PlantTFDB
PlantRegMap/PlantTFDB v5.0
Plant Transcription Factor Database
Transcription Factor Information
Basic Information | Signature Domain | Sequence | 
Basic Information? help Back to Top
TF ID CCG002721.2
Organism
Taxonomic ID
Taxonomic Lineage
cellular organisms; Eukaryota; Viridiplantae; Streptophyta; Streptophytina; Embryophyta; Tracheophyta; Euphyllophyta; Spermatophyta; Magnoliophyta; Mesangiospermae; eudicotyledons; Gunneridae; Pentapetalae; rosids; fabids; Malpighiales; Salicaceae; Saliceae; Populus
Family bHLH
Protein Properties Length: 589aa    MW: 64679.1 Da    PI: 7.6074
Description bHLH family protein
Gene Model
Gene Model ID Type Source Coding Sequence
CCG002721.2genomeLZUView CDS
Signature Domain? help Back to Top
Signature Domain
No. Domain Score E-value Start End HMM Start HMM End
1HLH32.12.1e-103778349
                 HHHHHHHHHHHHHHHHHHHHHHCTSCCC...TTS-STCHHHHHHHHH CS
          HLH  3 rahnerErrRRdriNsafeeLrellPkaskapskKlsKaeiLekAve 49
                 ++h+e+ErrRR+riN  +++Lr l+P       +K++Ka+ L  ++ 
  CCG002721.2 37 KSHSEAERRRRERINAHLATLRGLVPCT-----EKMDKATLLAAVIS 78
                 58*************************8.....79****99987775 PP

Protein Features ? help Back to Top
3D Structure
Database Entry ID E-value Start End InterPro ID Description
PROSITE profilePS5088814.783483IPR011598Myc-type, basic helix-loop-helix (bHLH) domain
SuperFamilySSF474593.4E-113785IPR011598Myc-type, basic helix-loop-helix (bHLH) domain
PfamPF000103.1E-83778IPR011598Myc-type, basic helix-loop-helix (bHLH) domain
Gene3DG3DSA:4.10.280.103.9E-113885IPR011598Myc-type, basic helix-loop-helix (bHLH) domain
SMARTSM003531.9E-94089IPR011598Myc-type, basic helix-loop-helix (bHLH) domain
CDDcd048732.54E-4118186No hitNo description
Gene Ontology ? help Back to Top
GO Term GO Category GO Description
GO:0046983Molecular Functionprotein dimerization activity
Sequence ? help Back to Top
Protein Sequence    Length: 589 aa     Download sequence    Send to blast
MVSQALVLDV EKGELLKAPA RIGKMGISEA KAFAALKSHS EAERRRRERI NAHLATLRGL  60
VPCTEKMDKA TLLAAVISQV KEHKKNALEA CKGLLVPMDD DQVKVETYFD GTLHFKASIC  120
CDYRPELLSD LRNAIDALPL KMVSAEISTL GSRLKNEFVL TDRRNKNALD DAGAIQLLTN  180
SIHQTLTSVL EKGSASQEYS PRTTLPNKRR RVTFFDSSSS LLSDCCTYWM IDAKDAAAAA  240
AKRSIGGGFY APCSRSQVSN HLTLLAESLP TDENDQSSMP AISRGNRSRC PTQKSGGFHY  300
WFAFPALVLD PPAMLIESKC ALEWFTSEEI VGFYDPSHGK DPERIMVFAD MKSSLVIEAL  360
ITAPQGLNDR QIALNAVGWE RNANKLVSRC INLAKSMDRT RLAVSAADLN LKLMRWRVLP  420
SLNFDELSSI KCLLIGAGTL SCQFFLTDTR ESRWLPTFLS AHANKITITA ALGFDSFLVM  480
QHGPGPFSFA CDLKAEAANN LSADLDNLAL TDRMFAGGDM ANSNSSSGSS ELPLGILPHQ  540
IWGSLFHFSQ MMLVGRSSNS CTACCSTHPT YLEDLTGLTE YRSRQTLLN
3D Structure ? help Back to Top
Structure
PDB ID Evalue Query Start Query End Hit Start Hit End Description
3rui_A4e-16444579144315Ubiquitin-like modifier-activating enzyme ATG7
3t7e_A5e-16444579148319Ubiquitin-like modifier-activating enzyme ATG7
3vh2_A2e-15378579275608Ubiquitin-like modifier-activating enzyme ATG7
3vh3_A5e-16444579144315Ubiquitin-like modifier-activating enzyme ATG7
3vh4_A5e-16444579144315Ubiquitin-like modifier-activating enzyme ATG7
4gsk_A2e-15378579274607Ubiquitin-like modifier-activating enzyme ATG7
4gsk_B2e-15378579274607Ubiquitin-like modifier-activating enzyme ATG7
4gsl_A2e-15378579274607Ubiquitin-like modifier-activating enzyme ATG7
4gsl_B2e-15378579274607Ubiquitin-like modifier-activating enzyme ATG7
5yec_A5e-16444579144315Ubiquitin-like modifier-activating enzyme ATG7
5yec_C5e-16444579144315Ubiquitin-like modifier-activating enzyme ATG7
Search in ModeBase
Nucleic Localization Signal ? help Back to Top
NLS
No. Start End Sequence
14247ERRRRE
2207211KRRRV
Functional Description ? help Back to Top
Source Description
UniProtE1-like activating enzyme involved in the 2 ubiquitin-like systems required for cytoplasm to vacuole transport (Cvt) and autophagy. Activates ATG12 for its conjugation with ATG5 and ATG8 for its conjugation with phosphatidylethanolamine. Both systems are needed for the ATG8 association to Cvt vesicles and autophagosomes. Involved in the senescence process (PubMed:12070171). Involved in the degradation of damaged peroxisomes (PubMed:24368788). Involved in the non-selective degradation of chlorophylls and photosynthetic proteins during stress-induced leaf yellowing (PubMed:24510943). {ECO:0000269|PubMed:12070171, ECO:0000269|PubMed:24368788, ECO:0000269|PubMed:24510943}.
Annotation -- Nucleotide ? help Back to Top
Source Hit ID E-value Description
GenBankAC2142841e-119AC214284.1 Populus trichocarpa clone POP076-F15, complete sequence.
Annotation -- Protein ? help Back to Top
Source Hit ID E-value Description
SwissprotQ94CD51e-33ATG7_ARATH; Ubiquitin-like modifier-activating enzyme atg7
TrEMBLA0A498JT701e-133A0A498JT70_MALDO; Uncharacterized protein
Orthologous Group ? help Back to Top
LineageOrthologous Group IDTaxa NumberGene Number
FabidsOGEF89863143
Best hit in Arabidopsis thaliana ? help Back to Top
Hit ID E-value Description
AT1G68810.16e-28bHLH family protein
Publications ? help Back to Top
  1. Doelling JH,Walker JM,Friedman EM,Thompson AR,Vierstra RD
    The APG8/12-activating enzyme APG7 is required for proper nutrient recycling and senescence in Arabidopsis thaliana.
    J. Biol. Chem., 2002. 277(36): p. 33105-14
    [PMID:12070171]
  2. Hanaoka H, et al.
    Leaf senescence and starvation-induced chlorosis are accelerated by the disruption of an Arabidopsis autophagy gene.
    Plant Physiol., 2002. 129(3): p. 1181-93
    [PMID:12114572]
  3. Ketelaar T,Voss C,Dimmock SA,Thumm M,Hussey PJ
    Arabidopsis homologues of the autophagy protein Atg8 are a novel family of microtubule binding proteins.
    FEBS Lett., 2004. 567(2-3): p. 302-6
    [PMID:15178341]
  4. Yoshimoto K, et al.
    Processing of ATG8s, ubiquitin-like proteins, and their deconjugation by ATG4s are essential for plant autophagy.
    Plant Cell, 2004. 16(11): p. 2967-83
    [PMID:15494556]
  5. Otegui MS, et al.
    Senescence-associated vacuoles with intense proteolytic activity develop in leaves of Arabidopsis and soybean.
    Plant J., 2005. 41(6): p. 831-44
    [PMID:15743448]
  6. Thompson AR,Doelling JH,Suttangkakul A,Vierstra RD
    Autophagic nutrient recycling in Arabidopsis directed by the ATG8 and ATG12 conjugation pathways.
    Plant Physiol., 2005. 138(4): p. 2097-110
    [PMID:16040659]
  7. Phillips AR,Suttangkakul A,Vierstra RD
    The ATG12-conjugating enzyme ATG10 Is essential for autophagic vesicle formation in Arabidopsis thaliana.
    Genetics, 2008. 178(3): p. 1339-53
    [PMID:18245858]
  8. Svenning S,Lamark T,Krause K,Johansen T
    Plant NBR1 is a selective autophagy substrate and a functional hybrid of the mammalian autophagic adapters NBR1 and p62/SQSTM1.
    Autophagy, 2011. 7(9): p. 993-1010
    [PMID:21606687]
  9. Lenz HD,Vierstra RD,Nürnberger T,Gust AA
    ATG7 contributes to plant basal immunity towards fungal infection.
    Plant Signal Behav, 2011. 6(7): p. 1040-2
    [PMID:21617379]
  10. Wang Y,Nishimura MT,Zhao T,Tang D
    ATG2, an autophagy-related protein, negatively affects powdery mildew resistance and mildew-induced cell death in Arabidopsis.
    Plant J., 2011. 68(1): p. 74-87
    [PMID:21645148]
  11. Wang Y,Wu Y,Tang D
    The autophagy gene, ATG18a, plays a negative role in powdery mildew resistance and mildew-induced cell death in Arabidopsis.
    Plant Signal Behav, 2011. 6(9): p. 1408-10
    [PMID:21847024]
  12. Heyndrickx KS,Vandepoele K
    Systematic identification of functional plant modules through the integration of complementary data sources.
    Plant Physiol., 2012. 159(3): p. 884-901
    [PMID:22589469]
  13. Yamaguchi M, et al.
    Noncanonical recognition and UBL loading of distinct E2s by autophagy-essential Atg7.
    Nat. Struct. Mol. Biol., 2012. 19(12): p. 1250-6
    [PMID:23142983]
  14. Lee TA,Vande Wetering SW,Brusslan JA
    Stromal protein degradation is incomplete in Arabidopsis thaliana autophagy mutants undergoing natural senescence.
    BMC Res Notes, 2013. 6: p. 17
    [PMID:23327451]
  15. Minina EA, et al.
    Autophagy mediates caloric restriction-induced lifespan extension in Arabidopsis.
    Aging Cell, 2013. 12(2): p. 327-9
    [PMID:23331488]
  16. Zhou J, et al.
    NBR1-mediated selective autophagy targets insoluble ubiquitinated protein aggregates in plant stress responses.
    PLoS Genet., 2013. 9(1): p. e1003196
    [PMID:23341779]
  17. Baldwin KL,Dinh EM,Hart BM,Masson PH
    CACTIN is an essential nuclear protein in Arabidopsis and may be associated with the eukaryotic spliceosome.
    FEBS Lett., 2013. 587(7): p. 873-9
    [PMID:23454656]
  18. Farmer LM, et al.
    Disrupting autophagy restores peroxisome function to an Arabidopsis lon2 mutant and reveals a role for the LON2 protease in peroxisomal matrix protein degradation.
    Plant Cell, 2013. 25(10): p. 4085-100
    [PMID:24179123]
  19. Shibata M, et al.
    Highly oxidized peroxisomes are selectively degraded via autophagy in Arabidopsis.
    Plant Cell, 2013. 25(12): p. 4967-83
    [PMID:24368788]
  20. Sakuraba Y, et al.
    Delayed degradation of chlorophylls and photosynthetic proteins in Arabidopsis autophagy mutants during stress-induced leaf yellowing.
    J. Exp. Bot., 2014. 65(14): p. 3915-25
    [PMID:24510943]
  21. Shin KD,Lee HN,Chung T
    A revised assay for monitoring autophagic flux in Arabidopsis thaliana reveals involvement of AUTOPHAGY-RELATED9 in autophagy.
    Mol. Cells, 2014. 37(5): p. 399-405
    [PMID:24805779]
  22. Gully K,Hander T,Boller T,Bartels S
    Perception of Arabidopsis AtPep peptides, but not bacterial elicitors, accelerates starvation-induced senescence.
    Front Plant Sci, 2015. 6: p. 14
    [PMID:25667591]
  23. Qi H, et al.
    TRAF Family Proteins Regulate Autophagy Dynamics by Modulating AUTOPHAGY PROTEIN6 Stability in Arabidopsis.
    Plant Cell, 2017. 29(4): p. 890-911
    [PMID:28351989]
  24. Barros JAS, et al.
    Autophagy Deficiency Compromises Alternative Pathways of Respiration following Energy Deprivation in Arabidopsis thaliana.
    Plant Physiol., 2017. 175(1): p. 62-76
    [PMID:28710132]
  25. Luo L, et al.
    Autophagy Is Rapidly Induced by Salt Stress and Is Required for Salt Tolerance in Arabidopsis.
    Front Plant Sci, 2017. 8: p. 1459
    [PMID:28878796]
  26. Kang S,Shin KD,Kim JH,Chung T
    Autophagy-related (ATG) 11, ATG9 and the phosphatidylinositol 3-kinase control ATG2-mediated formation of autophagosomes in Arabidopsis.
    Plant Cell Rep., 2018. 37(4): p. 653-664
    [PMID:29350244]
  27. Minina EA, et al.
    Transcriptional stimulation of rate-limiting components of the autophagic pathway improves plant fitness.
    J. Exp. Bot., 2018. 69(6): p. 1415-1432
    [PMID:29365132]
  28. Zhao L, et al.
    Autophagy contributes to sulfonylurea herbicide tolerance via GCN2-independent regulation of amino acid homeostasis.
    Autophagy, 2018. 14(4): p. 702-714
    [PMID:29377765]