|
Plant Transcription
Factor Database
|
Transcription Factor Information
Basic
Information? help
Back to Top |
TF ID |
Rsa1.0_18284.1_g00001.1 |
Organism |
|
Taxonomic ID |
|
Taxonomic Lineage |
cellular organisms; Eukaryota; Viridiplantae; Streptophyta; Streptophytina; Embryophyta; Tracheophyta; Euphyllophyta; Spermatophyta; Magnoliophyta; Mesangiospermae; eudicotyledons; Gunneridae; Pentapetalae; rosids; malvids; Brassicales; Brassicaceae; Brassiceae; Raphanus
|
Family |
M-type_MADS |
Protein Properties |
Length: 61aa MW: 6913.13 Da PI: 11.5883 |
Description |
M-type_MADS family protein |
Gene Model |
Gene Model ID |
Type |
Source |
Coding Sequence |
Rsa1.0_18284.1_g00001.1 | genome | RGD | View CDS |
|
Signature Domain? help Back to Top |
|
No. |
Domain |
Score |
E-value |
Start |
End |
HMM Start |
HMM End |
1 | SRF-TF | 94.7 | 4.3e-30 | 10 | 58 | 2 | 50 |
---SHHHHHHHHHHHHHHHHHHHHHHHHHHT-EEEEEEE-TTSEEEEEE CS
SRF-TF 2 rienksnrqvtfskRrngilKKAeELSvLCdaevaviifsstgklyeys 50
rienk++rqvtfskRr+g+ KKA+E+SvLCda+va+i+fs++gkl+eys
Rsa1.0_18284.1_g00001.1 10 RIENKIRRQVTFSKRRTGLVKKAQEISVLCDADVALIVFSTKGKLFEYS 58
8***********************************************8 PP
|
Functional Description ? help
Back to Top |
Source |
Description |
UniProt | Probable transcription factor that promotes early floral meristem identity in synergy with APETALA1 and CAULIFLOWER. Is required subsequently for the transition of an inflorescence meristem into a floral meristem (PubMed:28586421). Seems to be partially redundant to the function of APETALA1 and CAULIFLOWER in the up-regulation of LEAFY. Is also required for normal pattern of cell division, expansion and differentiation during morphogenesis of the silique (PubMed:28586421). Probably not required for fruit elongation but instead is required to prevent ectopic activity of IND. Represses SAUR10 expression in stems and inflorescence branches (PubMed:28586421). {ECO:0000269|PubMed:10648231, ECO:0000269|PubMed:15035986, ECO:0000269|PubMed:28586421, ECO:0000269|PubMed:9502732}. |
Regulation -- Description ? help
Back to Top |
Source |
Description |
UniProt | INDUCTION: Dramatically up-regulated upon the transition from vegetative to reproductive development. |
Annotation --
Nucleotide ? help
Back to Top |
Source |
Hit ID |
E-value |
Description |
GenBank | AP001314 | 1e-72 | AP001314.1 Arabidopsis thaliana genomic DNA, chromosome 3, BAC clone:T6J22. |
GenBank | AY141238 | 1e-72 | AY141238.1 Arabidopsis thaliana MADS-box protein AGL79 mRNA, complete cds. |
GenBank | CP002686 | 1e-72 | CP002686.1 Arabidopsis thaliana chromosome 3, complete sequence. |
Publications
? help Back to Top |
- Yu Y, et al.
MlWRKY12, a novel Miscanthus transcription factor, participates in pith secondary cell wall formation and promotes flowering. Plant Sci., 2013. 212: p. 1-9 [PMID:24094048] - Pabón-Mora N,Wong GK,Ambrose BA
Evolution of fruit development genes in flowering plants. Front Plant Sci, 2014. 5: p. 300 [PMID:25018763] - Jaradat MR,Ruegger M,Bowling A,Butler H,Cutler AJ
A comprehensive transcriptome analysis of silique development and dehiscence in Arabidopsis and Brassica integrating genotypic, interspecies and developmental comparisons. GM Crops Food, 2014. 5(4): p. 302-20 [PMID:25523176] - Wang C,Dehesh K
From retrograde signaling to flowering time. Plant Signal Behav, 2015. 10(6): p. e1022012 [PMID:26098376] - Borghi M,Xie DY
Tissue-specific production of limonene in Camelina sativa with the Arabidopsis promoters of genes BANYULS and FRUITFULL. Planta, 2016. 243(2): p. 549-61 [PMID:26530959] - Yu Y, et al.
WRKY71 accelerates flowering via the direct activation of FLOWERING LOCUS T and LEAFY in Arabidopsis thaliana. Plant J., 2016. 85(1): p. 96-106 [PMID:26643131] - McCarthy EW,Mohamed A,Litt A
Functional Divergence of APETALA1 and FRUITFULL is due to Changes in both Regulation and Coding Sequence. Front Plant Sci, 2015. 6: p. 1076 [PMID:26697035] - Davin N, et al.
Functional network analysis of genes differentially expressed during xylogenesis in soc1ful woody Arabidopsis plants. Plant J., 2016. 86(5): p. 376-90 [PMID:26952251] - Hyun Y, et al.
Multi-layered Regulation of SPL15 and Cooperation with SOC1 Integrate Endogenous Flowering Pathways at the Arabidopsis Shoot Meristem. Dev. Cell, 2016. 37(3): p. 254-66 [PMID:27134142] - José Ripoll J, et al.
microRNA regulation of fruit growth. Nat Plants, 2015. 1(4): p. 15036 [PMID:27247036] - Li W,Wang H,Yu D
Arabidopsis WRKY Transcription Factors WRKY12 and WRKY13 Oppositely Regulate Flowering under Short-Day Conditions. Mol Plant, 2016. 9(11): p. 1492-1503 [PMID:27592586] - Eldridge T, et al.
Fruit shape diversity in the Brassicaceae is generated by varying patterns of anisotropy. Development, 2016. 143(18): p. 3394-406 [PMID:27624834] - Bemer M, et al.
FRUITFULL controls SAUR10 expression and regulates Arabidopsis growth and architecture. J. Exp. Bot., 2017. 68(13): p. 3391-3403 [PMID:28586421] - Sehra B,Franks RG
Redundant CArG Box Cis-motif Activity Mediates SHATTERPROOF2 Transcriptional Regulation during Arabidopsis thaliana Gynoecium Development. Front Plant Sci, 2017. 8: p. 1712 [PMID:29085379] - Balanzà V, et al.
Genetic control of meristem arrest and life span in Arabidopsis by a FRUITFULL-APETALA2 pathway. Nat Commun, 2018. 9(1): p. 565 [PMID:29422669]
|