PlantTFDB
PlantRegMap/PlantTFDB v5.0
Plant Transcription Factor Database
Transcription Factor Information
Basic Information | Signature Domain | Sequence | 
Basic Information? help Back to Top
TF ID Sopen03g037210.1
Organism
Taxonomic ID
Taxonomic Lineage
cellular organisms; Eukaryota; Viridiplantae; Streptophyta; Streptophytina; Embryophyta; Tracheophyta; Euphyllophyta; Spermatophyta; Magnoliophyta; Mesangiospermae; eudicotyledons; Gunneridae; Pentapetalae; asterids; lamiids; Solanales; Solanaceae; Solanoideae; Solaneae; Solanum; Lycopersicon
Family bHLH
Protein Properties Length: 534aa    MW: 57626.9 Da    PI: 5.9088
Description bHLH family protein
Gene Model
Gene Model ID Type Source Coding Sequence
Sopen03g037210.1genomespennView CDS
Signature Domain? help Back to Top
Signature Domain
No. Domain Score E-value Start End HMM Start HMM End
1HLH34.63.3e-11348390754
                       HHHHHHHHHHHHHHHHHHCTSCCC...TTS-STCHHHHHHHHHHHHHH CS
               HLH   7 erErrRRdriNsafeeLrellPkaskapskKlsKaeiLekAveYIksL 54 
                       ++ErrRR+++N+++  Lr+++Pk      +K++ a+iL  A++Y+k+L
  Sopen03g037210.1 348 MAERRRRKKLNDRLYMLRSVVPKI-----TKMDRASILGDAIKYLKEL 390
                       79*********************7.....7****************98 PP

Protein Features ? help Back to Top
3D Structure
Database Entry ID E-value Start End InterPro ID Description
PROSITE profilePS5088815.599341390IPR011598Myc-type, basic helix-loop-helix (bHLH) domain
SuperFamilySSF474593.79E-16344417IPR011598Myc-type, basic helix-loop-helix (bHLH) domain
PfamPF000107.8E-9347390IPR011598Myc-type, basic helix-loop-helix (bHLH) domain
SMARTSM003531.0E-13347396IPR011598Myc-type, basic helix-loop-helix (bHLH) domain
CDDcd000831.48E-12348394No hitNo description
Gene3DG3DSA:4.10.280.109.5E-15348408IPR011598Myc-type, basic helix-loop-helix (bHLH) domain
CDDcd048731.20E-5462522No hitNo description
Gene Ontology ? help Back to Top
GO Term GO Category GO Description
GO:0046983Molecular Functionprotein dimerization activity
Sequence ? help Back to Top
Protein Sequence    Length: 534 aa     Download sequence    Send to blast
MIIGVNDMGW IDGKEDGGTG SWVNQNNENH QQNNGGFPNE NHQLNNGGFS NFQAMVDDGG  60
VEWFMGGGDS DNHHINNNNN NGGGGGGSNM QSHISYSTSF TEAENSLLLQ PIDSSASCSP  120
VSGNVFNNID PSQVNFFMPQ KSTIPSSLTG LSNNPMDNSF NLGMLNQAGN GMMNTGYHHL  180
GSPNQMGTNN LSSYTQFSSP NLLQLPQVAG GYSSMGFGAN NSANGNTLFL NRSRTHKPLD  240
NFASIGAQPT LFQKRIAKNL VSNGENLGTE IGQSSSNPTD RKRKSSMTDE FEDVSMDGTL  300
NYDSDEFMDI SNKMEDGIKI GDSSNAASTV SGADQKGKKK GPPAKNLMAE RRRRKKLNDR  360
LYMLRSVVPK ITKMDRASIL GDAIKYLKEL LHDINELHNE LESTPANNSS LSPATSFHPL  420
TPTASALPSR IKEELVPSPL SSPTGQPARI EVRVREGRAV NIHMICSRKP GVLLSTMKAL  480
DSLGLDIQQA VISCFNGFVL DVFRAEQSNE GQDMHPDQIK AVLMETAGFQ GGAI
Nucleic Localization Signal ? help Back to Top
NLS
No. Start End Sequence
1337355KKKGPPAKNLMAERRRRKK
2349356ERRRRKKL
Functional Description ? help Back to Top
Source Description
UniProtTranscriptional activator that regulates the cold-induced transcription of CBF/DREB1 genes. Binds specifically to the MYC recognition sites (5'-CANNTG-3') found in the CBF3/DREB1A promoter. Mediates stomatal differentiation in the epidermis probably by controlling successive roles of SPCH, MUTE, and FAMA. Functions as a dimer with SPCH during stomatal initiation (PubMed:18641265, PubMed:28507175). {ECO:0000269|PubMed:17416732, ECO:0000269|PubMed:18641265, ECO:0000269|PubMed:28507175}.
Regulation -- Description ? help Back to Top
Source Description
UniProtINDUCTION: By high-salt stress, cold stress and abscisic acid (ABA) treatment.
Regulation -- PlantRegMap ? help Back to Top
Source Upstream Regulator Target Gene
PlantRegMapRetrieve-
Annotation -- Nucleotide ? help Back to Top
Source Hit ID E-value Description
GenBankBT0134330.0BT013433.1 Lycopersicon esculentum clone 132073R, mRNA sequence.
Annotation -- Protein ? help Back to Top
Source Hit ID E-value Description
RefseqXP_015070765.10.0transcription factor ICE1-like
RefseqXP_015070766.10.0transcription factor ICE1-like
SwissprotQ9LSE21e-117ICE1_ARATH; Transcription factor ICE1
TrEMBLA0A160SVP10.0A0A160SVP1_SOLCI; Transcription factor Inducer of CBF expression 1 (Fragment)
STRINGSolyc03g118310.2.10.0(Solanum lycopersicum)
Orthologous Group ? help Back to Top
LineageOrthologous Group IDTaxa NumberGene Number
AsteridsOGEA27032452
Best hit in Arabidopsis thaliana ? help Back to Top
Hit ID E-value Description
AT3G26744.41e-119bHLH family protein
Publications ? help Back to Top
  1. Chen Y, et al.
    Ambient temperature enhanced freezing tolerance of Chrysanthemum dichrum CdICE1 Arabidopsis via miR398.
    BMC Biol., 2013. 11: p. 121
    [PMID:24350981]
  2. Xu F, et al.
    Increased drought tolerance through the suppression of ESKMO1 gene and overexpression of CBF-related genes in Arabidopsis.
    PLoS ONE, 2014. 9(9): p. e106509
    [PMID:25184213]
  3. Jiang W,Wu J,Zhang Y,Yin L,Lu J
    Isolation of a WRKY30 gene from Muscadinia rotundifolia (Michx) and validation of its function under biotic and abiotic stresses.
    Protoplasma, 2015. 252(5): p. 1361-74
    [PMID:25643917]
  4. Lang Z,Zhu J
    OST1 phosphorylates ICE1 to enhance plant cold tolerance.
    Sci China Life Sci, 2015. 58(3): p. 317-8
    [PMID:25680856]
  5. Juan JX, et al.
    Agrobacterium-mediated transformation of tomato with the ICE1 transcription factor gene.
    Genet. Mol. Res., 2015. 14(1): p. 597-608
    [PMID:25729995]
  6. Lee HG,Seo PJ
    The MYB96-HHP module integrates cold and abscisic acid signaling to activate the CBF-COR pathway in Arabidopsis.
    Plant J., 2015. 82(6): p. 962-77
    [PMID:25912720]
  7. Horst RJ, et al.
    Molecular Framework of a Regulatory Circuit Initiating Two-Dimensional Spatial Patterning of Stomatal Lineage.
    PLoS Genet., 2015. 11(7): p. e1005374
    [PMID:26203655]
  8. Lee JH,Jung JH,Park CM
    INDUCER OF CBF EXPRESSION 1 integrates cold signals into FLOWERING LOCUS C-mediated flowering pathways in Arabidopsis.
    Plant J., 2015. 84(1): p. 29-40
    [PMID:26248809]
  9. Wang CL,Zhang SC,Qi SD,Zheng CC,Wu CA
    Delayed germination of Arabidopsis seeds under chilling stress by overexpressing an abiotic stress inducible GhTPS11.
    Gene, 2016. 575(2 Pt 1): p. 206-12
    [PMID:26325072]
  10. Lee JH,Park CM
    Integration of photoperiod and cold temperature signals into flowering genetic pathways in Arabidopsis.
    Plant Signal Behav, 2015. 10(11): p. e1089373
    [PMID:26430754]
  11. Su F, et al.
    Burkholderia phytofirmans PsJN reduces impact of freezing temperatures on photosynthesis in Arabidopsis thaliana.
    Front Plant Sci, 2015. 6: p. 810
    [PMID:26483823]
  12. Klermund C, et al.
    LLM-Domain B-GATA Transcription Factors Promote Stomatal Development Downstream of Light Signaling Pathways in Arabidopsis thaliana Hypocotyls.
    Plant Cell, 2016. 28(3): p. 646-60
    [PMID:26917680]
  13. Chen L, et al.
    NRPB3, the third largest subunit of RNA polymerase II, is essential for stomatal patterning and differentiation in Arabidopsis.
    Development, 2016. 143(9): p. 1600-11
    [PMID:26989174]
  14. Lu X, et al.
    A novel Zea mays ssp. mexicana L. MYC-type ICE-like transcription factor gene ZmmICE1, enhances freezing tolerance in transgenic Arabidopsis thaliana.
    Plant Physiol. Biochem., 2017. 113: p. 78-88
    [PMID:28189052]
  15. Deng C,Ye H,Fan M,Pu T,Yan J
    The rice transcription factors OsICE confer enhanced cold tolerance in transgenic Arabidopsis.
    Plant Signal Behav, 2017. 12(5): p. e1316442
    [PMID:28414264]
  16. de Marcos A, et al.
    A Mutation in the bHLH Domain of the SPCH Transcription Factor Uncovers a BR-Dependent Mechanism for Stomatal Development.
    Plant Physiol., 2017. 174(2): p. 823-842
    [PMID:28507175]
  17. Kim SH, et al.
    Phosphorylation of the transcriptional repressor MYB15 by mitogen-activated protein kinase 6 is required for freezing tolerance in Arabidopsis.
    Nucleic Acids Res., 2017. 45(11): p. 6613-6627
    [PMID:28510716]
  18. Pal S, et al.
    TransDetect Identifies a New Regulatory Module Controlling Phosphate Accumulation.
    Plant Physiol., 2017. 175(2): p. 916-926
    [PMID:28827455]
  19. Zhao C, et al.
    MAP Kinase Cascades Regulate the Cold Response by Modulating ICE1 Protein Stability.
    Dev. Cell, 2017. 43(5): p. 618-629.e5
    [PMID:29056551]
  20. Li H, et al.
    MPK3- and MPK6-Mediated ICE1 Phosphorylation Negatively Regulates ICE1 Stability and Freezing Tolerance in Arabidopsis.
    Dev. Cell, 2017. 43(5): p. 630-642.e4
    [PMID:29056553]
  21. Lee JH,Jung JH,Park CM
    Light Inhibits COP1-Mediated Degradation of ICE Transcription Factors to Induce Stomatal Development in Arabidopsis.
    Plant Cell, 2017. 29(11): p. 2817-2830
    [PMID:29070509]
  22. Liu Y,Zhou J
    MAPping Kinase Regulation of ICE1 in Freezing Tolerance.
    Trends Plant Sci., 2018. 23(2): p. 91-93
    [PMID:29248419]
  23. Xie H, et al.
    Variation in ICE1 Methylation Primarily Determines Phenotypic Variation in Freezing Tolerance in Arabidopsis thaliana.
    Plant Cell Physiol., 2019. 60(1): p. 152-165
    [PMID:30295898]