PlantTFDB
PlantRegMap/PlantTFDB v5.0
Plant Transcription Factor Database
Transcription Factor Information
Basic Information | Signature Domain | Sequence | 
Basic Information? help Back to Top
TF ID SapurV1A.0001s2050.2.p
Organism
Taxonomic ID
Taxonomic Lineage
cellular organisms; Eukaryota; Viridiplantae; Streptophyta; Streptophytina; Embryophyta; Tracheophyta; Euphyllophyta; Spermatophyta; Magnoliophyta; Mesangiospermae; eudicotyledons; Gunneridae; Pentapetalae; rosids; fabids; Malpighiales; Salicaceae; Saliceae; Salix
Family bZIP
Protein Properties Length: 403aa    MW: 43788.9 Da    PI: 8.5777
Description bZIP family protein
Gene Model
Gene Model ID Type Source Coding Sequence
SapurV1A.0001s2050.2.pgenomeJGIView CDS
Signature Domain? help Back to Top
Signature Domain
No. Domain Score E-value Start End HMM Start HMM End
1bZIP_1452.4e-14317369557
                             CHHHCHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHH CS
                  bZIP_1   5 krerrkqkNReAArrsRqRKkaeieeLeekvkeLeaeNkaLkkeleelkkeva 57 
                             +r+rr++kNRe+A rsR+RK+a++ eLe +  +L++eNk+L+  l el+ + +
  SapurV1A.0001s2050.2.p 317 RRQRRMIKNRESAARSRARKQAYTVELEAELNQLKEENKQLQHALAELERKRK 369
                             79******************************************999997765 PP

Protein Features ? help Back to Top
3D Structure
Database Entry ID E-value Start End InterPro ID Description
Gene3DG3DSA:1.20.5.1704.2E-15310369No hitNo description
SMARTSM003387.2E-13313374IPR004827Basic-leucine zipper domain
PROSITE profilePS5021711.794315367IPR004827Basic-leucine zipper domain
CDDcd147072.73E-22317371No hitNo description
PfamPF001709.1E-13317369IPR004827Basic-leucine zipper domain
SuperFamilySSF579596.06E-11317367No hitNo description
PROSITE patternPS000360320335IPR004827Basic-leucine zipper domain
Gene Ontology ? help Back to Top
GO Term GO Category GO Description
GO:0009409Biological Processresponse to cold
GO:0009414Biological Processresponse to water deprivation
GO:0009651Biological Processresponse to salt stress
GO:0009737Biological Processresponse to abscisic acid
GO:0009739Biological Processresponse to gibberellin
GO:0010152Biological Processpollen maturation
GO:0010187Biological Processnegative regulation of seed germination
GO:0010200Biological Processresponse to chitin
GO:0045893Biological Processpositive regulation of transcription, DNA-templated
GO:0048316Biological Processseed development
GO:0005634Cellular Componentnucleus
GO:0003700Molecular Functiontranscription factor activity, sequence-specific DNA binding
GO:0043565Molecular Functionsequence-specific DNA binding
Sequence ? help Back to Top
Protein Sequence    Length: 403 aa     Download sequence    Send to blast
MVVTESELNS QSEVESPLQP DQQQAKNHPL SSLCRQSSIY SLTLDEFQHT LCESGRNFGS  60
MNMDEFLANI WTAEENQATA TSANMSGNNQ IIINNNASQV LNDPYGHKGQ HSLPRQDSLS  120
LPAPLCRKTV DEVWSEIQKG QTGGAANSGG NVQNPKTAPH QATFGEMTLE DFLIKAGVVR  180
EQCTAPFQQQ QRGLYESNNN KPAVATGFVA RPVLGMAAGG GVMHQGFAAP IGESPGRSGG  240
YELPAASTAA VYGGRAGNGG GYGQGHGVGT VAPLSPMSSD GMVTNFDNSG NQFGMDMGGL  300
RGRERIIDGP VEKVAERRQR RMIKNRESAA RSRARKQAYT VELEAELNQL KEENKQLQHA  360
LAELERKRKQ QCFEEPRMKA HTKARKTKEK LRLMRRNSSC SL*
Nucleic Localization Signal ? help Back to Top
NLS
No. Start End Sequence
1252260GGRAGNGGG
Functional Description ? help Back to Top
Source Description
UniProtParticipates in ABA-regulated gene expression during seed development and subsequent vegetative stage by acting as the major mediator of ABA repression of growth. Binds to the embryo specification element and the ABA-responsive element (ABRE) of the Dc3 gene promoter and to the ABRE of the Em1 and Em6 genes promoters. Can also trans-activate its own promoter, suggesting that it is autoregulated. Plays a role in sugar-mediated senescence. {ECO:0000269|PubMed:11287670, ECO:0000269|PubMed:12000684, ECO:0000269|PubMed:12084834, ECO:0000269|PubMed:12177466, ECO:0000269|PubMed:12410810, ECO:0000269|PubMed:12434021, ECO:0000269|PubMed:15118859, ECO:0000269|PubMed:16247556, ECO:0000269|PubMed:16463099}.
Binding Motif ? help Back to Top
Motif ID Method Source Motif file
MP00294DAPTransfer from AT2G36270Download
Motif logo
Cis-element ? help Back to Top
SourceLink
PlantRegMapSapurV1A.0001s2050.2.p
Regulation -- Description ? help Back to Top
Source Description
UniProtINDUCTION: Up-regulated by drought, salt, abscisic acid (ABA) and glucose or 2-deoxy-glucose (2DG). Autoregulated. Positively regulated by the light-signaling component HY5. {ECO:0000269|PubMed:11287670, ECO:0000269|PubMed:12177466, ECO:0000269|PubMed:12376636, ECO:0000269|PubMed:12970489, ECO:0000269|PubMed:16463099, ECO:0000269|PubMed:18332440}.
Regulation -- PlantRegMap ? help Back to Top
Source Upstream Regulator Target Gene
PlantRegMapRetrieveRetrieve
Annotation -- Protein ? help Back to Top
Source Hit ID E-value Description
RefseqXP_024458459.10.0protein ABSCISIC ACID-INSENSITIVE 5
SwissprotQ9SJN01e-111ABI5_ARATH; Protein ABSCISIC ACID-INSENSITIVE 5
TrEMBLB9HBJ50.0B9HBJ5_POPTR; Uncharacterized protein
STRINGPOPTR_0006s08300.10.0(Populus trichocarpa)
Best hit in Arabidopsis thaliana ? help Back to Top
Hit ID E-value Description
AT2G36270.11e-112bZIP family protein
Publications ? help Back to Top
  1. Lin LL, et al.
    Identification of microRNA 395a in 24-epibrassinolide-regulated root growth of Arabidopsis thaliana using microRNA arrays.
    Int J Mol Sci, 2013. 14(7): p. 14270-86
    [PMID:23839095]
  2. Duarte GT, et al.
    Involvement of microRNA-related regulatory pathways in the glucose-mediated control of Arabidopsis early seedling development.
    J. Exp. Bot., 2013. 64(14): p. 4301-12
    [PMID:23997203]
  3. Kim DH,Xu ZY,Hwang I
    AtHSP17.8 overexpression in transgenic lettuce gives rise to dehydration and salt stress resistance phenotypes through modulation of ABA-mediated signaling.
    Plant Cell Rep., 2013. 32(12): p. 1953-63
    [PMID:24081610]
  4. Lei GJ, et al.
    Abscisic acid alleviates iron deficiency by promoting root iron reutilization and transport from root to shoot in Arabidopsis.
    Plant Cell Environ., 2014. 37(4): p. 852-63
    [PMID:24111973]
  5. Guo R, et al.
    Jasmonic acid and glucose synergistically modulate the accumulation of glucosinolates in Arabidopsis thaliana.
    J. Exp. Bot., 2013. 64(18): p. 5707-19
    [PMID:24151308]
  6. Bu Q, et al.
    Regulation of drought tolerance by the F-box protein MAX2 in Arabidopsis.
    Plant Physiol., 2014. 164(1): p. 424-39
    [PMID:24198318]
  7. Gao DY, et al.
    Functional analyses of an E3 ligase gene AIP2 from wheat in Arabidopsis revealed its roles in seed germination and pre-harvest sprouting.
    J Integr Plant Biol, 2014. 56(5): p. 480-91
    [PMID:24279988]
  8. Ding Y, et al.
    Four distinct types of dehydration stress memory genes in Arabidopsis thaliana.
    BMC Plant Biol., 2013. 13: p. 229
    [PMID:24377444]
  9. Qin Y,Tian Y,Han L,Yang X
    Constitutive expression of a salinity-induced wheat WRKY transcription factor enhances salinity and ionic stress tolerance in transgenic Arabidopsis thaliana.
    Biochem. Biophys. Res. Commun., 2013. 441(2): p. 476-81
    [PMID:24383079]
  10. González-Grandío E,Cubas P
    Identification of gene functions associated to active and dormant buds in Arabidopsis.
    Plant Signal Behav, 2014. 9(2): p. e27994
    [PMID:24518068]
  11. Seifert GJ,Xue H,Acet T
    The Arabidopsis thaliana FASCICLIN LIKE ARABINOGALACTAN PROTEIN 4 gene acts synergistically with abscisic acid signalling to control root growth.
    Ann. Bot., 2014. 114(6): p. 1125-33
    [PMID:24603604]
  12. Joseph MP, et al.
    The Arabidopsis ZINC FINGER PROTEIN3 Interferes with Abscisic Acid and Light Signaling in Seed Germination and Plant Development.
    Plant Physiol., 2014. 165(3): p. 1203-1220
    [PMID:24808098]
  13. Zhao H, et al.
    The Putative E3 Ubiquitin Ligase ECERIFERUM9 Regulates Abscisic Acid Biosynthesis and Response during Seed Germination and Postgermination Growth in Arabidopsis.
    Plant Physiol., 2014. 165(3): p. 1255-1268
    [PMID:24812105]
  14. Mei C, et al.
    Arabidopsis pentatricopeptide repeat protein SOAR1 plays a critical role in abscisic acid signalling.
    J. Exp. Bot., 2014. 65(18): p. 5317-30
    [PMID:25005137]
  15. Chen C, et al.
    ASCORBATE PEROXIDASE6 protects Arabidopsis desiccating and germinating seeds from stress and mediates cross talk between reactive oxygen species, abscisic acid, and auxin.
    Plant Physiol., 2014. 166(1): p. 370-83
    [PMID:25049361]
  16. Kim EY,Seo YS,Park KY,Kim SJ,Kim WT
    Overexpression of CaDSR6 increases tolerance to drought and salt stresses in transgenic Arabidopsis plants.
    Gene, 2014. 552(1): p. 146-54
    [PMID:25234727]
  17. Bello B, et al.
    Cloning of Gossypium hirsutum sucrose non-fermenting 1-related protein kinase 2 gene (GhSnRK2) and its overexpression in transgenic Arabidopsis escalates drought and low temperature tolerance.
    PLoS ONE, 2014. 9(11): p. e112269
    [PMID:25393623]
  18. Chen C,Twito S,Miller G
    New cross talk between ROS, ABA and auxin controlling seed maturation and germination unraveled in APX6 deficient Arabidopsis seeds.
    Plant Signal Behav, 2014. 9(12): p. e976489
    [PMID:25482750]
  19. Lu Y, et al.
    ABI1 regulates carbon/nitrogen-nutrient signal transduction independent of ABA biosynthesis and canonical ABA signalling pathways in Arabidopsis.
    J. Exp. Bot., 2015. 66(9): p. 2763-71
    [PMID:25795738]
  20. Lee HN,Lee KH,Kim CS
    Abscisic acid receptor PYRABACTIN RESISTANCE-LIKE 8, PYL8, is involved in glucose response and dark-induced leaf senescence in Arabidopsis.
    Biochem. Biophys. Res. Commun., 2015 Jul 17-24. 463(1-2): p. 24-8
    [PMID:25983319]
  21. Ibarra SE, et al.
    Molecular mechanisms underlying the entrance in secondary dormancy of Arabidopsis seeds.
    Plant Cell Environ., 2016. 39(1): p. 213-21
    [PMID:26177669]
  22. Fernando VC,Schroeder DF
    Genetic interactions between DET1 and intermediate genes in Arabidopsis ABA signalling.
    Plant Sci., 2015. 239: p. 166-79
    [PMID:26398801]
  23. Zhong C, et al.
    Gibberellic Acid-Stimulated Arabidopsis6 Serves as an Integrator of Gibberellin, Abscisic Acid, and Glucose Signaling during Seed Germination in Arabidopsis.
    Plant Physiol., 2015. 169(3): p. 2288-303
    [PMID:26400990]
  24. Sakuraba Y,Han SH,Lee SH,Hörtensteiner S,Paek NC
    Arabidopsis NAC016 promotes chlorophyll breakdown by directly upregulating STAYGREEN1 transcription.
    Plant Cell Rep., 2016. 35(1): p. 155-66
    [PMID:26441053]
  25. Zhang GZ, et al.
    Ectopic expression of UGT75D1, a glycosyltransferase preferring indole-3-butyric acid, modulates cotyledon development and stress tolerance in seed germination of Arabidopsis thaliana.
    Plant Mol. Biol., 2016. 90(1-2): p. 77-93
    [PMID:26496910]
  26. Zhao W, et al.
    The Arabidopsis CROWDED NUCLEI genes regulate seed germination by modulating degradation of ABI5 protein.
    J Integr Plant Biol, 2016. 58(7): p. 669-78
    [PMID:26564029]
  27. Wu J, et al.
    Gladiolus hybridus ABSCISIC ACID INSENSITIVE 5 (GhABI5) is an important transcription factor in ABA signaling that can enhance Gladiolus corm dormancy and Arabidopsis seed dormancy.
    Front Plant Sci, 2015. 6: p. 960
    [PMID:26579187]
  28. Sun Y,Xu W,Jia Y,Wang M,Xia G
    The wheat TaGBF1 gene is involved in the blue-light response and salt tolerance.
    Plant J., 2015. 84(6): p. 1219-30
    [PMID:26588879]
  29. Kim H, et al.
    ABA-HYPERSENSITIVE BTB/POZ PROTEIN 1 functions as a negative regulator in ABA-mediated inhibition of germination in Arabidopsis.
    Plant Mol. Biol., 2016. 90(3): p. 303-15
    [PMID:26667153]
  30. Dekkers BJ, et al.
    The Arabidopsis DELAY OF GERMINATION 1 gene affects ABSCISIC ACID INSENSITIVE 5 (ABI5) expression and genetically interacts with ABI3 during Arabidopsis seed development.
    Plant J., 2016. 85(4): p. 451-65
    [PMID:26729600]
  31. Qiao Z,Li CL,Zhang W
    WRKY1 regulates stomatal movement in drought-stressed Arabidopsis thaliana.
    Plant Mol. Biol., 2016. 91(1-2): p. 53-65
    [PMID:26820136]
  32. Huang Y,Feng CZ,Ye Q,Wu WH,Chen YF
    Arabidopsis WRKY6 Transcription Factor Acts as a Positive Regulator of Abscisic Acid Signaling during Seed Germination and Early Seedling Development.
    PLoS Genet., 2016. 12(2): p. e1005833
    [PMID:26829043]
  33. Yu Y, et al.
    Salt Stress and Ethylene Antagonistically Regulate Nucleocytoplasmic Partitioning of COP1 to Control Seed Germination.
    Plant Physiol., 2016. 170(4): p. 2340-50
    [PMID:26850275]
  34. Dave A,Vaistij FE,Gilday AD,Penfield SD,Graham IA
    Regulation of Arabidopsis thaliana seed dormancy and germination by 12-oxo-phytodienoic acid.
    J. Exp. Bot., 2016. 67(8): p. 2277-84
    [PMID:26873978]
  35. Mauri N, et al.
    GEM, a member of the GRAM domain family of proteins, is part of the ABA signaling pathway.
    Sci Rep, 2016. 6: p. 22660
    [PMID:26939893]
  36. Su M, et al.
    The LEA protein, ABR, is regulated by ABI5 and involved in dark-induced leaf senescence in Arabidopsis thaliana.
    Plant Sci., 2016. 247: p. 93-103
    [PMID:27095403]
  37. Yang X,Bai Y,Shang J,Xin R,Tang W
    The antagonistic regulation of abscisic acid-inhibited root growth by brassinosteroids is partially mediated via direct suppression of ABSCISIC ACID INSENSITIVE 5 expression by BRASSINAZOLE RESISTANT 1.
    Plant Cell Environ., 2016. 39(9): p. 1994-2003
    [PMID:27149247]
  38. Kim J, et al.
    PIF1-Interacting Transcription Factors and Their Binding Sequence Elements Determine the in Vivo Targeting Sites of PIF1.
    Plant Cell, 2016. 28(6): p. 1388-405
    [PMID:27303023]
  39. Liao CJ,Lai Z,Lee S,Yun DJ,Mengiste T
    Arabidopsis HOOKLESS1 Regulates Responses to Pathogens and Abscisic Acid through Interaction with MED18 and Acetylation of WRKY33 and ABI5 Chromatin.
    Plant Cell, 2016. 28(7): p. 1662-81
    [PMID:27317674]
  40. Carrió-Seguí À,Romero P,Sanz A,Peñarrubia L
    Interaction Between ABA Signaling and Copper Homeostasis in Arabidopsis thaliana.
    Plant Cell Physiol., 2016. 57(7): p. 1568-1582
    [PMID:27328696]
  41. Bai Y, et al.
    Genome-Wide Analysis of the bZIP Gene Family Identifies Two ABI5-Like bZIP Transcription Factors, BrABI5a and BrABI5b, as Positive Modulators of ABA Signalling in Chinese Cabbage.
    PLoS ONE, 2016. 11(7): p. e0158966
    [PMID:27414644]
  42. Yu D, et al.
    RPN1a negatively regulates ABA signaling in Arabidopsis.
    Plant Physiol. Biochem., 2016. 108: p. 279-285
    [PMID:27474935]
  43. Kazachkova Y, et al.
    Salt Induces Features of a Dormancy-Like State in Seeds of Eutrema (Thellungiella) salsugineum, a Halophytic Relative of Arabidopsis.
    Front Plant Sci, 2016. 7: p. 1071
    [PMID:27536302]
  44. Miao H, et al.
    Glucose enhances indolic glucosinolate biosynthesis without reducing primary sulfur assimilation.
    Sci Rep, 2016. 6: p. 31854
    [PMID:27549907]
  45. Liu X, et al.
    The NF-YC-RGL2 module integrates GA and ABA signalling to regulate seed germination in Arabidopsis.
    Nat Commun, 2016. 7: p. 12768
    [PMID:27624486]
  46. Zhu Z, et al.
    Overexpression of AtEDT1/HDG11 in Chinese Kale (Brassica oleracea var. alboglabra) Enhances Drought and Osmotic Stress Tolerance.
    Front Plant Sci, 2016. 7: p. 1285
    [PMID:27625663]
  47. Xie T, et al.
    Growing Slowly 1 locus encodes a PLS-type PPR protein required for RNA editing and plant development in Arabidopsis.
    J. Exp. Bot., 2016. 67(19): p. 5687-5698
    [PMID:27670716]
  48. Gu L, et al.
    An RRM-containing mei2-like MCT1 plays a negative role in the seed germination and seedling growth of Arabidopsis thaliana in the presence of ABA.
    Plant Physiol. Biochem., 2016. 109: p. 273-279
    [PMID:27771580]
  49. Chen YS, et al.
    Two MYB-related transcription factors play opposite roles in sugar signaling in Arabidopsis.
    Plant Mol. Biol., 2017. 93(3): p. 299-311
    [PMID:27866313]
  50. Lynch TJ,Erickson BJ,Miller DR,Finkelstein RR
    ABI5-binding proteins (AFPs) alter transcription of ABA-induced genes via a variety of interactions with chromatin modifiers.
    Plant Mol. Biol., 2017. 93(4-5): p. 403-418
    [PMID:27942958]
  51. Keren I,Citovsky V
    The histone deubiquitinase OTLD1 targets euchromatin to regulate plant growth.
    Sci Signal, 2016. 9(459): p. ra125
    [PMID:27999174]
  52. Xu J, et al.
    A Novel RNA-Binding Protein Involves ABA Signaling by Post-transcriptionally Repressing ABI2.
    Front Plant Sci, 2017. 8: p. 24
    [PMID:28174577]
  53. Bi C, et al.
    Arabidopsis ABI5 plays a role in regulating ROS homeostasis by activating CATALASE 1 transcription in seed germination.
    Plant Mol. Biol., 2017. 94(1-2): p. 197-213
    [PMID:28391398]
  54. Yu LH, et al.
    Arabidopsis MADS-Box Transcription Factor AGL21 Acts as Environmental Surveillance of Seed Germination by Regulating ABI5 Expression.
    Mol Plant, 2017. 10(6): p. 834-845
    [PMID:28438576]
  55. Xiao X,Cheng X,Yin K,Li H,Qiu JL
    Abscisic acid negatively regulates post-penetration resistance of Arabidopsis to the biotrophic powdery mildew fungus.
    Sci China Life Sci, 2017. 60(8): p. 891-901
    [PMID:28702742]
  56. Bi C,Ma Y,Wang XF,Zhang DP
    Overexpression of the transcription factor NF-YC9 confers abscisic acid hypersensitivity in Arabidopsis.
    Plant Mol. Biol., 2017. 95(4-5): p. 425-439
    [PMID:28924726]
  57. Ueda M, et al.
    The Distinct Roles of Class I and II RPD3-Like Histone Deacetylases in Salinity Stress Response.
    Plant Physiol., 2017. 175(4): p. 1760-1773
    [PMID:29018096]
  58. Ullah A,Sun H,Yang X,Zhang X
    A novel cotton WRKY gene, GhWRKY6-like, improves salt tolerance by activating the ABA signaling pathway and scavenging of reactive oxygen species.
    Physiol Plant, 2018. 162(4): p. 439-454
    [PMID:29027659]
  59. Huang Y, et al.
    Abscisic Acid Modulates Seed Germination via ABA INSENSITIVE5-Mediated PHOSPHATE1.
    Plant Physiol., 2017. 175(4): p. 1661-1668
    [PMID:29089393]
  60. Shi XP, et al.
    Overexpression of SDH confers tolerance to salt and osmotic stress, but decreases ABA sensitivity in Arabidopsis.
    Plant Biol (Stuttg), 2018. 20(2): p. 327-337
    [PMID:29125673]
  61. Zhu T, et al.
    The Asparagine-Rich Protein NRP Facilitates the Degradation of the PP6-type Phosphatase FyPP3 to Promote ABA Response in Arabidopsis.
    Mol Plant, 2018. 11(2): p. 257-268
    [PMID:29175650]
  62. Chang G, et al.
    AFP2 as the novel regulator breaks high-temperature-induced seeds secondary dormancy through ABI5 and SOM in Arabidopsis thaliana.
    Biochem. Biophys. Res. Commun., 2018. 501(1): p. 232-238
    [PMID:29723526]