PlantTFDB
PlantRegMap/PlantTFDB v5.0
Plant Transcription Factor Database
Transcription Factor Information
Basic Information | Signature Domain | Sequence | 
Basic Information? help Back to Top
TF ID XP_010527213.1
Organism
Taxonomic ID
Taxonomic Lineage
cellular organisms; Eukaryota; Viridiplantae; Streptophyta; Streptophytina; Embryophyta; Tracheophyta; Euphyllophyta; Spermatophyta; Magnoliophyta; Mesangiospermae; eudicotyledons; Gunneridae; Pentapetalae; rosids; malvids; Brassicales; Cleomaceae; Tarenaya
Family B3
Protein Properties Length: 126aa    MW: 14180.4 Da    PI: 11.323
Description B3 family protein
Gene Model
Gene Model ID Type Source Coding Sequence
XP_010527213.1genomeNCBIView CDS
Signature Domain? help Back to Top
Signature Domain
No. Domain Score E-value Start End HMM Start HMM End
1B353.44.8e-176683498
                    SEEEEEETTS-EEEEEE..EEETTEEEE-TTHHHHHHHHT--TT-EEEEEE-SSSEE..EEEEE- CS
              B3 34 ktltledesgrsWevkliyrkksgryvltkGWkeFvkangLkegDfvvFkldgrsefelvvkvfr 98
                    ++l+ +d +  sW++++iyr++++r++lt+GW+ Fv+ ++L +gD+v+F +dg+s  +l+++++ 
  XP_010527213.1  6 QELVAKDIHESSWTFRHIYRGQPKRHLLTTGWSVFVSTKRLFAGDSVLFIRDGKS--QLLLGIRH 68
                    48999*********************************************76644..45888875 PP

Protein Features ? help Back to Top
3D Structure
Database Entry ID E-value Start End InterPro ID Description
SMARTSM010190.0087170IPR003340B3 DNA binding domain
PROSITE profilePS5086311.589170IPR003340B3 DNA binding domain
Gene3DG3DSA:2.40.330.103.0E-25283IPR015300DNA-binding pseudobarrel domain
SuperFamilySSF1019361.83E-22297IPR015300DNA-binding pseudobarrel domain
PfamPF023621.5E-14668IPR003340B3 DNA binding domain
CDDcd100171.81E-10667No hitNo description
Gene Ontology ? help Back to Top
GO Term GO Category GO Description
GO:0003677Molecular FunctionDNA binding
Sequence ? help Back to Top
Protein Sequence    Length: 126 aa     Download sequence    Send to blast
MQPPAQELVA KDIHESSWTF RHIYRGQPKR HLLTTGWSVF VSTKRLFAGD SVLFIRDGKS  60
QLLLGIRHAN RQQPALSSSV ISSDSMHIGI LAAAAHAATN NSPFTIFYNP RLFLHTFFKI  120
PKPPFP
3D Structure ? help Back to Top
Structure
PDB ID Evalue Query Start Query End Hit Start Hit End Description
4ldu_A1e-532111192301Auxin response factor 5
Search in ModeBase
Functional Description ? help Back to Top
Source Description
UniProtAuxin response factors (ARFs) are transcriptional factors that bind specifically to the DNA sequence 5'-TGTCTC-3' found in the auxin-responsive promoter elements (AuxREs). Act as a transcriptional activator of several tropic stimulus-induced (TSI) genes, including SAUR50. Formation of heterodimers with Aux/IAA proteins may alter their ability to modulate early auxin response genes expression. Required for differential growth responses of aerial tissues. Involved in ethylene responses. Regulates lateral root formation through direct regulation of LBD16 and/or LBD29. Functionally redundant with ARF19. Mediates embryo axis formation and vascular tissues differentiation. Functionally redundant with ARF5. {ECO:0000269|PubMed:12036261, ECO:0000269|PubMed:14973283, ECO:0000269|PubMed:16371470, ECO:0000269|PubMed:16461383, ECO:0000269|PubMed:17259263}.
Cis-element ? help Back to Top
SourceLink
PlantRegMapXP_010527213.1
Regulation -- PlantRegMap ? help Back to Top
Source Upstream Regulator Target Gene
PlantRegMapRetrieve-
Annotation -- Protein ? help Back to Top
Source Hit ID E-value Description
RefseqXP_010527213.19e-89PREDICTED: auxin response factor 7-like
SwissprotP930222e-53ARFG_ARATH; Auxin response factor 7
TrEMBLA0A498KLI94e-58A0A498KLI9_MALDO; Auxin response factor
STRINGXP_010527213.13e-88(Tarenaya hassleriana)
Best hit in Arabidopsis thaliana ? help Back to Top
Hit ID E-value Description
AT5G20730.11e-54ARF family protein
Publications ? help Back to Top
  1. Duarte JM, et al.
    Expression pattern shifts following duplication indicative of subfunctionalization and neofunctionalization in regulatory genes of Arabidopsis.
    Mol. Biol. Evol., 2006. 23(2): p. 469-78
    [PMID:16280546]
  2. Hu J,Zhang Y,Wang J,Zhou Y
    Glycerol affects root development through regulation of multiple pathways in Arabidopsis.
    PLoS ONE, 2014. 9(1): p. e86269
    [PMID:24465999]
  3. Mellor N, et al.
    Modelling of Arabidopsis LAX3 expression suggests auxin homeostasis.
    J. Theor. Biol., 2015. 366: p. 57-70
    [PMID:25446711]
  4. Gupta A,Singh M,Laxmi A
    Interaction between glucose and brassinosteroid during the regulation of lateral root development in Arabidopsis.
    Plant Physiol., 2015. 168(1): p. 307-20
    [PMID:25810094]
  5. Youn JH, et al.
    ARF7 increases the endogenous contents of castasterone through suppression of BAS1 expression in Arabidopsis thaliana.
    Phytochemistry, 2016. 122: p. 34-44
    [PMID:26608667]
  6. Porco S, et al.
    Lateral root emergence in Arabidopsis is dependent on transcription factor LBD29 regulation of auxin influx carrier LAX3.
    Development, 2016. 143(18): p. 3340-9
    [PMID:27578783]
  7. Carey NS,Krogan NT
    The role of AUXIN RESPONSE FACTORs in the development and differential growth of inflorescence stems.
    Plant Signal Behav, 2017. 12(4): p. e1307492
    [PMID:28340328]
  8. Olmo R, et al.
    Molecular Transducers from Roots Are Triggered in Arabidopsis Leaves by Root-Knot Nematodes for Successful Feeding Site Formation: A Conserved Post-Embryogenic De novo Organogenesis Program?
    Front Plant Sci, 2017. 8: p. 875
    [PMID:28603536]
  9. Sheng L, et al.
    Non-canonical WOX11-mediated root branching contributes to plasticity in Arabidopsis root system architecture.
    Development, 2017. 144(17): p. 3126-3133
    [PMID:28743799]
  10. Lee K,Seo PJ
    High-temperature promotion of callus formation requires the BIN2-ARF-LBD axis in Arabidopsis.
    Planta, 2017. 246(4): p. 797-802
    [PMID:28766014]
  11. Ayala-Rodríguez JÁ,Barrera-Ortiz S,Ruiz-Herrera LF,López-Bucio J
    Folic acid orchestrates root development linking cell elongation with auxin response and acts independently of the TARGET OF RAPAMYCIN signaling in Arabidopsis thaliana.
    Plant Sci., 2017. 264: p. 168-178
    [PMID:28969797]
  12. Nakamura M, et al.
    Auxin and ROP GTPase Signaling of Polar Nuclear Migration in Root Epidermal Hair Cells.
    Plant Physiol., 2018. 176(1): p. 378-391
    [PMID:29084900]
  13. Hong L, et al.
    Alternative polyadenylation is involved in auxin-based plant growth and development.
    Plant J., 2018. 93(2): p. 246-258
    [PMID:29155478]
  14. Lee K,Park OS,Seo PJ
    Arabidopsis ATXR2 deposits H3K36me3 at the promoters of LBD genes to facilitate cellular dedifferentiation.
    Sci Signal, 2018.
    [PMID:29184030]
  15. Prát T, et al.
    WRKY23 is a component of the transcriptional network mediating auxin feedback on PIN polarity.
    PLoS Genet., 2018. 14(1): p. e1007177
    [PMID:29377885]
  16. Kimura T, et al.
    Asymmetric Auxin Distribution is Not Required to Establish Root Phototropism in Arabidopsis.
    Plant Cell Physiol., 2018. 59(4): p. 823-835
    [PMID:29401292]
  17. Schoenaers S, et al.
    The Auxin-Regulated CrRLK1L Kinase ERULUS Controls Cell Wall Composition during Root Hair Tip Growth.
    Curr. Biol., 2018. 28(5): p. 722-732.e6
    [PMID:29478854]
  18. Huang KL, et al.
    The ARF7 and ARF19 Transcription Factors Positively Regulate PHOSPHATE STARVATION RESPONSE1 in Arabidopsis Roots.
    Plant Physiol., 2018. 178(1): p. 413-427
    [PMID:30026290]
  19. Hablak SG
    Features inheritance of root system Arabidopsis thaliana (L.) Heynh. the interaction of genes CTR1 AND ALF3, NPH4 and IAR2.
    Tsitol. Genet., 2019.
    [PMID:30484609]
  20. Orosa-Puente B, et al.
    Root branching toward water involves posttranslational modification of transcription factor ARF7.
    Science, 2018. 362(6421): p. 1407-1410
    [PMID:30573626]