PlantTFDB
PlantRegMap/PlantTFDB v5.0
Plant Transcription Factor Database
Transcription Factor Information
Basic Information | Signature Domain | Sequence | 
Basic Information? help Back to Top
TF ID Kalax.0539s0032.1.p
Organism
Taxonomic ID
Taxonomic Lineage
cellular organisms; Eukaryota; Viridiplantae; Streptophyta; Streptophytina; Embryophyta; Tracheophyta; Euphyllophyta; Spermatophyta; Magnoliophyta; Mesangiospermae; eudicotyledons; Gunneridae; Pentapetalae; Saxifragales; Crassulaceae; Kalanchoe
Family bHLH
Protein Properties Length: 207aa    MW: 22708.2 Da    PI: 7.8972
Description bHLH family protein
Gene Model
Gene Model ID Type Source Coding Sequence
Kalax.0539s0032.1.pgenomeJGIView CDS
Signature Domain? help Back to Top
Signature Domain
No. Domain Score E-value Start End HMM Start HMM End
1HLH34.34.3e-11249454
                         HHHHHHHHHHHHHHHHHHHHHCTSCCC...TTS-STCHHHHHHHHHHHHHH CS
                  HLH  4 ahnerErrRRdriNsafeeLrellPkaskapskKlsKaeiLekAveYIksL 54
                         +h ++Er+RR+++N+ +  Lr+l P+    + k+ + a+i   ++++Ik+L
  Kalax.0539s0032.1.p  2 SHIAVERNRRRQMNEHLKVLRSLTPSF---YIKRGDQASIIGGVIDFIKEL 49
                         89************************9...9******************99 PP

Protein Features ? help Back to Top
3D Structure
Database Entry ID E-value Start End InterPro ID Description
CDDcd000833.70E-11154No hitNo description
SuperFamilySSF474596.28E-15163IPR011598Myc-type, basic helix-loop-helix (bHLH) domain
PROSITE profilePS5088814.653149IPR011598Myc-type, basic helix-loop-helix (bHLH) domain
Gene3DG3DSA:4.10.280.101.7E-11262IPR011598Myc-type, basic helix-loop-helix (bHLH) domain
PfamPF000103.1E-8249IPR011598Myc-type, basic helix-loop-helix (bHLH) domain
SMARTSM003531.9E-9455IPR011598Myc-type, basic helix-loop-helix (bHLH) domain
Gene Ontology ? help Back to Top
GO Term GO Category GO Description
GO:0009913Biological Processepidermal cell differentiation
GO:0010374Biological Processstomatal complex development
GO:0005634Cellular Componentnucleus
GO:0046983Molecular Functionprotein dimerization activity
Sequence ? help Back to Top
Protein Sequence    Length: 207 aa     Download sequence    Send to blast
MSHIAVERNR RRQMNEHLKV LRSLTPSFYI KRGDQASIIG GVIDFIKELH QVLQVLDSQK  60
RRKESLSPSP NPSPRPLLQL GTPSSDSSPS PRLLEGFKEL GACCNSPVAD VVAKLSGSNV  120
VLRIICRRAG GQVGKIVSEL ERLCFDVLQL NISSMEDTVL YSFVVKIGLE CLISVEELAL  180
EIQKSLYQDE ITTASTASDS LLAHHS*
Functional Description ? help Back to Top
Source Description
UniProtTranscription factor. Together with FMA and SPCH, regulates the stomata formation. Required for the differentiation of stomatal guard cells, by promoting successive asymmetric cell divisions and the formation of guard mother cells. Promotes the conversion of the leaf epidermis into stomata. {ECO:0000269|PubMed:17183265, ECO:0000269|PubMed:17183267}.
Regulation -- Description ? help Back to Top
Source Description
UniProtINDUCTION: By UV, flagellin, and jasmonic acid (JA) treatments. {ECO:0000269|PubMed:12679534}.
Regulation -- PlantRegMap ? help Back to Top
Source Upstream Regulator Target Gene
PlantRegMapRetrieve-
Annotation -- Protein ? help Back to Top
Source Hit ID E-value Description
RefseqXP_018846908.11e-92PREDICTED: transcription factor MUTE
SwissprotQ9M8K64e-80MUTE_ARATH; Transcription factor MUTE
TrEMBLA0A2I4GSN02e-91A0A2I4GSN0_JUGRE; transcription factor MUTE
STRINGPOPTR_0008s20720.17e-89(Populus trichocarpa)
Best hit in Arabidopsis thaliana ? help Back to Top
Hit ID E-value Description
AT3G06120.18e-80bHLH family protein
Publications ? help Back to Top
  1. Casson S,Gray JE
    Influence of environmental factors on stomatal development.
    New Phytol., 2008. 178(1): p. 9-23
    [PMID:18266617]
  2. Skinner MK,Rawls A,Wilson-Rawls J,Roalson EH
    Basic helix-loop-helix transcription factor gene family phylogenetics and nomenclature.
    Differentiation, 2010. 80(1): p. 1-8
    [PMID:20219281]
  3. Balcerowicz M,Ranjan A,Rupprecht L,Fiene G,Hoecker U
    Auxin represses stomatal development in dark-grown seedlings via Aux/IAA proteins.
    Development, 2014. 141(16): p. 3165-76
    [PMID:25063454]
  4. de Marcos A, et al.
    Transcriptional profiles of Arabidopsis stomataless mutants reveal developmental and physiological features of life in the absence of stomata.
    Front Plant Sci, 2015. 6: p. 456
    [PMID:26157447]
  5. Mahoney AK, et al.
    Functional analysis of the Arabidopsis thaliana MUTE promoter reveals a regulatory region sufficient for stomatal-lineage expression.
    Planta, 2016. 243(4): p. 987-98
    [PMID:26748914]
  6. Klermund C, et al.
    LLM-Domain B-GATA Transcription Factors Promote Stomatal Development Downstream of Light Signaling Pathways in Arabidopsis thaliana Hypocotyls.
    Plant Cell, 2016. 28(3): p. 646-60
    [PMID:26917680]
  7. Fu ZW,Wang YL,Lu YT,Yuan TT
    Nitric oxide is involved in stomatal development by modulating the expression of stomatal regulator genes in Arabidopsis.
    Plant Sci., 2016. 252: p. 282-289
    [PMID:27717464]
  8. Qi X, et al.
    Autocrine regulation of stomatal differentiation potential by EPF1 and ERECTA-LIKE1 ligand-receptor signaling.
    Elife, 2018.
    [PMID:28266915]
  9. Raissig MT, et al.
    Mobile MUTE specifies subsidiary cells to build physiologically improved grass stomata.
    Science, 2017. 355(6330): p. 1215-1218
    [PMID:28302860]
  10. Lee JH,Jung JH,Park CM
    Light Inhibits COP1-Mediated Degradation of ICE Transcription Factors to Induce Stomatal Development in Arabidopsis.
    Plant Cell, 2017. 29(11): p. 2817-2830
    [PMID:29070509]
  11. Han SK, et al.
    MUTE Directly Orchestrates Cell-State Switch and the Single Symmetric Division to Create Stomata.
    Dev. Cell, 2018. 45(3): p. 303-315.e5
    [PMID:29738710]