PlantTFDB
PlantRegMap/PlantTFDB v5.0
Plant Transcription Factor Database
Transcription Factor Information
Basic Information | Signature Domain | Sequence | 
Basic Information? help Back to Top
TF ID 114141
Common NamePIF3, SELMODRAFT_114141
Organism
Taxonomic ID
Taxonomic Lineage
cellular organisms; Eukaryota; Viridiplantae; Streptophyta; Streptophytina; Embryophyta; Tracheophyta; Lycopodiidae; Selaginellales; Selaginellaceae; Selaginella
Family bHLH
Protein Properties Length: 86aa    MW: 9548.92 Da    PI: 10.7172
Description bHLH family protein
Gene Model
Gene Model ID Type Source Coding Sequence
114141genomeJGIView CDS
Signature Domain? help Back to Top
Signature Domain
No. Domain Score E-value Start End HMM Start HMM End
1HLH55.88.4e-182470455
            HHHHHHHHHHHHHHHHHHHHHCTSCCC...TTS-STCHHHHHHHHHHHHHHH CS
     HLH  4 ahnerErrRRdriNsafeeLrellPkaskapskKlsKaeiLekAveYIksLq 55
             hn  ErrRRdriN+++  L+el+P++      K +Ka++L +A+eY+k+Lq
  114141 24 VHNLSERRRRDRINEKMKALQELIPNS-----NKTDKASMLDEAIEYLKMLQ 70
            6*************************7.....5******************9 PP

Protein Features ? help Back to Top
3D Structure
Database Entry ID E-value Start End InterPro ID Description
Gene3DG3DSA:4.10.280.101.3E-201777IPR011598Myc-type, basic helix-loop-helix (bHLH) domain
SuperFamilySSF474597.98E-221778IPR011598Myc-type, basic helix-loop-helix (bHLH) domain
PROSITE profilePS5088818.4952069IPR011598Myc-type, basic helix-loop-helix (bHLH) domain
CDDcd000833.14E-142374No hitNo description
PfamPF000102.9E-152470IPR011598Myc-type, basic helix-loop-helix (bHLH) domain
SMARTSM003536.0E-182675IPR011598Myc-type, basic helix-loop-helix (bHLH) domain
Gene Ontology ? help Back to Top
GO Term GO Category GO Description
GO:0009704Biological Processde-etiolation
GO:0009740Biological Processgibberellic acid mediated signaling pathway
GO:0010017Biological Processred or far-red light signaling pathway
GO:0031539Biological Processpositive regulation of anthocyanin metabolic process
GO:0005634Cellular Componentnucleus
GO:0003677Molecular FunctionDNA binding
GO:0042802Molecular Functionidentical protein binding
GO:0046983Molecular Functionprotein dimerization activity
Sequence ? help Back to Top
Protein Sequence    Length: 86 aa     Download sequence    Send to blast
GESVDVKKAP PARTSSKRSR AAEVHNLSER RRRDRINEKM KALQELIPNS NKTDKASMLD  60
EAIEYLKMLQ LQLQVLSPGS SKVSS*
Nucleic Localization Signal ? help Back to Top
NLS
No. Start End Sequence
12833ERRRRD
Functional Description ? help Back to Top
Source Description
UniProtTranscription factor acting positively in the phytochrome signaling pathway. Activates transcription by binding to the G box (5'-CACGTG-3'). {ECO:0000269|PubMed:10466729, ECO:0000269|PubMed:10797009}.
Binding Motif ? help Back to Top
Motif ID Method Source Motif file
MP00081ChIP-seqTransfer from AT1G09530Download
Motif logo
Regulation -- Description ? help Back to Top
Source Description
UniProtINDUCTION: By UV treatment. {ECO:0000269|PubMed:12679534}.
Regulation -- PlantRegMap ? help Back to Top
Source Upstream Regulator Target Gene
PlantRegMapRetrieveRetrieve
Annotation -- Protein ? help Back to Top
Source Hit ID E-value Description
RefseqXP_002982619.22e-43transcription factor PIF3
SwissprotO805364e-32PIF3_ARATH; Transcription factor PIF3
TrEMBLD8SCD32e-53D8SCD3_SELML; Uncharacterized protein PIF3 (Fragment)
STRINGEFJ178393e-54(Selaginella moellendorffii)
Orthologous Group ? help Back to Top
LineageOrthologous Group IDTaxa NumberGene Number
Representative plantOGRP25816128
Best hit in Arabidopsis thaliana ? help Back to Top
Hit ID E-value Description
AT1G09530.22e-34phytochrome interacting factor 3
Publications ? help Back to Top
  1. Skinner MK,Rawls A,Wilson-Rawls J,Roalson EH
    Basic helix-loop-helix transcription factor gene family phylogenetics and nomenclature.
    Differentiation, 2010. 80(1): p. 1-8
    [PMID:20219281]
  2. Banks JA, et al.
    The Selaginella genome identifies genetic changes associated with the evolution of vascular plants.
    Science, 2011. 332(6032): p. 960-3
    [PMID:21551031]
  3. Zhong S, et al.
    Ethylene-orchestrated circuitry coordinates a seedling's response to soil cover and etiolated growth.
    Proc. Natl. Acad. Sci. U.S.A., 2014. 111(11): p. 3913-20
    [PMID:24599595]
  4. Van Buskirk EK,Reddy AK,Nagatani A,Chen M
    Photobody Localization of Phytochrome B Is Tightly Correlated with Prolonged and Light-Dependent Inhibition of Hypocotyl Elongation in the Dark.
    Plant Physiol., 2014. 165(2): p. 595-607
    [PMID:24769533]
  5. Zhao Y,Zhou J,Xing D
    Phytochrome B-mediated activation of lipoxygenase modulates an excess red light-induced defence response in Arabidopsis.
    J. Exp. Bot., 2014. 65(17): p. 4907-18
    [PMID:24916071]
  6. Zhang D,Jing Y,Jiang Z,Lin R
    The Chromatin-Remodeling Factor PICKLE Integrates Brassinosteroid and Gibberellin Signaling during Skotomorphogenic Growth in Arabidopsis.
    Plant Cell, 2014. 26(6): p. 2472-2485
    [PMID:24920333]
  7. Wang Y, et al.
    Arabidopsis noncoding RNA mediates control of photomorphogenesis by red light.
    Proc. Natl. Acad. Sci. U.S.A., 2014. 111(28): p. 10359-64
    [PMID:24982146]
  8. Zhu L,Huq E
    Suicidal co-degradation of the phytochrome interacting factor 3 and phytochrome B in response to light.
    Mol Plant, 2014. 7(12): p. 1709-11
    [PMID:25281666]
  9. Adams E,Diaz C,Hong JP,Shin R
    14-3-3 proteins participate in light signaling through association with PHYTOCHROME INTERACTING FACTORs.
    Int J Mol Sci, 2014. 15(12): p. 22801-14
    [PMID:25501334]
  10. Horvath DP, et al.
    RNAseq reveals weed-induced PIF3-like as a candidate target to manipulate weed stress response in soybean.
    New Phytol., 2015. 207(1): p. 196-210
    [PMID:25711503]
  11. Geilen K,Böhmer M
    Dynamic subnuclear relocalisation of WRKY40 in response to Abscisic acid in Arabidopsis thaliana.
    Sci Rep, 2015. 5: p. 13369
    [PMID:26293691]
  12. Galvão VC,Collani S,Horrer D,Schmid M
    Gibberellic acid signaling is required for ambient temperature-mediated induction of flowering in Arabidopsis thaliana.
    Plant J., 2015. 84(5): p. 949-62
    [PMID:26466761]
  13. Yue J, et al.
    TOPP4 Regulates the Stability of PHYTOCHROME INTERACTING FACTOR5 during Photomorphogenesis in Arabidopsis.
    Plant Physiol., 2016. 170(3): p. 1381-97
    [PMID:26704640]
  14. Eprintsev AT,Fedorin DN,Sazonova OV,Igamberdiev AU
    Light inhibition of fumarase in Arabidopsis leaves is phytochrome A-dependent and mediated by calcium.
    Plant Physiol. Biochem., 2016. 102: p. 161-6
    [PMID:26949024]
  15. Soy J, et al.
    Molecular convergence of clock and photosensory pathways through PIF3-TOC1 interaction and co-occupancy of target promoters.
    Proc. Natl. Acad. Sci. U.S.A., 2016. 113(17): p. 4870-5
    [PMID:27071129]
  16. Pacín M,Semmoloni M,Legris M,Finlayson SA,Casal JJ
    Convergence of CONSTITUTIVE PHOTOMORPHOGENESIS 1 and PHYTOCHROME INTERACTING FACTOR signalling during shade avoidance.
    New Phytol., 2016. 211(3): p. 967-79
    [PMID:27105120]
  17. Yoo J,Cho MH,Lee SW,Bhoo SH
    Phytochrome-interacting ankyrin repeat protein 2 modulates phytochrome A-mediated PIF3 phosphorylation in light signal transduction.
    J. Biochem., 2016. 160(4): p. 243-249
    [PMID:27143545]
  18. Kumar I,Swaminathan K,Hudson K,Hudson ME
    Evolutionary divergence of phytochrome protein function in Zea mays PIF3 signaling.
    J. Exp. Bot., 2016. 67(14): p. 4231-40
    [PMID:27262126]
  19. Li K, et al.
    DELLA-mediated PIF degradation contributes to coordination of light and gibberellin signalling in Arabidopsis.
    Nat Commun, 2016. 7: p. 11868
    [PMID:27282989]
  20. Jeong AR, et al.
    New Constitutively Active Phytochromes Exhibit Light-Independent Signaling Activity.
    Plant Physiol., 2016. 171(4): p. 2826-40
    [PMID:27325667]
  21. Martin G,Soy J,Monte E
    Genomic Analysis Reveals Contrasting PIFq Contribution to Diurnal Rhythmic Gene Expression in PIF-Induced and -Repressed Genes.
    Front Plant Sci, 2016. 7: p. 962
    [PMID:27458465]
  22. Yu Y,Huang R
    Integration of Ethylene and Light Signaling Affects Hypocotyl Growth in Arabidopsis.
    Front Plant Sci, 2017. 8: p. 57
    [PMID:28174592]
  23. Zentella R, et al.
    The Arabidopsis O-fucosyltransferase SPINDLY activates nuclear growth repressor DELLA.
    Nat. Chem. Biol., 2017. 13(5): p. 479-485
    [PMID:28244988]
  24. Ling JJ,Li J,Zhu D,Deng XW
    Noncanonical role of Arabidopsis COP1/SPA complex in repressing BIN2-mediated PIF3 phosphorylation and degradation in darkness.
    Proc. Natl. Acad. Sci. U.S.A., 2017. 114(13): p. 3539-3544
    [PMID:28292892]
  25. Kasulin L, et al.
    A single haplotype hyposensitive to light and requiring strong vernalization dominates Arabidopsis thaliana populations in Patagonia, Argentina.
    Mol. Ecol., 2017. 26(13): p. 3389-3404
    [PMID:28316114]
  26. Shor E,Paik I,Kangisser S,Green R,Huq E
    PHYTOCHROME INTERACTING FACTORS mediate metabolic control of the circadian system in Arabidopsis.
    New Phytol., 2017. 215(1): p. 217-228
    [PMID:28440582]
  27. Ni W, et al.
    PPKs mediate direct signal transfer from phytochrome photoreceptors to transcription factor PIF3.
    Nat Commun, 2017. 8: p. 15236
    [PMID:28492231]
  28. Zhang X, et al.
    A PIF1/PIF3-HY5-BBX23 Transcription Factor Cascade Affects Photomorphogenesis.
    Plant Physiol., 2017. 174(4): p. 2487-2500
    [PMID:28687557]
  29. Paik I,Kathare PK,Kim JI,Huq E
    Expanding Roles of PIFs in Signal Integration from Multiple Processes.
    Mol Plant, 2017. 10(8): p. 1035-1046
    [PMID:28711729]
  30. Dong J, et al.
    Light-Dependent Degradation of PIF3 by SCFEBF1/2 Promotes a Photomorphogenic Response in Arabidopsis.
    Curr. Biol., 2017. 27(16): p. 2420-2430.e6
    [PMID:28736168]
  31. Jiang B, et al.
    PIF3 is a negative regulator of the CBF pathway and freezing tolerance in Arabidopsis.
    Proc. Natl. Acad. Sci. U.S.A., 2017. 114(32): p. E6695-E6702
    [PMID:28739888]
  32. Hochrein L,Machens F,Messerschmidt K,Mueller-Roeber B
    PhiReX: a programmable and red light-regulated protein expression switch for yeast.
    Nucleic Acids Res., 2017. 45(15): p. 9193-9205
    [PMID:28911120]
  33. Liu X, et al.
    EIN3 and PIF3 Form an Interdependent Module That Represses Chloroplast Development in Buried Seedlings.
    Plant Cell, 2017. 29(12): p. 3051-3067
    [PMID:29114016]
  34. Wang Y,Li J,Deng XW,Zhu D
    Arabidopsis noncoding RNA modulates seedling greening during deetiolation.
    Sci China Life Sci, 2018. 61(2): p. 199-203
    [PMID:29143279]
  35. Ma Q,Wang X,Sun J,Mao T
    Coordinated Regulation of Hypocotyl Cell Elongation by Light and Ethylene through a Microtubule Destabilizing Protein.
    Plant Physiol., 2018. 176(1): p. 678-690
    [PMID:29167353]
  36. Qiu Y, et al.
    Mechanism of early light signaling by the carboxy-terminal output module of Arabidopsis phytochrome B.
    Nat Commun, 2017. 8(1): p. 1905
    [PMID:29199270]
  37. Xin X, et al.
    Arabidopsis MKK10-MPK6 mediates red-light-regulated opening of seedling cotyledons through phosphorylation of PIF3.
    J. Exp. Bot., 2018. 69(3): p. 423-439
    [PMID:29244171]