PlantTFDB
PlantRegMap/PlantTFDB v5.0
Plant Transcription Factor Database
Transcription Factor Information
Basic Information | Signature Domain | Sequence | 
Basic Information? help Back to Top
TF ID Neem_9604_f_1
Organism
Taxonomic ID
Taxonomic Lineage
cellular organisms; Eukaryota; Viridiplantae; Streptophyta; Streptophytina; Embryophyta; Tracheophyta; Euphyllophyta; Spermatophyta; Magnoliophyta; Mesangiospermae; eudicotyledons; Gunneridae; Pentapetalae; rosids; malvids; Sapindales; Meliaceae; Azadirachta
Family ERF
Protein Properties Length: 326aa    MW: 35168.6 Da    PI: 7.9577
Description ERF family protein
Gene Model
Gene Model ID Type Source Coding Sequence
Neem_9604_f_1genomeNGDView Nucleic Acid
Signature Domain? help Back to Top
Signature Domain
No. Domain Score E-value Start End HMM Start HMM End
1AP257.24.3e-1865114255
            AP2   2 gykGVrwdkkrgrWvAeIrdpsengkrkrfslgkfgtaeeAakaaiaarkkleg 55 
                    +y+GVr+++ +g+WvAeIr+p++   r+r +lg+f tae+Aa+a+++a+  l+g
  Neem_9604_f_1  65 RYRGVRQRS-WGKWVAEIREPRK---RTRKWLGTFATAEDAARAYDRAAIILYG 114
                    59****999.**********954...5**********************98876 PP

Protein Features ? help Back to Top
3D Structure
Database Entry ID E-value Start End InterPro ID Description
SMARTSM003809.3E-3965128IPR001471AP2/ERF domain
CDDcd000184.00E-2065122No hitNo description
SuperFamilySSF541718.5E-2165123IPR016177DNA-binding domain
PROSITE profilePS5103222.27365122IPR001471AP2/ERF domain
Gene3DG3DSA:3.30.730.101.4E-2965122IPR001471AP2/ERF domain
PfamPF008475.7E-1265110IPR001471AP2/ERF domain
PRINTSPR003672.5E-106677IPR001471AP2/ERF domain
PRINTSPR003672.5E-1088104IPR001471AP2/ERF domain
Gene Ontology ? help Back to Top
GO Term GO Category GO Description
GO:0006970Biological Processresponse to osmotic stress
GO:0009414Biological Processresponse to water deprivation
GO:0009738Biological Processabscisic acid-activated signaling pathway
GO:0009744Biological Processresponse to sucrose
GO:0009749Biological Processresponse to glucose
GO:0010119Biological Processregulation of stomatal movement
GO:0010353Biological Processresponse to trehalose
GO:0010449Biological Processroot meristem growth
GO:0010896Biological Processregulation of triglyceride catabolic process
GO:0031930Biological Processmitochondria-nucleus signaling pathway
GO:0032880Biological Processregulation of protein localization
GO:0045893Biological Processpositive regulation of transcription, DNA-templated
GO:0048316Biological Processseed development
GO:0048527Biological Processlateral root development
GO:0005634Cellular Componentnucleus
GO:0003700Molecular Functiontranscription factor activity, sequence-specific DNA binding
GO:0043565Molecular Functionsequence-specific DNA binding
GO:0044212Molecular Functiontranscription regulatory region DNA binding
Sequence ? help Back to Top
Protein Sequence    Length: 326 aa     Download sequence    Send to blast
MDDSGLKTPH LTQEITTVAT TNDTKSTDST TTTTSDNNCT NSSNSSSSNG KKCKGKGGPD  60
NGKFRYRGVR QRSWGKWVAE IREPRKRTRK WLGTFATAED AARAYDRAAI ILYGSRAQLN  120
LQPSSSSSSQ SSSSRGGSSS SSSQQTLRPL LPRPSGFGFT VSGSAPLINP TSMTTGLASS  180
SGFMPYGTYP NVVSVSSSVL FPNIVQNQQQ MVQQYEIQHH SQLPDGMNNV NSIDSVPTTS  240
SYANPNHHQQ YDQNCLYRDI NSIVGSMGST LSLSTQPVLA PPAPDPTISV GPGSPSVWPL  300
ISDEEYSSSC LWDYADPFLF DPFFST
3D Structure ? help Back to Top
Structure
PDB ID Evalue Query Start Query End Hit Start Hit End Description
1gcc_A3e-1966121359ETHYLENE RESPONSIVE ELEMENT BINDING FACTOR 1
Search in ModeBase
Functional Description ? help Back to Top
Source Description
UniProtTranscription regulator that probably binds to the GCC-box pathogenesis-related promoter element. Binds also to the S-box (5'-CACTTCCA-3') photosynthesis-associated nuclear genes-related (PhANGs-related) promoter element, and thus acts as a transcription inhibitor. Involved in the regulation of gene expression by stress factors and by components of stress signal transduction pathways. May have a function in the deetiolation process. Confers sensitivity to abscisic acid (ABA), and regulates the ABA signaling pathway during seed germination, upon nitrate-mediated lateral root inhibition, in hexokinase-dependent sugar responses (including feed-back regulation of photosynthesis and mobilization of storage lipid during germination), and in response to osmotic stress mediated by NaCl, KCl or mannitol. Plays a role in sucrose sensing or signaling, especially at low fluence far red light. Also involved in plant response to glucose treatment, especially at low concentration and in young seedlings. Required for the trehalose-mediated root inhibition and starch accumulation in cotyledons, probably by inhibiting starch breakdown. However, seems to not be involved in sugar-mediated senescence. Required for the ABA-dependent beta-amino-butyric acid (BABA) signaling pathway. BABA primes ABA synthesis and promotes resistance to drought and salt, and leads to a prime callose accumulation that confers resistance against necrotrophic pathogens such as A.brassicicola and P.cucumerina. Seems to be involved in resistance to S.sclerotiorum probably by regulating the ABA-mediated stomatal closure apparently by antagonistic interaction with oxalate. Negative regulator of low water potential-induced Pro accumulation whose effect is decreased by high levels of sugar. {ECO:0000269|PubMed:10629000, ECO:0000269|PubMed:10950871, ECO:0000269|PubMed:10972884, ECO:0000269|PubMed:10972885, ECO:0000269|PubMed:11115891, ECO:0000269|PubMed:11172073, ECO:0000269|PubMed:11439129, ECO:0000269|PubMed:11851911, ECO:0000269|PubMed:11996676, ECO:0000269|PubMed:12136027, ECO:0000269|PubMed:12529517, ECO:0000269|PubMed:12857824, ECO:0000269|PubMed:15053765, ECO:0000269|PubMed:15118859, ECO:0000269|PubMed:15502012, ECO:0000269|PubMed:16098105, ECO:0000269|PubMed:16113213, ECO:0000269|PubMed:16339784, ECO:0000269|PubMed:16844907, ECO:0000269|PubMed:17031512, ECO:0000269|PubMed:9144963, ECO:0000269|PubMed:9418043, ECO:0000269|PubMed:9634591}.
Binding Motif ? help Back to Top
Motif ID Method Source Motif file
MP00674SELEXTransfer from GRMZM2G093595Download
Motif logo
Regulation -- Description ? help Back to Top
Source Description
UniProtINDUCTION: Only in young seedlings by ABA, imbibition, glucose, 2-deoxy-glucose (2DG), trehalose, and osmotic stress. {ECO:0000269|PubMed:12857824, ECO:0000269|PubMed:12970489, ECO:0000269|PubMed:17031512}.
Annotation -- Protein ? help Back to Top
Source Hit ID E-value Description
RefseqXP_006435774.11e-116ethylene-responsive transcription factor ABI4
RefseqXP_006486528.11e-116ethylene-responsive transcription factor ABI4
SwissprotA0MES87e-53ABI4_ARATH; Ethylene-responsive transcription factor ABI4
TrEMBLV4V9W41e-115V4V9W4_9ROSI; Uncharacterized protein
STRINGXP_006486528.11e-115(Citrus sinensis)
STRINGXP_006435774.11e-115(Citrus clementina)
Orthologous Group ? help Back to Top
LineageOrthologous Group IDTaxa NumberGene Number
MalvidsOGEM105522433
Best hit in Arabidopsis thaliana ? help Back to Top
Hit ID E-value Description
AT2G40220.19e-38ERF family protein
Publications ? help Back to Top
  1. Lin LL, et al.
    Identification of microRNA 395a in 24-epibrassinolide-regulated root growth of Arabidopsis thaliana using microRNA arrays.
    Int J Mol Sci, 2013. 14(7): p. 14270-86
    [PMID:23839095]
  2. Easlon HM, et al.
    The physiological basis for genetic variation in water use efficiency and carbon isotope composition in Arabidopsis thaliana.
    Photosyn. Res., 2014. 119(1-2): p. 119-29
    [PMID:23893317]
  3. Duarte GT, et al.
    Involvement of microRNA-related regulatory pathways in the glucose-mediated control of Arabidopsis early seedling development.
    J. Exp. Bot., 2013. 64(14): p. 4301-12
    [PMID:23997203]
  4. Seifert GJ,Xue H,Acet T
    The Arabidopsis thaliana FASCICLIN LIKE ARABINOGALACTAN PROTEIN 4 gene acts synergistically with abscisic acid signalling to control root growth.
    Ann. Bot., 2014. 114(6): p. 1125-33
    [PMID:24603604]
  5. Joseph MP, et al.
    The Arabidopsis ZINC FINGER PROTEIN3 Interferes with Abscisic Acid and Light Signaling in Seed Germination and Plant Development.
    Plant Physiol., 2014. 165(3): p. 1203-1220
    [PMID:24808098]
  6. Cruz TM,Carvalho RF,Richardson DN,Duque P
    Abscisic acid (ABA) regulation of Arabidopsis SR protein gene expression.
    Int J Mol Sci, 2014. 15(10): p. 17541-64
    [PMID:25268622]
  7. Chen C,Twito S,Miller G
    New cross talk between ROS, ABA and auxin controlling seed maturation and germination unraveled in APX6 deficient Arabidopsis seeds.
    Plant Signal Behav, 2014. 9(12): p. e976489
    [PMID:25482750]
  8. Kong D, et al.
    Arabidopsis glutamate receptor homolog3.5 modulates cytosolic Ca2+ level to counteract effect of abscisic acid in seed germination.
    Plant Physiol., 2015. 167(4): p. 1630-42
    [PMID:25681329]
  9. Lu Y, et al.
    ABI1 regulates carbon/nitrogen-nutrient signal transduction independent of ABA biosynthesis and canonical ABA signalling pathways in Arabidopsis.
    J. Exp. Bot., 2015. 66(9): p. 2763-71
    [PMID:25795738]
  10. Mukhopadhyay P,Tyagi AK
    OsTCP19 influences developmental and abiotic stress signaling by modulating ABI4-mediated pathways.
    Sci Rep, 2015. 5: p. 9998
    [PMID:25925167]
  11. Yao X,Li J,Liu J,Liu K
    An Arabidopsis mitochondria-localized RRL protein mediates abscisic acid signal transduction through mitochondrial retrograde regulation involving ABI4.
    J. Exp. Bot., 2015. 66(20): p. 6431-45
    [PMID:26163700]
  12. Zhang ZW,Zhang GC,Zhu F,Zhang DW,Yuan S
    The roles of tetrapyrroles in plastid retrograde signaling and tolerance to environmental stresses.
    Planta, 2015. 242(6): p. 1263-76
    [PMID:26297452]
  13. Kang J, et al.
    Abscisic acid transporters cooperate to control seed germination.
    Nat Commun, 2015. 6: p. 8113
    [PMID:26334616]
  14. Dong Z, et al.
    Abscisic Acid Antagonizes Ethylene Production through the ABI4-Mediated Transcriptional Repression of ACS4 and ACS8 in Arabidopsis.
    Mol Plant, 2016. 9(1): p. 126-135
    [PMID:26410794]
  15. Garcia L, et al.
    The cytochrome c oxidase biogenesis factor AtCOX17 modulates stress responses in Arabidopsis.
    Plant Cell Environ., 2016. 39(3): p. 628-44
    [PMID:26436309]
  16. Shu K, et al.
    ABSCISIC ACID-INSENSITIVE 4 negatively regulates flowering through directly promoting Arabidopsis FLOWERING LOCUS C transcription.
    J. Exp. Bot., 2016. 67(1): p. 195-205
    [PMID:26507894]
  17. Li L, et al.
    TOR-inhibitor insensitive-1 (TRIN1) regulates cotyledons greening in Arabidopsis.
    Front Plant Sci, 2015. 6: p. 861
    [PMID:26557124]
  18. Shu K, et al.
    ABI4 mediates antagonistic effects of abscisic acid and gibberellins at transcript and protein levels.
    Plant J., 2016. 85(3): p. 348-61
    [PMID:26708041]
  19. Huang Y,Feng CZ,Ye Q,Wu WH,Chen YF
    Arabidopsis WRKY6 Transcription Factor Acts as a Positive Regulator of Abscisic Acid Signaling during Seed Germination and Early Seedling Development.
    PLoS Genet., 2016. 12(2): p. e1005833
    [PMID:26829043]
  20. Li T,Wu XY,Li H,Song JH,Liu JY
    A Dual-Function Transcription Factor, AtYY1, Is a Novel Negative Regulator of the Arabidopsis ABA Response Network.
    Mol Plant, 2016. 9(5): p. 650-661
    [PMID:26961720]
  21. Lee SA, et al.
    Interplay between ABA and GA Modulates the Timing of Asymmetric Cell Divisions in the Arabidopsis Root Ground Tissue.
    Mol Plant, 2016. 9(6): p. 870-84
    [PMID:26970019]
  22. Xu X, et al.
    Convergence of light and chloroplast signals for de-etiolation through ABI4-HY5 and COP1.
    Nat Plants, 2016. 2(6): p. 16066
    [PMID:27255835]
  23. Waszczak C, et al.
    SHORT-ROOT Deficiency Alleviates the Cell Death Phenotype of the Arabidopsis catalase2 Mutant under Photorespiration-Promoting Conditions.
    Plant Cell, 2016. 28(8): p. 1844-59
    [PMID:27432873]
  24. Hsiao YC,Hsu YF,Chen YC,Chang YL,Wang CS
    A WD40 protein, AtGHS40, negatively modulates abscisic acid degrading and signaling genes during seedling growth under high glucose conditions.
    J. Plant Res., 2016. 129(6): p. 1127-1140
    [PMID:27443795]
  25. Li PC, et al.
    Arabidopsis YL1/BPG2 Is Involved in Seedling Shoot Response to Salt Stress through ABI4.
    Sci Rep, 2016. 6: p. 30163
    [PMID:27444988]
  26. Eckstein A,Krzeszowiec W,Banaś AK,Janowiak F,Gabryś H
    Abscisic acid and blue light signaling pathways in chloroplast movements in Arabidopsis mesophyll.
    Acta Biochim. Pol., 2016. 63(3): p. 449-58
    [PMID:27486921]
  27. Wilson ME,Mixdorf M,Berg RH,Haswell ES
    Plastid osmotic stress influences cell differentiation at the plant shoot apex.
    Development, 2016. 143(18): p. 3382-93
    [PMID:27510974]
  28. Yu FW,Zhu XF,Li GJ,Kronzucker HJ,Shi WM
    The Chloroplast Protease AMOS1/EGY1 Affects Phosphate Homeostasis under Phosphate Stress.
    Plant Physiol., 2016. 172(2): p. 1200-1208
    [PMID:27516532]
  29. Huang X,Zhang X,Gong Z,Yang S,Shi Y
    ABI4 represses the expression of type-A ARRs to inhibit seed germination in Arabidopsis.
    Plant J., 2017. 89(2): p. 354-365
    [PMID:27711992]
  30. Gu L, et al.
    An RRM-containing mei2-like MCT1 plays a negative role in the seed germination and seedling growth of Arabidopsis thaliana in the presence of ABA.
    Plant Physiol. Biochem., 2016. 109: p. 273-279
    [PMID:27771580]
  31. Yan J, et al.
    The miR165/166 Mediated Regulatory Module Plays Critical Roles in ABA Homeostasis and Response in Arabidopsis thaliana.
    PLoS Genet., 2016. 12(11): p. e1006416
    [PMID:27812104]
  32. Chen YS, et al.
    Two MYB-related transcription factors play opposite roles in sugar signaling in Arabidopsis.
    Plant Mol. Biol., 2017. 93(3): p. 299-311
    [PMID:27866313]
  33. Mu Y, et al.
    BASIC PENTACYSTEINE Proteins Repress ABSCISIC ACID INSENSITIVE4 Expression via Direct Recruitment of the Polycomb-Repressive Complex 2 in Arabidopsis Root Development.
    Plant Cell Physiol., 2017. 58(3): p. 607-621
    [PMID:28138058]
  34. Li K,Yang F,Miao Y,Song CP
    Abscisic acid signaling is involved in regulating the mitogen-activated protein kinase cascade module, AIK1-MKK5-MPK6.
    Plant Signal Behav, 2017. 12(5): p. e1321188
    [PMID:28494202]
  35. Xiao X,Cheng X,Yin K,Li H,Qiu JL
    Abscisic acid negatively regulates post-penetration resistance of Arabidopsis to the biotrophic powdery mildew fungus.
    Sci China Life Sci, 2017. 60(8): p. 891-901
    [PMID:28702742]
  36. Liu S, et al.
    Transcriptome profiling of genes involved in induced systemic salt tolerance conferred by Bacillus amyloliquefaciens FZB42 in Arabidopsis thaliana.
    Sci Rep, 2017. 7(1): p. 10795
    [PMID:28904348]
  37. Shu K,Zhou W,Yang W
    APETALA 2-domain-containing transcription factors: focusing on abscisic acid and gibberellins antagonism.
    New Phytol., 2018. 217(3): p. 977-983
    [PMID:29058311]
  38. Barczak-Brzyżek A, et al.
    Abscisic Acid Insensitive 4 transcription factor is an important player in the response of Arabidopsis thaliana to two-spotted spider mite (Tetranychus urticae) feeding.
    Exp. Appl. Acarol., 2017. 73(3-4): p. 317-326
    [PMID:29210003]
  39. Min JH, et al.
    Arabidopsis Basic Helix-Loop-Helix 34 (bHLH34) Is Involved in Glucose Signaling through Binding to a GAGA Cis-Element.
    Front Plant Sci, 2017. 8: p. 2100
    [PMID:29321786]
  40. Cheng Y,Zhang X,Sun T,Tian Q,Zhang WH
    Glutamate Receptor Homolog3.4 is Involved in Regulation of Seed Germination Under Salt Stress in Arabidopsis.
    Plant Cell Physiol., 2018. 59(5): p. 978-988
    [PMID:29432559]
  41. Kacprzak SM, et al.
    Plastid-to-Nucleus Retrograde Signalling during Chloroplast Biogenesis Does Not Require ABI4.
    Plant Physiol., 2019. 179(1): p. 18-23
    [PMID:30377235]
  42. Liu Y, et al.
    Trithorax-group protein ATX5 mediates the glucose response via impacting the HY1-ABI4 signaling module.
    Plant Mol. Biol., 2018. 98(6): p. 495-506
    [PMID:30406469]