108
    [PMID:19346465]
  3. Woods DP,Hope CL,Malcomber ST
    Phylogenomic analyses of the BARREN STALK1/LAX PANICLE1 (BA1/LAX1) genes and evidence for their roles during axillary meristem development.
    Mol. Biol. Evol., 2011. 28(7): p. 2147-59
    [PMID:21297156]
  4. Tabuchi H, et al.
    LAX PANICLE2 of rice encodes a novel nuclear protein and regulates the formation of axillary meristems.
    Plant Cell, 2011. 23(9): p. 3276-87
    [PMID:21963665]
  5. Gao ZY, et al.
    Dissecting yield-associated loci in super hybrid rice by resequencing recombinant inbred lines and improving parental genome sequences.
    Proc. Natl. Acad. Sci. U.S.A., 2013. 110(35): p. 14492-7
    [PMID:23940322]
  6. Deshpande GM,Ramakrishna K,Chongloi GL,Vijayraghavan U
    Functions for rice RFL in vegetative axillary meristem specification and outgrowth.
    J. Exp. Bot., 2015. 66(9): p. 2773-84
    [PMID:25788736]
  7. Sekhar S, et al.
    Spikelet-specific variation in ethylene production and constitutive expression of ethylene receptors and signal transducers during grain filling of compact- and lax-panicle rice (Oryza sativa) cultivars.
    J. Plant Physiol., 2015. 179: p. 21-34
    [PMID:25817414]
  8. Mohanta TK,Mohanta N,Parida P,Bae H
    Mitogen Activated Protein Kinase (MPK) Interacts With Auxin Influx Carrier (OsAux/LAX1) Involved in Auxin Signaling in Plant.
    Biol Proced Online, 2015. 17: p. 13
    [PMID:26526688]
  9. Sekhar S, et al.
    Identification and Characterization of Differentially Expressed Genes in Inferior and Superior Spikelets of Rice Cultivars with Contrasting Panicle-Compactness and Grain-Filling Properties.
    PLoS ONE, 2015. 10(12): p. e0145749
    [PMID:26710230]
  10. Das K, et al.
    Comparative proteomics of the superior and inferior spikelets at the early grain filling stage in rice cultivars contrast for panicle compactness and ethylene evolution.
    J. Plant Physiol., 2016. 202: p. 65-74
    [PMID:27450495]