PlantTFDB
PlantRegMap/PlantTFDB v5.0
Plant Transcription Factor Database
Transcription Factor Information
Basic Information | Signature Domain | Sequence | 
Basic Information? help Back to Top
TF ID Jcr4S02193.10
Organism
Taxonomic ID
Taxonomic Lineage
cellular organisms; Eukaryota; Viridiplantae; Streptophyta; Streptophytina; Embryophyta; Tracheophyta; Euphyllophyta; Spermatophyta; Magnoliophyta; Mesangiospermae; eudicotyledons; Gunneridae; Pentapetalae; rosids; fabids; Malpighiales; Euphorbiaceae; Crotonoideae; Jatropheae; Jatropha
Family NF-YB
Protein Properties Length: 651aa    MW: 71214.4 Da    PI: 7.3274
Description NF-YB family protein
Gene Model
Gene Model ID Type Source Coding Sequence
Jcr4S02193.10genomeKazusaView CDS
Signature Domain? help Back to Top
Signature Domain
No. Domain Score E-value Start End HMM Start HMM End
1NF-YB41.82.5e-1313101588
          NF-YB   5 drflPianvsrimkkvlPa.....nakiskdaketvqecvsefisfvtseasdkcqrekrktingddllwalatlGfedyveplkvylk 88 
                     ++lP a v ri+k  l +     +  + kda     e +  fi ++++ a+d c++ +r+tin+dd+l al ++ f ++veplk+ lk
  Jcr4S02193.10  13 AEELPKAIVRRIVKDKLSQcspdgDLIVHKDALVAFSESARIFIHYLSATANDICKESRRQTINADDVLKALEEIEFPEFVEPLKASLK 101
                    5689**********9986521211335789*******************************************************9876 PP

Protein Features ? help Back to Top
3D Structure
Database Entry ID E-value Start End InterPro ID Description
Gene3DG3DSA:1.10.20.101.4E-287155IPR009072Histone-fold
PfamPF008084.6E-111584IPR003958Transcription factor CBF/NF-Y/archaeal histone domain
SuperFamilySSF471131.1E-2216145IPR009072Histone-fold
Gene3DG3DSA:3.80.10.108.8E-54204475IPR032675Leucine-rich repeat domain, L domain-like
SuperFamilySSF520585.83E-22208375IPR032675Leucine-rich repeat domain, L domain-like
SMARTSM00369180251275IPR003591Leucine-rich repeat, typical subtype
PROSITE profilePS514505.148253275IPR001611Leucine-rich repeat
PROSITE profilePS514504.855290312IPR001611Leucine-rich repeat
SuperFamilySSF520582.27E-49328645IPR032675Leucine-rich repeat domain, L domain-like
PROSITE profilePS514504.516387409IPR001611Leucine-rich repeat
SMARTSM003690.52433457IPR003591Leucine-rich repeat, typical subtype
PROSITE profilePS514505.486435457IPR001611Leucine-rich repeat
Gene3DG3DSA:3.80.10.101.6E-31481612IPR032675Leucine-rich repeat domain, L domain-like
SMARTSM00369300496520IPR003591Leucine-rich repeat, typical subtype
PROSITE profilePS514504.609570591IPR001611Leucine-rich repeat
SMARTSM00369240592615IPR003591Leucine-rich repeat, typical subtype
PfamPF005600.5594612IPR001611Leucine-rich repeat
PROSITE profilePS514507.319594616IPR001611Leucine-rich repeat
Gene Ontology ? help Back to Top
GO Term GO Category GO Description
GO:0046982Molecular Functionprotein heterodimerization activity
Sequence ? help Back to Top
Protein Sequence    Length: 651 aa     Download sequence    Send to blast
MESENVEKVV SEAEELPKAI VRRIVKDKLS QCSPDGDLIV HKDALVAFSE SARIFIHYLS  60
ATANDICKES RRQTINADDV LKALEEIEFP EFVEPLKASL KGNLYDVTXF KRKNAEKKAV  120
ASENGKKAGA SETQEVKKKR KVEEEPSQKR ASKQKKGEIG RLAQVRIEYE PGHMLMKSSI  180
PVKPAIAILK SSLKGPDGLG LENWKPLTES FSAHCSFSGV ACDKDSRVRL ENLVLAADNL  240
TGRLPVEMAN LTSLKILNIS NNLFTGHFPG EITVGMTKLE MPESYSDIQS LEYFALNGNG  300
LTGKIPASLA CLQNLKYMYL GHYNAYEGGI PSEFGSLSLL QVLDIASCNV TGEIPASLGH  360
LGHLHYLYLQ VYSLCGTIPH ELSSLTGLKI IDLSLNELTG DFPWSFFSRL NITFINLFLN  420
SLFGPIPSSI SDLPNLEVLH LCGNNFTSEL PKNLGQNQKI KDLDVSFNHL PGNIPRNLCK  480
GGNGITGRIS PAISKLQNLK ILLPDRNRLY GEIPAQVFHL KLPSGINISR NNLSGAIPAS  540
ISNCTSITLI DFSGNGLTGE IPSGISALKN LGTFDVSQNH LSGQLPIETQ YMSSLTKLDV  600
SNNNLSGKIP ASEQLLVFDD SSFSGNPKLC PARNISCQYL PLISIFKPWS Q
3D Structure ? help Back to Top
Structure
PDB ID Evalue Query Start Query End Hit Start Hit End Description
5gqr_B1e-6120161222571Leucine-rich repeat receptor-like protein kinase TDR
5gr9_B1e-6120161223572Leucine-rich repeat receptor-like protein kinase TDR
5jfi_A2e-6120161224573Leucine-rich repeat receptor-like protein kinase TDR
5jfi_B2e-6120161224573Leucine-rich repeat receptor-like protein kinase TDR
5jfk_A2e-6120161224573Leucine-rich repeat receptor-like protein kinase TDR
5jfk_B2e-6120161224573Leucine-rich repeat receptor-like protein kinase TDR
Search in ModeBase
Nucleic Localization Signal ? help Back to Top
NLS
No. Start End Sequence
1136141KKKRKV
Functional Description ? help Back to Top
Source Description
UniProtInvolved in the detection of CLV3 and CLV3-like (CLE) peptides, that act as extracellular signals regulating meristem maintenance. Acts with CLV3p as a ligand-receptor pair in a signal transduction pathway coordinating growth between adjacent meristematic regions and controlling the balance between meristem cell proliferation and differentiation. {ECO:0000269|PubMed:19933383}.
Regulation -- PlantRegMap ? help Back to Top
Source Upstream Regulator Target Gene
PlantRegMapRetrieve-
Annotation -- Protein ? help Back to Top
Source Hit ID E-value Description
RefseqXP_021678075.11e-157receptor protein kinase CLAVATA1-like
SwissprotQ9SYQ81e-127CLV1_ARATH; Receptor protein kinase CLAVATA1
TrEMBLA0A2C9V1Z11e-145A0A2C9V1Z1_MANES; Uncharacterized protein
STRINGcassava4.1_026756m1e-146(Manihot esculenta)
Orthologous Group ? help Back to Top
LineageOrthologous Group IDTaxa NumberGene Number
FabidsOGEF118633236
Best hit in Arabidopsis thaliana ? help Back to Top
Hit ID E-value Description
AT2G27470.11e-40nuclear factor Y, subunit B11
Publications ? help Back to Top
  1. Trotochaud AE,Hao T,Wu G,Yang Z,Clark SE
    The CLAVATA1 receptor-like kinase requires CLAVATA3 for its assembly into a signaling complex that includes KAPP and a Rho-related protein.
    Plant Cell, 1999. 11(3): p. 393-406
    [PMID:10072399]
  2. Williams RW,Clark SE,Meyerowitz EM
    Genetic and physical characterization of a region of Arabidopsis chromosome 1 containing the CLAVATA1 gene.
    Plant Mol. Biol., 1999. 39(1): p. 171-6
    [PMID:10080719]
  3. Fletcher JC,Brand U,Running MP,Simon R,Meyerowitz EM
    Signaling of cell fate decisions by CLAVATA3 in Arabidopsis shoot meristems.
    Science, 1999. 283(5409): p. 1911-4
    [PMID:10082464]
  4. Li J,Smith GP,Walker JC
    Kinase interaction domain of kinase-associated protein phosphatase, a phosphoprotein-binding domain.
    Proc. Natl. Acad. Sci. U.S.A., 1999. 96(14): p. 7821-6
    [PMID:10393905]
  5. Jeong S,Trotochaud AE,Clark SE
    The Arabidopsis CLAVATA2 gene encodes a receptor-like protein required for the stability of the CLAVATA1 receptor-like kinase.
    Plant Cell, 1999. 11(10): p. 1925-34
    [PMID:10521522]
  6. Yamamoto E,Karakaya HC,Knap HT
    Molecular characterization of two soybean homologs of Arabidopsis thaliana CLAVATA1 from the wild type and fasciation mutant.
    Biochim. Biophys. Acta, 2000. 1491(1-3): p. 333-40
    [PMID:10760600]
  7. Trotochaud AE,Jeong S,Clark SE
    CLAVATA3, a multimeric ligand for the CLAVATA1 receptor-kinase.
    Science, 2000. 289(5479): p. 613-7
    [PMID:10915623]
  8. Yamamoto E,Knap HT
    Soybean receptor-like protein kinase genes: paralogous divergence of a gene family.
    Mol. Biol. Evol., 2001. 18(8): p. 1522-31
    [PMID:11470843]
  9. Rivas S,Romeis T,Jones JD
    The Cf-9 disease resistance protein is present in an approximately 420-kilodalton heteromultimeric membrane-associated complex at one molecule per complex.
    Plant Cell, 2002. 14(3): p. 689-702
    [PMID:11910014]
  10. Rojo E,Sharma VK,Kovaleva V,Raikhel NV,Fletcher JC
    CLV3 is localized to the extracellular space, where it activates the Arabidopsis CLAVATA stem cell signaling pathway.
    Plant Cell, 2002. 14(5): p. 969-77
    [PMID:12034890]
  11. Diévart A, et al.
    CLAVATA1 dominant-negative alleles reveal functional overlap between multiple receptor kinases that regulate meristem and organ development.
    Plant Cell, 2003. 15(5): p. 1198-211
    [PMID:12724544]
  12. Martynov VV,Tsvetkov IL,Khavkin EE
    [Orthologs of arabidopsis CLAVATA 1 gene in cultivated Brassicaceae plants].
    Ontogenez, 2004 Jan-Feb. 35(1): p. 41-6
    [PMID:15027212]
  13. Schnabel E,Journet EP,de Carvalho-Niebel F,Duc G,Frugoli J
    The Medicago truncatula SUNN gene encodes a CLV1-like leucine-rich repeat receptor kinase that regulates nodule number and root length.
    Plant Mol. Biol., 2005. 58(6): p. 809-822
    [PMID:16240175]
  14. DeYoung BJ, et al.
    The CLAVATA1-related BAM1, BAM2 and BAM3 receptor kinase-like proteins are required for meristem function in Arabidopsis.
    Plant J., 2006. 45(1): p. 1-16
    [PMID:16367950]
  15. Ni J,Clark SE
    Evidence for functional conservation, sufficiency, and proteolytic processing of the CLAVATA3 CLE domain.
    Plant Physiol., 2006. 140(2): p. 726-33
    [PMID:16407446]
  16. Chu H, et al.
    The floral organ number4 gene encoding a putative ortholog of Arabidopsis CLAVATA3 regulates apical meristem size in rice.
    Plant Physiol., 2006. 142(3): p. 1039-52
    [PMID:17012407]
  17. Suzaki T, et al.
    Conservation and diversification of meristem maintenance mechanism in Oryza sativa: Function of the FLORAL ORGAN NUMBER2 gene.
    Plant Cell Physiol., 2006. 47(12): p. 1591-602
    [PMID:17056620]
  18. Ding Z, et al.
    Phosphoprotein and phosphopeptide interactions with the FHA domain from Arabidopsis kinase-associated protein phosphatase.
    Biochemistry, 2007. 46(10): p. 2684-96
    [PMID:17302430]
  19. Ogawa M,Shinohara H,Sakagami Y,Matsubayashi Y
    Arabidopsis CLV3 peptide directly binds CLV1 ectodomain.
    Science, 2008. 319(5861): p. 294
    [PMID:18202283]
  20. Furner I,Ellis L,Bakht S,Mirza B,Sheikh M
    CAUT lines: a novel resource for studies of cell autonomy in Arabidopsis.
    Plant J., 2008. 53(4): p. 645-60
    [PMID:18269574]
  21. Müller R,Bleckmann A,Simon R
    The receptor kinase CORYNE of Arabidopsis transmits the stem cell-limiting signal CLAVATA3 independently of CLAVATA1.
    Plant Cell, 2008. 20(4): p. 934-46
    [PMID:18381924]
  22. Deyoung BJ,Clark SE
    BAM receptors regulate stem cell specification and organ development through complex interactions with CLAVATA signaling.
    Genetics, 2008. 180(2): p. 895-904
    [PMID:18780746]
  23. Kondo T,Nakamura T,Yokomine K,Sakagami Y
    Dual assay for MCLV3 activity reveals structure-activity relationship of CLE peptides.
    Biochem. Biophys. Res. Commun., 2008. 377(1): p. 312-6
    [PMID:18848920]
  24. Miwa H, et al.
    The receptor-like kinase SOL2 mediates CLE signaling in Arabidopsis.
    Plant Cell Physiol., 2008. 49(11): p. 1752-7
    [PMID:18854335]
  25. Ohyama K,Shinohara H,Ogawa-Ohnishi M,Matsubayashi Y
    A glycopeptide regulating stem cell fate in Arabidopsis thaliana.
    Nat. Chem. Biol., 2009. 5(8): p. 578-80
    [PMID:19525968]
  26. Miwa H,Tamaki T,Fukuda H,Sawa S
    Evolution of CLE signaling: origins of the CLV1 and SOL2/CRN receptor diversity.
    Plant Signal Behav, 2009. 4(6): p. 477-81
    [PMID:19816140]
  27. Zhu Y, et al.
    Analysis of interactions among the CLAVATA3 receptors reveals a direct interaction between CLAVATA2 and CORYNE in Arabidopsis.
    Plant J., 2010. 61(2): p. 223-33
    [PMID:19843317]
  28. Bleckmann A,Weidtkamp-Peters S,Seidel CA,Simon R
    Stem cell signaling in Arabidopsis requires CRN to localize CLV2 to the plasma membrane.
    Plant Physiol., 2010. 152(1): p. 166-76
    [PMID:19933383]
  29. Wang G,Fiers M
    CLE peptide signaling during plant development.
    Protoplasma, 2010. 240(1-4): p. 33-43
    [PMID:20016993]
  30. Shinohara H,Matsubayashi Y
    Arabinosylated glycopeptide hormones: new insights into CLAVATA3 structure.
    Curr. Opin. Plant Biol., 2010. 13(5): p. 515-9
    [PMID:20580598]
  31. Guo Y,Han L,Hymes M,Denver R,Clark SE
    CLAVATA2 forms a distinct CLE-binding receptor complex regulating Arabidopsis stem cell specification.
    Plant J., 2010. 63(6): p. 889-900
    [PMID:20626648]
  32. Meng L,Feldman LJ
    CLE14/CLE20 peptides may interact with CLAVATA2/CORYNE receptor-like kinases to irreversibly inhibit cell division in the root meristem of Arabidopsis.
    Planta, 2010. 232(5): p. 1061-74
    [PMID:20697738]
  33. Song X,Guo P,Li C,Liu CM
    The cysteine pairs in CLV2 are not necessary for sensing the CLV3 peptide in shoot and root meristems.
    J Integr Plant Biol, 2010. 52(9): p. 774-81
    [PMID:20738721]
  34. Guo Y,Clark SE
    Membrane distributions of two ligand-binding receptor complexes in the CLAVATA pathway.
    Plant Signal Behav, 2010. 5(11): p. 1442-5
    [PMID:21051944]
  35. Lee H,Chah OK,Sheen J
    Stem-cell-triggered immunity through CLV3p-FLS2 signalling.
    Nature, 2011. 473(7347): p. 376-9
    [PMID:21499263]
  36. Okamoto S,Nakagawa T,Kawaguchi M
    Expression and functional analysis of a CLV3-like gene in the model legume Lotus japonicus.
    Plant Cell Physiol., 2011. 52(7): p. 1211-21
    [PMID:21652543]
  37. Replogle A, et al.
    Synergistic interaction of CLAVATA1, CLAVATA2, and RECEPTOR-LIKE PROTEIN KINASE 2 in cyst nematode parasitism of Arabidopsis.
    Mol. Plant Microbe Interact., 2013. 26(1): p. 87-96
    [PMID:22835273]
  38. Stahl Y, et al.
    Moderation of Arabidopsis root stemness by CLAVATA1 and ARABIDOPSIS CRINKLY4 receptor kinase complexes.
    Curr. Biol., 2013. 23(5): p. 362-71
    [PMID:23394827]
  39. Liebrand TW, et al.
    Receptor-like kinase SOBIR1/EVR interacts with receptor-like proteins in plant immunity against fungal infection.
    Proc. Natl. Acad. Sci. U.S.A., 2013. 110(24): p. 10010-5
    [PMID:23716655]
  40. Wong CE,Singh MB,Bhalla PL
    Spatial expression of CLAVATA3 in the shoot apical meristem suggests it is not a stem cell marker in soybean.
    J. Exp. Bot., 2013. 64(18): p. 5641-9
    [PMID:24179098]
  41. Araya T, et al.
    CLE-CLAVATA1 peptide-receptor signaling module regulates the expansion of plant root systems in a nitrogen-dependent manner.
    Proc. Natl. Acad. Sci. U.S.A., 2014. 111(5): p. 2029-34
    [PMID:24449877]
  42. Zhou F,Roy B,Dunlap JR,Enganti R,von Arnim AG
    Translational control of Arabidopsis meristem stability and organogenesis by the eukaryotic translation factor eIF3h.
    PLoS ONE, 2014. 9(4): p. e95396
    [PMID:24736281]
  43. Guo X, et al.
    Enhanced resistance to soybean cyst nematode Heterodera glycines in transgenic soybean by silencing putative CLE receptors.
    Plant Biotechnol. J., 2015. 13(6): p. 801-10
    [PMID:25581705]
  44. Shinohara H,Matsubayashi Y
    Reevaluation of the CLV3-receptor interaction in the shoot apical meristem: dissection of the CLV3 signaling pathway from a direct ligand-binding point of view.
    Plant J., 2015. 82(2): p. 328-36
    [PMID:25754504]
  45. Nimchuk ZL,Zhou Y,Tarr PT,Peterson BA,Meyerowitz EM
    Plant stem cell maintenance by transcriptional cross-regulation of related receptor kinases.
    Development, 2015. 142(6): p. 1043-9
    [PMID:25758219]
  46. Araya T,von Wirén N,Takahashi H
    CLE peptides regulate lateral root development in response to nitrogen nutritional status of plants.
    Plant Signal Behav, 2014. 9(7): p. e29302
    [PMID:25763500]
  47. Poulios S,Vlachonasios KE
    Synergistic action of histone acetyltransferase GCN5 and receptor CLAVATA1 negatively affects ethylene responses in Arabidopsis thaliana.
    J. Exp. Bot., 2016. 67(3): p. 905-18
    [PMID:26596766]
  48. Chou H,Zhu Y,Ma Y,Berkowitz GA
    The CLAVATA signaling pathway mediating stem cell fate in shoot meristems requires Ca(2+) as a secondary cytosolic messenger.
    Plant J., 2016. 85(4): p. 494-506
    [PMID:26756833]
  49. Adibi M,Yoshida S,Weijers D,Fleck C
    Centering the Organizing Center in the Arabidopsis thaliana Shoot Apical Meristem by a Combination of Cytokinin Signaling and Self-Organization.
    PLoS ONE, 2016. 11(2): p. e0147830
    [PMID:26872130]
  50. Hanemian M, et al.
    Arabidopsis CLAVATA1 and CLAVATA2 receptors contribute to Ralstonia solanacearum pathogenicity through a miR169-dependent pathway.
    New Phytol., 2016. 211(2): p. 502-15
    [PMID:26990325]
  51. Gursanscky NR, et al.
    MOL1 is required for cambium homeostasis in Arabidopsis.
    Plant J., 2016. 86(3): p. 210-20
    [PMID:26991973]
  52. Nimchuk ZL
    CLAVATA1 controls distinct signaling outputs that buffer shoot stem cell proliferation through a two-step transcriptional compensation loop.
    PLoS Genet., 2017. 13(3): p. e1006681
    [PMID:28355208]
  53. Clark SE,Williams RW,Meyerowitz EM
    The CLAVATA1 gene encodes a putative receptor kinase that controls shoot and floral meristem size in Arabidopsis.
    Cell, 1997. 89(4): p. 575-85
    [PMID:9160749]
  54. Williams RW,Wilson JM,Meyerowitz EM
    A possible role for kinase-associated protein phosphatase in the Arabidopsis CLAVATA1 signaling pathway.
    Proc. Natl. Acad. Sci. U.S.A., 1997. 94(19): p. 10467-72
    [PMID:9294234]
  55. Stone JM,Trotochaud AE,Walker JC,Clark SE
    Control of meristem development by CLAVATA1 receptor kinase and kinase-associated protein phosphatase interactions
    Plant Physiol., 1998. 117(4): p. 1217-25
    [PMID:9701578]