- Riechmann JL, et al.
Arabidopsis transcription factors: genome-wide comparative analysis among eukaryotes. Science, 2000. 290(5499): p. 2105-10 [PMID:11118137] - Schmid M, et al.
Dissection of floral induction pathways using global expression analysis. Development, 2003. 130(24): p. 6001-12 [PMID:14573523] - Yamada K, et al.
Empirical analysis of transcriptional activity in the Arabidopsis genome. Science, 2003. 302(5646): p. 842-6 [PMID:14593172] - Czechowski T,Bari RP,Stitt M,Scheible WR,Udvardi MK
Real-time RT-PCR profiling of over 1400 Arabidopsis transcription factors: unprecedented sensitivity reveals novel root- and shoot-specific genes. Plant J., 2004. 38(2): p. 366-79 [PMID:15078338] - Scheible WR, et al.
Genome-wide reprogramming of primary and secondary metabolism, protein synthesis, cellular growth processes, and the regulatory infrastructure of Arabidopsis in response to nitrogen. Plant Physiol., 2004. 136(1): p. 2483-99 [PMID:15375205] - Koroleva OA,Tomlinson ML,Leader D,Shaw P,Doonan JH
High-throughput protein localization in Arabidopsis using Agrobacterium-mediated transient expression of GFP-ORF fusions. Plant J., 2005. 41(1): p. 162-74 [PMID:15610358] - Axtell MJ,Bartel DP
Antiquity of microRNAs and their targets in land plants. Plant Cell, 2005. 17(6): p. 1658-73 [PMID:15849273] - Nole-Wilson S,Tranby TL,Krizek BA
AINTEGUMENTA-like (AIL) genes are expressed in young tissues and may specify meristematic or division-competent states. Plant Mol. Biol., 2005. 57(5): p. 613-28 [PMID:15988559] - Kim S,Soltis PS,Wall K,Soltis DE
Phylogeny and domain evolution in the APETALA2-like gene family. Mol. Biol. Evol., 2006. 23(1): p. 107-20 [PMID:16151182] - Duarte JM, et al.
Expression pattern shifts following duplication indicative of subfunctionalization and neofunctionalization in regulatory genes of Arabidopsis. Mol. Biol. Evol., 2006. 23(2): p. 469-78 [PMID:16280546] - Nakano T,Suzuki K,Fujimura T,Shinshi H
Genome-wide analysis of the ERF gene family in Arabidopsis and rice. Plant Physiol., 2006. 140(2): p. 411-32 [PMID:16407444] - Ascencio-Ib
Global analysis of Arabidopsis gene expression uncovers a complex array of changes impacting pathogen response and cell cycle during geminivirus infection. Plant Physiol., 2008. 148(1): p. 436-54 [PMID:18650403] - Glazińska P,Zienkiewicz A,Wojciechowski W,Kopcewicz J
The putative miR172 target gene InAPETALA2-like is involved in the photoperiodic flower induction of Ipomoea nil. J. Plant Physiol., 2009. 166(16): p. 1801-13 [PMID:19560230] - Arabidopsis Interactome Mapping Consortium
Evidence for network evolution in an Arabidopsis interactome map. Science, 2011. 333(6042): p. 601-7 [PMID:21798944] - Zou Y, et al.
miR172b controls the transition to autotrophic development inhibited by ABA in Arabidopsis. PLoS ONE, 2013. 8(5): p. e64770 [PMID:23717657] - Ding Y, et al.
Four distinct types of dehydration stress memory genes in Arabidopsis thaliana. BMC Plant Biol., 2013. 13: p. 229 [PMID:24377444] - Li W,Wang T,Zhang Y,Li Y
Overexpression of soybean miR172c confers tolerance to water deficit and salt stress, but increases ABA sensitivity in transgenic Arabidopsis thaliana. J. Exp. Bot., 2016. 67(1): p. 175-94 [PMID:26466661] - Gras DE, et al.
SMZ/SNZ and gibberellin signaling are required for nitrate-elicited delay of flowering time in Arabidopsis thaliana. J. Exp. Bot., 2018. 69(3): p. 619-631 [PMID:29309650] - Ohme-Takagi M,Shinshi H
Ethylene-inducible DNA binding proteins that interact with an ethylene-responsive element. Plant Cell, 1995. 7(2): p. 173-82 [PMID:7756828] - Jofuku KD,den Boer BG,Van Montagu M,Okamuro JK
Control of Arabidopsis flower and seed development by the homeotic gene APETALA2. Plant Cell, 1994. 6(9): p. 1211-25 [PMID:7919989] - Okamuro JK,Caster B,Villarroel R,Van Montagu M,Jofuku KD
The AP2 domain of APETALA2 defines a large new family of DNA binding proteins in Arabidopsis. Proc. Natl. Acad. Sci. U.S.A., 1997. 94(13): p. 7076-81 [PMID:9192694]
|