 |
Plant Transcription
Factor Database
|
Transcription Factor Information
Basic
Information? help
Back to Top |
TF ID |
Prupe.6G231700.1.p |
Common Name | PRUPE_ppa003783mg |
Organism |
|
Taxonomic ID |
|
Taxonomic Lineage |
cellular organisms; Eukaryota; Viridiplantae; Streptophyta; Streptophytina; Embryophyta; Tracheophyta; Euphyllophyta; Spermatophyta; Magnoliophyta; Mesangiospermae; eudicotyledons; Gunneridae; Pentapetalae; rosids; fabids; Rosales; Rosaceae; Maloideae; Amygdaleae; Prunus
|
Family |
AP2 |
Protein Properties |
Length: 550aa MW: 60645.5 Da PI: 6.8636 |
Description |
AP2 family protein |
Gene Model |
Gene Model ID |
Type |
Source |
Coding Sequence |
Prupe.6G231700.1.p | genome | JGI | View CDS |
|
Signature Domain? help Back to Top |
 |
No. |
Domain |
Score |
E-value |
Start |
End |
HMM Start |
HMM End |
1 | AP2 | 53.2 | 7.2e-17 | 179 | 228 | 1 | 55 |
AP2 1 sgykGVrwdkkrgrWvAeIrdpsengkr.krfslgkfgtaeeAakaaiaarkkleg 55
s+y+GV++++++grW+++I+d + k+++lg f+ta Aa+a+++a+ k++g
Prupe.6G231700.1.p 179 SQYRGVTFYRRTGRWESHIWD------CgKQVYLGGFDTAHAAARAYDRAAIKFRG 228
78*******************......55************************997 PP
|
2 | AP2 | 41.8 | 2.7e-13 | 271 | 321 | 1 | 55 |
AP2 1 sgykGVrwdkkrgrWvAeIrdpsengkrkrfslgkfgtaeeAakaaiaarkkleg 55
s+y+GV+ +k grW+A+ + +k+++lg f+t+ +Aa+a+++a+ k +g
Prupe.6G231700.1.p 271 SKYRGVTLHK-CGRWEARMGQF--L-GKKYVYLGLFDTEIDAARAYDKAAIKCNG 321
89********.7******5553..2.26**********99**********99776 PP
|
Gene Ontology ? help Back to Top |
GO Term |
GO Category |
GO Description |
GO:0006355 | Biological Process | regulation of transcription, DNA-templated |
GO:0010073 | Biological Process | meristem maintenance |
GO:0010093 | Biological Process | specification of floral organ identity |
GO:0048316 | Biological Process | seed development |
GO:0048481 | Biological Process | plant ovule development |
GO:0005634 | Cellular Component | nucleus |
GO:0003677 | Molecular Function | DNA binding |
GO:0003700 | Molecular Function | transcription factor activity, sequence-specific DNA binding |
Sequence ? help Back to Top |
Protein Sequence Length: 550 aa
Download sequence Send
to blast |
MWDLNDSPDQ RPRGDESERC SSQKTSADGD EEKGKRVGSV SNSSSSAVVV EDDGSDEEED 60 DDGPAKLAKT RGGGGGKIFG FSMAHEESMD GDPPVTVTVT RQFFPVELDS TTEIMGPTRG 120 AVPPAAPPSS SSSSFPRAHW VGVNFGQSDS GSPGKPPAAV EAAHQPMKKS RRGPRSRSSQ 180 YRGVTFYRRT GRWESHIWDC GKQVYLGGFD TAHAAARAYD RAAIKFRGVE ADINFSIEDY 240 EEDLKQMTNL TKEEFVHVLR RQSTGFPRGS SKYRGVTLHK CGRWEARMGQ FLGKKYVYLG 300 LFDTEIDAAR AYDKAAIKCN GKEAVTNFDP SIYENELNPS SESSGVNAAE HNLDLSLGSS 360 NSKKNNQAFG SSDHGQNAAM EVQHSASMQL EADWRNQGFR QKLNLQRDRS REETDAHRRD 420 GYLETEAMQL LLRTNLHSPA PNEMHKYGQF SRRPTVGDTQ MPHTFPPHFN SPNNYHHVQF 480 PSSSEGGRIG SDLSLSMSDH PHQQQWQSGT PTSDIFATAA ASSGFPPQIR PSAQNCWLQK 540 SGFHSLTRR*
|
Expression --
Description ? help
Back to Top |
Source |
Description |
Uniprot | DEVELOPMENTAL STAGE: It is detectable at low levels throughout the shoot apex and at enhanced levels in the inflorescence meristem, young floral buds and throughout the early stages of flower development and organogenesis. During floral organ differentiation it becomes spatially restricted to specific organ, tissue and cell types within the flower. |
Uniprot | TISSUE SPECIFICITY: Sepals, petals, stamens, carpels, developing ovules, inflorescence stem, leaf and stem. |
Functional Description ? help
Back to Top |
Source |
Description |
UniProt | Probable transcriptional activator that promotes early floral meristem identity (PubMed:7919989). Is required subsequently for the transition of an inflorescence meristem into a floral meristem (PubMed:1675158). Plays a central role in the specification of floral identity, particularly for the normal development of sepals and petals in the wild-type flower, by spatially controlling the expression domains of multiple floral organ identity genes (PubMed:1675158, PubMed:23034631). Acts as A class cadastral protein by repressing the C class floral homeotic gene AGAMOUS in association with other repressors like LEUNIG and SEUSS (PubMed:1675158). Directly represses AGAMOUS by recruiting the transcriptional corepressor TOPLESS and the histone deacetylase HDA19 (PubMed:23034631). It is also required during seed development (PubMed:1675158). {ECO:0000269|PubMed:1675158, ECO:0000269|PubMed:23034631, ECO:0000269|PubMed:7919989}. |
Regulation -- Description ? help
Back to Top |
Source |
Description |
UniProt | INDUCTION: Negatively regulated by the C class floral homeotic protein AGAMOUS in stamens and carpels. MicroRNA 172 (miRNA172) negatively regulates APETALA2 at the translational level and may modulate its expression pattern. Seems not to be influenced by jasmonate and Alternaria brassicicola. {ECO:0000269|PubMed:12805630, ECO:0000269|PubMed:12893888, ECO:0000269|PubMed:14555699}. |
Annotation --
Nucleotide ? help
Back to Top |
Source |
Hit ID |
E-value |
Description |
GenBank | JF683605 | 0.0 | JF683605.1 Prunus persica APETALA2 protein (APETALA2) mRNA, complete cds. |
Publications
? help Back to Top |
- Duarte JM, et al.
Expression pattern shifts following duplication indicative of subfunctionalization and neofunctionalization in regulatory genes of Arabidopsis. Mol. Biol. Evol., 2006. 23(2): p. 469-78 [PMID:16280546] - Thamilarasan SK,Park JI,Jung HJ,Nou IS
Genome-wide analysis of the distribution of AP2/ERF transcription factors reveals duplication and CBFs genes elucidate their potential function in Brassica oleracea. BMC Genomics, 2014. 15: p. 422 [PMID:24888752] - Zhang GB,Yi HY,Gong JM
The Arabidopsis ethylene/jasmonic acid-NRT signaling module coordinates nitrate reallocation and the trade-off between growth and environmental adaptation. Plant Cell, 2014. 26(10): p. 3984-98 [PMID:25326291] - Ranocha P,Francoz E,Burlat V,Dunand C
Expression of PRX36, PMEI6 and SBT1.7 is controlled by complex transcription factor regulatory networks for proper seed coat mucilage extrusion. Plant Signal Behav, 2014. 9(11): p. e977734 [PMID:25531128] - Djemal R,Khoudi H
Isolation and molecular characterization of a novel WIN1/SHN1 ethylene-responsive transcription factor TdSHN1 from durum wheat (Triticum turgidum. L. subsp. durum). Protoplasma, 2015. 252(6): p. 1461-73 [PMID:25687296] - Kazan K
Diverse roles of jasmonates and ethylene in abiotic stress tolerance. Trends Plant Sci., 2015. 20(4): p. 219-29 [PMID:25731753] - Prunet N, et al.
SQUINT promotes stem cell homeostasis and floral meristem termination in Arabidopsis through APETALA2 and CLAVATA signalling. J. Exp. Bot., 2015. 66(21): p. 6905-16 [PMID:26269626] - Xie W, et al.
Exploring potential new floral organ morphogenesis genes of Arabidopsis thaliana using systems biology approach. Front Plant Sci, 2015. 6: p. 829 [PMID:26528302] - Zumajo-Cardona C,Pabón-Mora N
Evolution of the APETALA2 Gene Lineage in Seed Plants. Mol. Biol. Evol., 2016. 33(7): p. 1818-32 [PMID:27030733] - Zhao Y, et al.
An alternative strategy for targeted gene replacement in plants using a dual-sgRNA/Cas9 design. Sci Rep, 2016. 6: p. 23890 [PMID:27033976] - Gao R,Liu P,Irwanto N,Loh R,Wong SM
Upregulation of LINC-AP2 is negatively correlated with AP2 gene expression with Turnip crinkle virus infection in Arabidopsis thaliana. Plant Cell Rep., 2016. 35(11): p. 2257-2267 [PMID:27473526] - Huang Z, et al.
APETALA2 antagonizes the transcriptional activity of AGAMOUS in regulating floral stem cells in Arabidopsis thaliana. New Phytol., 2017. 215(3): p. 1197-1209 [PMID:27604611] - Dory M, et al.
Kinase-Associated Phosphoisoform Assay: a novel candidate-based method to detect specific kinase-substrate phosphorylation interactions in vivo. BMC Plant Biol., 2016. 16(1): p. 204 [PMID:27655033] - Wang P, et al.
Expansion and Functional Divergence of AP2 Group Genes in Spermatophytes Determined by Molecular Evolution and Arabidopsis Mutant Analysis. Front Plant Sci, 2016. 7: p. 1383 [PMID:27703459] - Sharma P, et al.
Promoter Trapping and Deletion Analysis Show Arabidopsis thaliana APETALA2 Gene Promoter Is Bidirectional and Functions as a Pollen- and Ovule-Specific Promoter in the Reverse Orientation. Appl. Biochem. Biotechnol., 2017. 182(4): p. 1591-1604 [PMID:28130768] - Kihira M, et al.
Arabidopsis thaliana FLO2 is Involved in Efficiency of Photoassimilate Translocation, Which is Associated with Leaf Growth and Aging, Yield of Seeds and Seed Quality. Plant Cell Physiol., 2017. 58(3): p. 440-450 [PMID:28158741] - Balanzà V, et al.
Genetic control of meristem arrest and life span in Arabidopsis by a FRUITFULL-APETALA2 pathway. Nat Commun, 2018. 9(1): p. 565 [PMID:29422669] - Dotto M,Gómez MS,Soto MS,Casati P
UV-B radiation delays flowering time through changes in the PRC2 complex activity and miR156 levels in Arabidopsis thaliana. Plant Cell Environ., 2018. 41(6): p. 1394-1406 [PMID:29447428] - Song C,Lee J,Kim T,Hong JC,Lim CO
VOZ1, a transcriptional repressor of DREB2C, mediates heat stress responses in Arabidopsis. Planta, 2018. 247(6): p. 1439-1448 [PMID:29536220]
|