PlantTFDB
PlantRegMap/PlantTFDB v5.0
Plant Transcription Factor Database
Transcription Factor Information
Basic Information | Signature Domain | Sequence | 
Basic Information? help Back to Top
TF ID SapurV1A.0561s0140.2.p
Organism
Taxonomic ID
Taxonomic Lineage
cellular organisms; Eukaryota; Viridiplantae; Streptophyta; Streptophytina; Embryophyta; Tracheophyta; Euphyllophyta; Spermatophyta; Magnoliophyta; Mesangiospermae; eudicotyledons; Gunneridae; Pentapetalae; rosids; fabids; Malpighiales; Salicaceae; Saliceae; Salix
Family EIL
Protein Properties Length: 634aa    MW: 71843.9 Da    PI: 5.784
Description EIL family protein
Gene Model
Gene Model ID Type Source Coding Sequence
SapurV1A.0561s0140.2.pgenomeJGIView CDS
Signature Domain? help Back to Top
Signature Domain
No. Domain Score E-value Start End HMM Start HMM End
1EIN3506.99.9e-155484261353
                             XXXXXXXXXXXXXXXXXXXXXXX..XXXXX.XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX CS
                    EIN3   1 eelkkrmwkdqmllkrlkerkkqlledkeaatgakksnksneqarrkkmsraQDgiLkYMlkemevcnaqGfvYgiipekgkpvega 87 
                             +el++rmw+d+m+lkrlke+ k+    ke  ++ +k+++s+eqarrkkmsraQDgiLkYMlk+mevc+aqGfvYgii ekgkpv+ga
  SapurV1A.0561s0140.2.p  48 DELERRMWRDKMRLKRLKEQAKS----KEG-IDIAKQHQSQEQARRKKMSRAQDGILKYMLKMMEVCKAQGFVYGIITEKGKPVTGA 129
                             79******************998....788.******************************************************** PP

                             XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX....XX----STTS-HHHHHHHHHHHSSSSSS-TTS--TTT--HHHH-- CS
                    EIN3  88 sdsLraWWkekvefdrngpaaiskyqaknlilsgesslqtersseshslselqDTtlgSLLsalmqhcdppqrrfplekgvepPWWP 174
                             sd+Lr+WWk+kv+fdrngpaai+kyqa+n i+++++++++    ++h+l+elqDTtlgSLLsalmqhcdppqrrfplekgv+pPWWP
  SapurV1A.0561s0140.2.p 130 SDNLREWWKDKVRFDRNGPAAITKYQADNSIPGKNEGSNS-IGPTPHTLQELQDTTLGSLLSALMQHCDPPQRRFPLEKGVSPPWWP 215
                             ************************************9988.9********************************************* PP

                             -S--HHHHHHT--TT--.-----GGG--HHHHHHHHHHHHHHTGGGHHHHHHTTTTSSSSTTT--SHHHHHHHHHHTTTTT-S--XX CS
                    EIN3 175 tGkelwwgelglskdqgtppykkphdlkkawkvsvLtavikhmsptieeirelerqskylqdkmsakesfallsvlnqeekecatvs 261
                             +G+e+ww++lgl++dqg+ppykkphdlkkawkv+vLtavikhmsp+i++ir+l+rqsk+lqdkm+akes ++l+++n+ee+++++++
  SapurV1A.0561s0140.2.p 216 SGNEEWWPQLGLPEDQGPPPYKKPHDLKKAWKVGVLTAVIKHMSPDIAKIRKLVRQSKCLQDKMTAKESSTWLAIINHEESLARELY 302
                             *************************************************************************************** PP

                             XXXX...XXXXXXXXXXXXXXXXXXXXXXXXXX.XXXXXXXXXX...............................XXXXXXXXXXXX CS
                    EIN3 262 ahss...slrkqspkvtlsceqkedvegkkeskikhvqavktta...............................gfpvvrkrkkkp 314
                             ++s    s++  s ++++++ +++dveg ++    + q++k ++                               ++++++krk ++
  SapurV1A.0561s0140.2.p 303 PDSCpplSSSAVSGSLVINDCSEYDVEGAEDDPDLDGQECKPETlsysnlgmertrerrlplrqqpcpikgevmsSMDFIQKRK-PS 388
                             **444467777999*************877777788999999889**************************************9.77 PP

                             XXXXXXXXX......XXXXXXX.XXXXXXXXXXXXXXXX CS
                    EIN3 315 sesakvsskevsrtcqssqfrgsetelifadknsisqne 353
                             s+ +++ +++ ++tc+  q+++s+ +l+f+d+ s+++++
  SapurV1A.0561s0140.2.p 389 SDINMMVDQR-IYTCEAVQCPYSQIRLGFPDRVSRDNHQ 426
                             7777777775.6*************************98 PP

Protein Features ? help Back to Top
3D Structure
Database Entry ID E-value Start End InterPro ID Description
PfamPF048732.6E-12948295No hitNo description
Gene3DG3DSA:1.10.3180.101.1E-75168305IPR023278Ethylene insensitive 3-like protein, DNA-binding domain
SuperFamilySSF1167681.57E-61174298IPR023278Ethylene insensitive 3-like protein, DNA-binding domain
Gene Ontology ? help Back to Top
GO Term GO Category GO Description
GO:0001666Biological Processresponse to hypoxia
GO:0009873Biological Processethylene-activated signaling pathway
GO:0042742Biological Processdefense response to bacterium
GO:0071281Biological Processcellular response to iron ion
GO:0005634Cellular Componentnucleus
GO:0000976Molecular Functiontranscription regulatory region sequence-specific DNA binding
GO:0003700Molecular Functiontranscription factor activity, sequence-specific DNA binding
Sequence ? help Back to Top
Protein Sequence    Length: 634 aa     Download sequence    Send to blast
MSMFDEMGFC GDMDFFCAPL VEGDVAAPQA EPEANVEDDY SDEEIDVDEL ERRMWRDKMR  60
LKRLKEQAKS KEGIDIAKQH QSQEQARRKK MSRAQDGILK YMLKMMEVCK AQGFVYGIIT  120
EKGKPVTGAS DNLREWWKDK VRFDRNGPAA ITKYQADNSI PGKNEGSNSI GPTPHTLQEL  180
QDTTLGSLLS ALMQHCDPPQ RRFPLEKGVS PPWWPSGNEE WWPQLGLPED QGPPPYKKPH  240
DLKKAWKVGV LTAVIKHMSP DIAKIRKLVR QSKCLQDKMT AKESSTWLAI INHEESLARE  300
LYPDSCPPLS SSAVSGSLVI NDCSEYDVEG AEDDPDLDGQ ECKPETLSYS NLGMERTRER  360
RLPLRQQPCP IKGEVMSSMD FIQKRKPSSD INMMVDQRIY TCEAVQCPYS QIRLGFPDRV  420
SRDNHQLNCP FRSSTSLEFG RSNFHMNEVK PVIFPQPSVQ SKPAAPLVNP APLSFDLSGV  480
PEDGQKMISE LMSIYDSNIQ GNKNTNPVNN LVSEGHHVFQ PKFQNQQDNH NVFQPKIQHQ  540
QGNHFRSQGN VINGNIFKES NVNPNHQLFS QEGGQFDRFK PLNSPFETNQ NSSSFNLMFS  600
PPFDLSSFDY KEDLQGLGMD SVPKHQQDVS IWF*
3D Structure ? help Back to Top
Structure
PDB ID Evalue Query Start Query End Hit Start Hit End Description
4zds_A8e-841733052134Protein ETHYLENE INSENSITIVE 3
4zds_B8e-841733052134Protein ETHYLENE INSENSITIVE 3
Search in ModeBase
Functional Description ? help Back to Top
Source Description
UniProtProbable transcription factor acting as a positive regulator in the ethylene response pathway. Is required for ethylene responsiveness in adult plant tissues. Binds a primary ethylene response element present in the ETHYLENE-RESPONSE-FACTOR1 promoter with consequence to activate the transcription of this gene. {ECO:0000269|PubMed:9215635, ECO:0000269|PubMed:9851977}.
Binding Motif ? help Back to Top
Motif ID Method Source Motif file
MP00367DAPTransfer from AT3G20770Download
Motif logo
Cis-element ? help Back to Top
SourceLink
PlantRegMapSapurV1A.0561s0140.2.p
Regulation -- PlantRegMap ? help Back to Top
Source Upstream Regulator Target Gene
PlantRegMapRetrieveRetrieve
Annotation -- Protein ? help Back to Top
Source Hit ID E-value Description
RefseqXP_002312841.30.0protein ETHYLENE INSENSITIVE 3
RefseqXP_024463931.10.0protein ETHYLENE INSENSITIVE 3
RefseqXP_024463932.10.0protein ETHYLENE INSENSITIVE 3
SwissprotO246060.0EIN3_ARATH; Protein ETHYLENE INSENSITIVE 3
TrEMBLA0A2K1Z8M20.0A0A2K1Z8M2_POPTR; Uncharacterized protein
STRINGPOPTR_0009s16080.10.0(Populus trichocarpa)
Best hit in Arabidopsis thaliana ? help Back to Top
Hit ID E-value Description
AT3G20770.10.0EIL family protein
Publications ? help Back to Top
  1. Duarte JM, et al.
    Expression pattern shifts following duplication indicative of subfunctionalization and neofunctionalization in regulatory genes of Arabidopsis.
    Mol. Biol. Evol., 2006. 23(2): p. 469-78
    [PMID:16280546]
  2. Kim HG, et al.
    GDSL LIPASE1 modulates plant immunity through feedback regulation of ethylene signaling.
    Plant Physiol., 2013. 163(4): p. 1776-91
    [PMID:24170202]
  3. Zhong S, et al.
    Ethylene-orchestrated circuitry coordinates a seedling's response to soil cover and etiolated growth.
    Proc. Natl. Acad. Sci. U.S.A., 2014. 111(11): p. 3913-20
    [PMID:24599595]
  4. Kim HG, et al.
    GDSL lipase 1 regulates ethylene signaling and ethylene-associated systemic immunity in Arabidopsis.
    FEBS Lett., 2014. 588(9): p. 1652-8
    [PMID:24631536]
  5. Jourda C, et al.
    Expansion of banana (Musa acuminata) gene families involved in ethylene biosynthesis and signalling after lineage-specific whole-genome duplications.
    New Phytol., 2014. 202(3): p. 986-1000
    [PMID:24716518]
  6. Zhang GB,Yi HY,Gong JM
    The Arabidopsis ethylene/jasmonic acid-NRT signaling module coordinates nitrate reallocation and the trade-off between growth and environmental adaptation.
    Plant Cell, 2014. 26(10): p. 3984-98
    [PMID:25326291]
  7. Wang J, et al.
    Arabidopsis ROOT HAIR DEFECTIVE3 is involved in nitrogen starvation-induced anthocyanin accumulation.
    J Integr Plant Biol, 2015. 57(8): p. 708-21
    [PMID:25494721]
  8. Ge XM, et al.
    Heterotrimeric G protein mediates ethylene-induced stomatal closure via hydrogen peroxide synthesis in Arabidopsis.
    Plant J., 2015. 82(1): p. 138-50
    [PMID:25704455]
  9. Kazan K
    Diverse roles of jasmonates and ethylene in abiotic stress tolerance.
    Trends Plant Sci., 2015. 20(4): p. 219-29
    [PMID:25731753]
  10. Yang C, et al.
    MAOHUZI6/ETHYLENE INSENSITIVE3-LIKE1 and ETHYLENE INSENSITIVE3-LIKE2 Regulate Ethylene Response of Roots and Coleoptiles and Negatively Affect Salt Tolerance in Rice.
    Plant Physiol., 2015. 169(1): p. 148-65
    [PMID:25995326]
  11. Contreras-Cornejo HA, et al.
    Mitogen-Activated Protein Kinase 6 and Ethylene and Auxin Signaling Pathways Are Involved in Arabidopsis Root-System Architecture Alterations by Trichoderma atroviride.
    Mol. Plant Microbe Interact., 2015. 28(6): p. 701-10
    [PMID:26067203]
  12. Li J,Xu HH,Liu WC,Zhang XW,Lu YT
    Ethylene Inhibits Root Elongation during Alkaline Stress through AUXIN1 and Associated Changes in Auxin Accumulation.
    Plant Physiol., 2015. 168(4): p. 1777-91
    [PMID:26109425]
  13. Street IH, et al.
    Ethylene Inhibits Cell Proliferation of the Arabidopsis Root Meristem.
    Plant Physiol., 2015. 169(1): p. 338-50
    [PMID:26149574]
  14. Ju C,Chang C
    Mechanistic Insights in Ethylene Perception and Signal Transduction.
    Plant Physiol., 2015. 169(1): p. 85-95
    [PMID:26246449]
  15. Qing D, et al.
    Quantitative and Functional Phosphoproteomic Analysis Reveals that Ethylene Regulates Water Transport via the C-Terminal Phosphorylation of Aquaporin PIP2;1 in Arabidopsis.
    Mol Plant, 2016. 9(1): p. 158-174
    [PMID:26476206]
  16. Zhang Y,Liu J,Chai J,Xing D
    Mitogen-activated protein kinase 6 mediates nuclear translocation of ORE3 to promote ORE9 gene expression in methyl jasmonate-induced leaf senescence.
    J. Exp. Bot., 2016. 67(1): p. 83-94
    [PMID:26507893]
  17. Li X,Pan Y,Chang B,Wang Y,Tang Z
    NO Promotes Seed Germination and Seedling Growth Under High Salt May Depend on EIN3 Protein in Arabidopsis.
    Front Plant Sci, 2015. 6: p. 1203
    [PMID:26779234]
  18. Yu Y, et al.
    Salt Stress and Ethylene Antagonistically Regulate Nucleocytoplasmic Partitioning of COP1 to Control Seed Germination.
    Plant Physiol., 2016. 170(4): p. 2340-50
    [PMID:26850275]
  19. Pelagio-Flores R,Ruiz-Herrera LF,López-Bucio J
    Serotonin modulates Arabidopsis root growth via changes in reactive oxygen species and jasmonic acid-ethylene signaling.
    Physiol Plant, 2016. 158(1): p. 92-105
    [PMID:26864878]
  20. Tao S, et al.
    The THO/TREX Complex Active in miRNA Biogenesis Negatively Regulates Root-Associated Acid Phosphatase Activity Induced by Phosphate Starvation.
    Plant Physiol., 2016. 171(4): p. 2841-53
    [PMID:27329222]
  21. Song L, et al.
    The Molecular Mechanism of Ethylene-Mediated Root Hair Development Induced by Phosphate Starvation.
    PLoS Genet., 2016. 12(7): p. e1006194
    [PMID:27427911]
  22. Jeong J, et al.
    Phytochrome and Ethylene Signaling Integration in Arabidopsis Occurs via the Transcriptional Regulation of Genes Co-targeted by PIFs and EIN3.
    Front Plant Sci, 2016. 7: p. 1055
    [PMID:27486469]
  23. Tsai KJ,Lin CY,Ting CY,Shih MC
    Ethylene-Regulated Glutamate Dehydrogenase Fine-Tunes Metabolism during Anoxia-Reoxygenation.
    Plant Physiol., 2016. 172(3): p. 1548-1562
    [PMID:27677986]
  24. Zhang F, et al.
    EIN2-dependent regulation of acetylation of histone H3K14 and non-canonical histone H3K23 in ethylene signalling.
    Nat Commun, 2016. 7: p. 13018
    [PMID:27694846]
  25. Liu G, et al.
    Local Transcriptional Control of YUCCA Regulates Auxin Promoted Root-Growth Inhibition in Response to Aluminium Stress in Arabidopsis.
    PLoS Genet., 2016. 12(10): p. e1006360
    [PMID:27716807]
  26. Shen X,Li Y,Pan Y,Zhong S
    Activation of HLS1 by Mechanical Stress via Ethylene-Stabilized EIN3 Is Crucial for Seedling Soil Emergence.
    Front Plant Sci, 2016. 7: p. 1571
    [PMID:27822221]
  27. Shi H, et al.
    The Red Light Receptor Phytochrome B Directly Enhances Substrate-E3 Ligase Interactions to Attenuate Ethylene Responses.
    Dev. Cell, 2016. 39(5): p. 597-610
    [PMID:27889482]
  28. Wawrzyńska A,Sirko A
    EIN3 interferes with the sulfur deficiency signaling in Arabidopsis thaliana through direct interaction with the SLIM1 transcription factor.
    Plant Sci., 2016. 253: p. 50-57
    [PMID:27968996]
  29. Zemlyanskaya EV,Levitsky VG,Oshchepkov DY,Grosse I,Mironova VV
    The Interplay of Chromatin Landscape and DNA-Binding Context Suggests Distinct Modes of EIN3 Regulation in Arabidopsis thaliana.
    Front Plant Sci, 2016. 7: p. 2044
    [PMID:28119721]
  30. He X,Jiang J,Wang CQ,Dehesh K
    ORA59 and EIN3 interaction couples jasmonate-ethylene synergistic action to antagonistic salicylic acid regulation of PDF expression.
    J Integr Plant Biol, 2017. 59(4): p. 275-287
    [PMID:28168848]
  31. Abozeid A, et al.
    Ethylene Improves Root System Development under Cadmium Stress by Modulating Superoxide Anion Concentration in Arabidopsis thaliana.
    Front Plant Sci, 2017. 8: p. 253
    [PMID:28286514]
  32. Quan R, et al.
    EIN3 and SOS2 synergistically modulate plant salt tolerance.
    Sci Rep, 2017. 7: p. 44637
    [PMID:28300216]
  33. Kim GD,Cho YH,Yoo SD
    Regulatory Functions of Cellular Energy Sensor SNF1-Related Kinase1 for Leaf Senescence Delay through ETHYLENE- INSENSITIVE3 Repression.
    Sci Rep, 2017. 7(1): p. 3193
    [PMID:28600557]
  34. Liu Y, et al.
    Light and Ethylene Coordinately Regulate the Phosphate Starvation Response through Transcriptional Regulation of PHOSPHATE STARVATION RESPONSE1.
    Plant Cell, 2017. 29(9): p. 2269-2284
    [PMID:28842534]
  35. Liu X,Li Y,Zhong S
    Interplay between Light and Plant Hormones in the Control of Arabidopsis Seedling Chlorophyll Biosynthesis.
    Front Plant Sci, 2017. 8: p. 1433
    [PMID:28861105]
  36. Zhang F, et al.
    EIN2 mediates direct regulation of histone acetylation in the ethylene response.
    Proc. Natl. Acad. Sci. U.S.A., 2017. 114(38): p. 10274-10279
    [PMID:28874528]
  37. Yan Z, et al.
    Type B Response Regulators Act As Central Integrators in Transcriptional Control of the Auxin Biosynthesis Enzyme TAA1.
    Plant Physiol., 2017. 175(3): p. 1438-1454
    [PMID:28931628]
  38. Liu X, et al.
    EIN3 and PIF3 Form an Interdependent Module That Represses Chloroplast Development in Buried Seedlings.
    Plant Cell, 2017. 29(12): p. 3051-3067
    [PMID:29114016]
  39. Feng Y, et al.
    Ethylene promotes root hair growth through coordinated EIN3/EIL1 and RHD6/RSL1 activity in Arabidopsis.
    Proc. Natl. Acad. Sci. U.S.A., 2017. 114(52): p. 13834-13839
    [PMID:29233944]
  40. Harkey AF, et al.
    Identification of Transcriptional and Receptor Networks That Control Root Responses to Ethylene.
    Plant Physiol., 2018. 176(3): p. 2095-2118
    [PMID:29259106]
  41. Zhang F,Wang L,Ko EE,Shao K,Qiao H
    Histone Deacetylases SRT1 and SRT2 Interact with ENAP1 to Mediate Ethylene-Induced Transcriptional Repression.
    Plant Cell, 2018. 30(1): p. 153-166
    [PMID:29298835]
  42. Lv B, et al.
    Brassinosteroids regulate root growth by controlling reactive oxygen species homeostasis and dual effect on ethylene synthesis in Arabidopsis.
    PLoS Genet., 2018. 14(1): p. e1007144
    [PMID:29324765]
  43. Dou L,He K,Higaki T,Wang X,Mao T
    Ethylene Signaling Modulates Cortical Microtubule Reassembly in Response to Salt Stress.
    Plant Physiol., 2018. 176(3): p. 2071-2081
    [PMID:29431630]
  44. Meng LS,Xu MK,Wan W,Wang JY
    Integration of Environmental and Developmental (or Metabolic) Control of Seed Mass by Sugar and Ethylene Metabolisms in Arabidopsis.
    J. Agric. Food Chem., 2018. 66(13): p. 3477-3488
    [PMID:29528636]
  45. Munné-Bosch S,Simancas B,Müller M
    Ethylene signaling cross-talk with other hormones in Arabidopsis thaliana exposed to contrasting phosphate availability: Differential effects in roots, leaves and fruits.
    J. Plant Physiol., 2018. 226: p. 114-122
    [PMID:29758376]