PlantTFDB
PlantRegMap/PlantTFDB v5.0
Plant Transcription Factor Database
Transcription Factor Information
Basic Information | Signature Domain | Sequence | 
Basic Information? help Back to Top
TF ID Solyc05g015730.1.1
Organism
Taxonomic ID
Taxonomic Lineage
cellular organisms; Eukaryota; Viridiplantae; Streptophyta; Streptophytina; Embryophyta; Tracheophyta; Euphyllophyta; Spermatophyta; Magnoliophyta; Mesangiospermae; eudicotyledons; Gunneridae; Pentapetalae; asterids; lamiids; Solanales; Solanaceae; Solanoideae; Solaneae; Solanum; Lycopersicon
Family M-type_MADS
Protein Properties Length: 81aa    MW: 9311.97 Da    PI: 11.0149
Description M-type_MADS family protein
Gene Model
Gene Model ID Type Source Coding Sequence
Solyc05g015730.1.1genomeITAGView CDS
Signature Domain? help Back to Top
Signature Domain
No. Domain Score E-value Start End HMM Start HMM End
1SRF-TF87.57.6e-28959151
                        S---SHHHHHHHHHHHHHHHHHHHHHHHHHHT-EEEEEEE-TTSEEEEEE- CS
              SRF-TF  1 krienksnrqvtfskRrngilKKAeELSvLCdaevaviifsstgklyeyss 51
                        krie+ks rq tfskRrng++KKA+ LSvLCd++vav++fss+g+l+e+ss
  Solyc05g015730.1.1  9 KRIEDKSSRQATFSKRRNGLMKKAKQLSVLCDVDVAVLVFSSRGRLFEFSS 59
                        79***********************************************96 PP

Protein Features ? help Back to Top
3D Structure
Database Entry ID E-value Start End InterPro ID Description
SMARTSM004324.6E-37160IPR002100Transcription factor, MADS-box
PROSITE profilePS5006630.473161IPR002100Transcription factor, MADS-box
CDDcd002652.27E-34260No hitNo description
SuperFamilySSF554553.01E-28261IPR002100Transcription factor, MADS-box
PROSITE patternPS003500357IPR002100Transcription factor, MADS-box
PRINTSPR004041.1E-27323IPR002100Transcription factor, MADS-box
PfamPF003192.9E-261057IPR002100Transcription factor, MADS-box
PRINTSPR004041.1E-272338IPR002100Transcription factor, MADS-box
PRINTSPR004041.1E-273859IPR002100Transcription factor, MADS-box
Gene Ontology ? help Back to Top
GO Term GO Category GO Description
GO:0006355Biological Processregulation of transcription, DNA-templated
GO:0005634Cellular Componentnucleus
GO:0003677Molecular FunctionDNA binding
GO:0046983Molecular Functionprotein dimerization activity
Sequence ? help Back to Top
Protein Sequence    Length: 81 aa     Download sequence    Send to blast
MGRKKVEIKR IEDKSSRQAT FSKRRNGLMK KAKQLSVLCD VDVAVLVFSS RGRLFEFSST  60
NRFFFYLFLA NSLLDPYIVL *
3D Structure ? help Back to Top
Structure
PDB ID Evalue Query Start Query End Hit Start Hit End Description
1tqe_P2e-20161161Myocyte-specific enhancer factor 2B
1tqe_Q2e-20161161Myocyte-specific enhancer factor 2B
1tqe_R2e-20161161Myocyte-specific enhancer factor 2B
1tqe_S2e-20161161Myocyte-specific enhancer factor 2B
6c9l_A2e-20161161Myocyte-specific enhancer factor 2B
6c9l_B2e-20161161Myocyte-specific enhancer factor 2B
6c9l_C2e-20161161Myocyte-specific enhancer factor 2B
6c9l_D2e-20161161Myocyte-specific enhancer factor 2B
6c9l_E2e-20161161Myocyte-specific enhancer factor 2B
6c9l_F2e-20161161Myocyte-specific enhancer factor 2B
Search in ModeBase
Expression -- Description ? help Back to Top
Source Description
UniprotDEVELOPMENTAL STAGE: Expressed at early stage of flower development in floral meristem, and at later stage in lemma, palea and carpel primordia. {ECO:0000269|PubMed:11466523}.
UniprotDEVELOPMENTAL STAGE: Expressed at early stage of flower development in floral meristem, and at later stage in lemma, palea and carpel primordia. {ECO:0000269|PubMed:16146529}.
UniprotDEVELOPMENTAL STAGE: Found in shoots of non-flowering plants grown under long-day conditions at days 4 to 15, and in shoots of plants grown under short-day conditions at days 4 to 11 after germination. Expressed in embryos from the early globular stage. FLC is not imprinted and both parental alleles contribute equally to expression in embryos. Expression is repressed during gametogenesis, and is then reactivated after fertilization in embryos. {ECO:0000269|PubMed:19121105}.
UniprotTISSUE SPECIFICITY: Expressed in anthers. Weakly expressed in carpels. {ECO:0000269|PubMed:9085264}.
UniprotTISSUE SPECIFICITY: Expressed in lemmas, paleas and pistils. Weakly expressed in carpels. {ECO:0000269|PubMed:7948920}.
UniprotTISSUE SPECIFICITY: High expression in the vegetative apex and in root tissue and lower expression in leaves and stems. Not detected in young tissues of the inflorescence. Before fertilization, expressed in ovules, but not in pollen or stamens, of non-vernalized plants. After vernalization, not detected in ovules. {ECO:0000269|PubMed:19121105}.
Functional Description ? help Back to Top
Source Description
UniProtProbable transcription factor.
UniProtProbable transcription factor involved in the development of floral organs. Required for the formation of inner floral organs (lodicules, stamens and carpels, or whorls 2, 3 and 4) and the lemma and palea (whorl 1), which are grass floral organs analogous to sepals. May be involved in the control of flowering time. Seems to act as transcriptional activator. May act upstream of the auxin-responsive protein GH3.8. {ECO:0000269|PubMed:10852934, ECO:0000269|PubMed:11466523, ECO:0000269|PubMed:16217607, ECO:0000269|PubMed:7948920, ECO:0000269|Ref.11}.
UniProtProbable transcription factor involved in the development of floral organs. Required for the formation of inner floral organs (lodicules, stamens and carpels, or whorls 2, 3 and 4) and the lemma and palea (whorl 1), which are grass floral organs analogous to sepals. May be involved in the control of flowering time. Seems to act as transcriptional activator. May act upstream of the auxin-responsive protein GH3.8. {ECO:0000269|PubMed:16146529}.
UniProtProbable transcription factor. May be involved in the control of flowering time. {ECO:0000269|PubMed:16217607, ECO:0000269|PubMed:9085264, ECO:0000269|Ref.8}.
UniProtPutative transcription factor that seems to play a central role in the regulation of flowering time in the late-flowering phenotype by interacting with 'FRIGIDA', the autonomous and the vernalization flowering pathways. Inhibits flowering by repressing 'SUPPRESSOR OF OVEREXPRESSION OF CONSTANS 1'. {ECO:0000269|PubMed:10716723, ECO:0000269|PubMed:11283346, ECO:0000269|PubMed:19121105}.
Cis-element ? help Back to Top
SourceLink
PlantRegMapSolyc05g015730.1.1
Regulation -- Description ? help Back to Top
Source Description
UniProtINDUCTION: Epigenetically down-regulated by vernalization. Vernalization repression is initiated by VIN3. Repressed by silencing mediated by polycomb group (PcG) protein complex containing EMF1 and EMF2. Up-regulated by HUA2. Down-regulated by VOZ1 and/or VOZ2. Down-regulated by RBG7. {ECO:0000269|PubMed:14712276, ECO:0000269|PubMed:15659097, ECO:0000269|PubMed:18573194, ECO:0000269|PubMed:19783648, ECO:0000269|PubMed:22904146}.
Regulation -- PlantRegMap ? help Back to Top
Source Upstream Regulator Target Gene
PlantRegMapRetrieve-
Annotation -- Nucleotide ? help Back to Top
Source Hit ID E-value Description
GenBankAJ1322236e-06Lycopersicon esculentum mRNA for hexose transporter (HT1), partial
Annotation -- Protein ? help Back to Top
Source Hit ID E-value Description
RefseqXP_010321013.18e-36agamous-like MADS-box protein AGL27
RefseqXP_010321014.18e-36agamous-like MADS-box protein AGL27
SwissprotA2XDY17e-25MADS1_ORYSI; MADS-box transcription factor 1
SwissprotA2Y9P05e-25MADS5_ORYSI; MADS-box transcription factor 5
SwissprotQ0DEB85e-25MADS5_ORYSJ; MADS-box transcription factor 5
SwissprotQ10PZ97e-25MADS1_ORYSJ; MADS-box transcription factor 1
SwissprotQ9S7Q73e-25FLC_ARATH; MADS-box protein FLOWERING LOCUS C
TrEMBLA0A0V0HPI53e-35A0A0V0HPI5_SOLCH; Putative ovule protein
TrEMBLA0A0V0HZX33e-34A0A0V0HZX3_SOLCH; Putative agamous-like MADS-box protein AGL27-like
STRINGSolyc05g015730.1.11e-50(Solanum lycopersicum)
Orthologous Group ? help Back to Top
LineageOrthologous Group IDTaxa NumberGene Number
AsteridsOGEA4024625
Representative plantOGRP1617761
Best hit in Arabidopsis thaliana ? help Back to Top
Hit ID E-value Description
AT5G10140.41e-27MIKC_MADS family protein
Publications ? help Back to Top
  1. Jia H, et al.
    Characterization and transcriptional profiles of two rice MADS-box genes.
    Plant Sci., 2000. 155(2): p. 115-122
    [PMID:10814814]
  2. Sung SK, et al.
    Characterization of MADS box genes from hot pepper.
    Mol. Cells, 2001. 11(3): p. 352-9
    [PMID:11459226]
  3. Kim S,Kim SR,An CS,Hong YN,Lee KW
    Constitutive expression of rice MADS box gene using seed explants in hot pepper (Capsicum annuum L.).
    Mol. Cells, 2001. 12(2): p. 221-6
    [PMID:11710525]
  4. Jang S,An K,Lee S,An G
    Characterization of tobacco MADS-box genes involved in floral initiation.
    Plant Cell Physiol., 2002. 43(2): p. 230-8
    [PMID:11867703]
  5. Ronai Z, et al.
    Transcription factor binding study by capillary zone electrophoretic mobility shift assay.
    Electrophoresis, 2003. 24(1-2): p. 96-100
    [PMID:12652578]
  6. Kikuchi S, et al.
    Collection, mapping, and annotation of over 28,000 cDNA clones from japonica rice.
    Science, 2003. 301(5631): p. 376-9
    [PMID:12869764]
  7. Nam J, et al.
    Type I MADS-box genes have experienced faster birth-and-death evolution than type II MADS-box genes in angiosperms.
    Proc. Natl. Acad. Sci. U.S.A., 2004. 101(7): p. 1910-5
    [PMID:14764899]
  8. Malcomber ST,Kellogg EA
    Heterogeneous expression patterns and separate roles of the SEPALLATA gene LEAFY HULL STERILE1 in grasses.
    Plant Cell, 2004. 16(7): p. 1692-706
    [PMID:15208396]
  9. Ruffel S, et al.
    Structural analysis of the eukaryotic initiation factor 4E gene controlling potyvirus resistance in pepper: exploitation of a BAC library.
    Gene, 2004. 338(2): p. 209-16
    [PMID:15315824]
  10. Kang HG,An G
    Morphological alterations by ectopic expression of the rice OsMADS4 gene in tobacco plants.
    Plant Cell Rep., 2005. 24(2): p. 120-6
    [PMID:15703945]
  11. Wang Y,van der Hoeven RS,Nielsen R,Mueller LA,Tanksley SD
    Characteristics of the tomato nuclear genome as determined by sequencing undermethylated EcoRI digested fragments.
    Theor. Appl. Genet., 2005. 112(1): p. 72-84
    [PMID:16208505]
  12. Brenner ED, et al.
    EST analysis in Ginkgo biloba: an assessment of conserved developmental regulators and gymnosperm specific genes.
    BMC Genomics, 2005. 6: p. 143
    [PMID:16225698]
  13. Chen ZX, et al.
    Morphogenesis and molecular basis on naked seed rice, a novel homeotic mutation of OsMADS1 regulating transcript level of AP3 homologue in rice.
    Planta, 2006. 223(5): p. 882-90
    [PMID:16254725]
  14. Qu LJ,Zhu YX
    Transcription factor families in Arabidopsis: major progress and outstanding issues for future research.
    Curr. Opin. Plant Biol., 2006. 9(5): p. 544-9
    [PMID:16877030]
  15. Kater MM,Dreni L,Colombo L
    Functional conservation of MADS-box factors controlling floral organ identity in rice and Arabidopsis.
    J. Exp. Bot., 2006. 57(13): p. 3433-44
    [PMID:16968881]
  16. Yamaguchi T,Hirano HY
    Function and diversification of MADS-box genes in rice.
    ScientificWorldJournal, 2006. 6: p. 1923-32
    [PMID:17205197]
  17. Whipple CJ,Zanis MJ,Kellogg EA,Schmidt RJ
    Conservation of B class gene expression in the second whorl of a basal grass and outgroups links the origin of lodicules and petals.
    Proc. Natl. Acad. Sci. U.S.A., 2007. 104(3): p. 1081-6
    [PMID:17210918]
  18. Schmitz RJ,Amasino RM
    Vernalization: a model for investigating epigenetics and eukaryotic gene regulation in plants.
    Biochim. Biophys. Acta, 2007 May-Jun. 1769(5-6): p. 269-75
    [PMID:17383745]
  19. Ding J, et al.
    Highly asymmetric rice genomes.
    BMC Genomics, 2007. 8: p. 154
    [PMID:17555605]
  20. Shitsukawa N, et al.
    Genetic and epigenetic alteration among three homoeologous genes of a class E MADS box gene in hexaploid wheat.
    Plant Cell, 2007. 19(6): p. 1723-37
    [PMID:17586655]
  21. Arora R, et al.
    MADS-box gene family in rice: genome-wide identification, organization and expression profiling during reproductive development and stress.
    BMC Genomics, 2007. 8: p. 242
    [PMID:17640358]
  22. Yoshida H, et al.
    superwoman1-cleistogamy, a hopeful allele for gene containment in GM rice.
    Plant Biotechnol. J., 2007. 5(6): p. 835-46
    [PMID:17764519]
  23. Dreni L, et al.
    The D-lineage MADS-box gene OsMADS13 controls ovule identity in rice.
    Plant J., 2007. 52(4): p. 690-9
    [PMID:17877710]
  24. Kim SL,Lee S,Kim HJ,Nam HG,An G
    OsMADS51 is a short-day flowering promoter that functions upstream of Ehd1, OsMADS14, and Hd3a.
    Plant Physiol., 2007. 145(4): p. 1484-94
    [PMID:17951465]
  25. Lee S,Choi SC,An G
    Rice SVP-group MADS-box proteins, OsMADS22 and OsMADS55, are negative regulators of brassinosteroid responses.
    Plant J., 2008. 54(1): p. 93-105
    [PMID:18182025]
  26. Mehrabi R,Ding S,Xu JR
    MADS-box transcription factor mig1 is required for infectious growth in Magnaporthe grisea.
    Eukaryotic Cell, 2008. 7(5): p. 791-9
    [PMID:18344407]
  27. Lee S, et al.
    Further characterization of a rice AGL12 group MADS-box gene, OsMADS26.
    Plant Physiol., 2008. 147(1): p. 156-68
    [PMID:18354041]
  28. Jeon JS,Lee S,An G
    Intragenic control of expression of a rice MADS box gene OsMADS1.
    Mol. Cells, 2008. 26(5): p. 474-80
    [PMID:18688178]
  29. Meng Z, et al.
    Structural and functional analysis of a MADS box containing genomic DNA sequence cloned from rice.
    Sci. China, C, Life Sci., 1998. 41(6): p. 561-8
    [PMID:18726210]
  30. Qu L, et al.
    Expression pattern and functional analysis of a MADS-box gene M79 from rice.
    Sci. China, C, Life Sci., 2001. 44(2): p. 161-9
    [PMID:18726433]
  31. Yi M, et al.
    The ER chaperone LHS1 is involved in asexual development and rice infection by the blast fungus Magnaporthe oryzae.
    Plant Cell, 2009. 21(2): p. 681-95
    [PMID:19252083]
  32. Zamora A,Sun Q,Hamblin MT,Aquadro CF,Kresovich S
    Positively selected disease response orthologous gene sets in the cereals identified using Sorghum bicolor L. Moench expression profiles and comparative genomics.
    Mol. Biol. Evol., 2009. 26(9): p. 2015-30
    [PMID:19506000]
  33. Lee S,Jeong DH,An G
    A possible working mechanism for rice SVP-group MADS-box proteins as negative regulators of brassinosteroid responses.
    Plant Signal Behav, 2008. 3(7): p. 471-4
    [PMID:19704489]
  34. Aceto S, et al.
    Isolation and phylogenetic footprinting analysis of the 5'-regulatory region of the floral homeotic gene OrcPI from Orchis italica (Orchidaceae).
    J. Hered., 2010 Jan-Feb. 101(1): p. 124-31
    [PMID:19861638]
  35. Kobayashi K,Maekawa M,Miyao A,Hirochika H,Kyozuka J
    PANICLE PHYTOMER2 (PAP2), encoding a SEPALLATA subfamily MADS-box protein, positively controls spikelet meristem identity in rice.
    Plant Cell Physiol., 2010. 51(1): p. 47-57
    [PMID:19933267]
  36. Cui R, et al.
    Functional conservation and diversification of class E floral homeotic genes in rice (Oryza sativa).
    Plant J., 2010. 61(5): p. 767-81
    [PMID:20003164]
  37. Li H, et al.
    The AGL6-like gene OsMADS6 regulates floral organ and meristem identities in rice.
    Cell Res., 2010. 20(3): p. 299-313
    [PMID:20038961]
  38. Wang K, et al.
    DEP and AFO regulate reproductive habit in rice.
    PLoS Genet., 2010. 6(1): p. e1000818
    [PMID:20107517]
  39. Gao X, et al.
    The SEPALLATA-like gene OsMADS34 is required for rice inflorescence and spikelet development.
    Plant Physiol., 2010. 153(2): p. 728-40
    [PMID:20395452]
  40. Zhang J,Nallamilli BR,Mujahid H,Peng Z
    OsMADS6 plays an essential role in endosperm nutrient accumulation and is subject to epigenetic regulation in rice (Oryza sativa).
    Plant J., 2010. 64(4): p. 604-17
    [PMID:20822505]
  41. Seok HY, et al.
    Rice ternary MADS protein complexes containing class B MADS heterodimer.
    Biochem. Biophys. Res. Commun., 2010. 401(4): p. 598-604
    [PMID:20888318]
  42. Zahn LM, et al.
    Comparative transcriptomics among floral organs of the basal eudicot Eschscholzia californica as reference for floral evolutionary developmental studies.
    Genome Biol., 2010. 11(10): p. R101
    [PMID:20950453]
  43. Tang X, et al.
    Global gene profiling of laser-captured pollen mother cells indicates molecular pathways and gene subfamilies involved in rice meiosis.
    Plant Physiol., 2010. 154(4): p. 1855-70
    [PMID:20959420]
  44. Yamaki S,Nagato Y,Kurata N,Nonomura K
    Ovule is a lateral organ finally differentiated from the terminating floral meristem in rice.
    Dev. Biol., 2011. 351(1): p. 208-16
    [PMID:21146515]
  45. Bian XF, et al.
    Heading date gene, dth3 controlled late flowering in O. Glaberrima Steud. by down-regulating Ehd1.
    Plant Cell Rep., 2011. 30(12): p. 2243-54
    [PMID:21830130]
  46. Ciaffi M,Paolacci AR,Tanzarella OA,Porceddu E
    Molecular aspects of flower development in grasses.
    Sex. Plant Reprod., 2011. 24(4): p. 247-82
    [PMID:21877128]
  47. Yadav SR,Khanday I,Majhi BB,Veluthambi K,Vijayraghavan U
    Auxin-responsive OsMGH3, a common downstream target of OsMADS1 and OsMADS6, controls rice floret fertility.
    Plant Cell Physiol., 2011. 52(12): p. 2123-35
    [PMID:22016342]
  48. Zhu P,Gu H,Jiao Y,Huang D,Chen M
    Computational identification of protein-protein interactions in rice based on the predicted rice interactome network.
    Genomics Proteomics Bioinformatics, 2011. 9(4-5): p. 128-37
    [PMID:22196356]
  49. Yoshida H
    Is the lodicule a petal: molecular evidence?
    Plant Sci., 2012. 184: p. 121-8
    [PMID:22284716]
  50. Yin LL,Xue HW
    The MADS29 transcription factor regulates the degradation of the nucellus and the nucellar projection during rice seed development.
    Plant Cell, 2012. 24(3): p. 1049-65
    [PMID:22408076]
  51. Kobayashi K, et al.
    Inflorescence meristem identity in rice is specified by overlapping functions of three AP1/FUL-like MADS box genes and PAP2, a SEPALLATA MADS box gene.
    Plant Cell, 2012. 24(5): p. 1848-59
    [PMID:22570445]
  52. Duan Y, et al.
    Characterization of Osmads6-5, a null allele, reveals that OsMADS6 is a critical regulator for early flower development in rice (Oryza sativa L.).
    Plant Mol. Biol., 2012. 80(4-5): p. 429-42
    [PMID:22933119]
  53. Yang X, et al.
    Live and let die - the B(sister) MADS-box gene OsMADS29 controls the degeneration of cells in maternal tissues during seed development of rice (Oryza sativa).
    PLoS ONE, 2012. 7(12): p. e51435
    [PMID:23251532]
  54. Yoshida A, et al.
    TAWAWA1, a regulator of rice inflorescence architecture, functions through the suppression of meristem phase transition.
    Proc. Natl. Acad. Sci. U.S.A., 2013. 110(2): p. 767-72
    [PMID:23267064]
  55. Koo HJ, et al.
    Ginger and turmeric expressed sequence tags identify signature genes for rhizome identity and development and the biosynthesis of curcuminoids, gingerols and terpenoids.
    BMC Plant Biol., 2013. 13: p. 27
    [PMID:23410187]
  56. Khanday I,Yadav SR,Vijayraghavan U
    Rice LHS1/OsMADS1 controls floret meristem specification by coordinated regulation of transcription factors and hormone signaling pathways.
    Plant Physiol., 2013. 161(4): p. 1970-83
    [PMID:23449645]
  57. Puig J, et al.
    Analysis of the expression of the AGL17-like clade of MADS-box transcription factors in rice.
    Gene Expr. Patterns, 2013 Jun-Jul. 13(5-6): p. 160-70
    [PMID:23466806]
  58. Lee DS, et al.
    The Bsister MADS gene FST determines ovule patterning and development of the zygotic embryo and endosperm.
    PLoS ONE, 2013. 8(3): p. e58748
    [PMID:23527017]
  59. Shu Y,Yu D,Wang D,Guo D,Guo C
    Genome-wide survey and expression analysis of the MADS-box gene family in soybean.
    Mol. Biol. Rep., 2013. 40(6): p. 3901-11
    [PMID:23559340]
  60. Lin CS, et al.
    Catalog of Erycina pusilla miRNA and categorization of reproductive phase-related miRNAs and their target gene families.
    Plant Mol. Biol., 2013. 82(1-2): p. 193-204
    [PMID:23575662]
  61. Jin Y,Yang H,Wei Z,Ma H,Ge X
    Rice male development under drought stress: phenotypic changes and stage-dependent transcriptomic reprogramming.
    Mol Plant, 2013. 6(5): p. 1630-45
    [PMID:23604203]
  62. Liu Y, et al.
    Functional conservation of MIKC*-Type MADS box genes in Arabidopsis and rice pollen maturation.
    Plant Cell, 2013. 25(4): p. 1288-303
    [PMID:23613199]
  63. Wei X, et al.
    Fine mapping of BH1, a gene controlling lemma and palea development in rice.
    Plant Cell Rep., 2013. 32(9): p. 1455-63
    [PMID:23689259]
  64. Tian Y,Yuan X,Jiang S,Cui B,Su J
    Molecular cloning and spatiotemporal expression of an APETALA1/FRUITFULL-like MADS-box gene from the orchid (Cymbidium faberi).
    Sheng Wu Gong Cheng Xue Bao, 2013. 29(2): p. 203-13
    [PMID:23697165]
  65. Xu Y,Gan ES,Ito T
    The AT-hook/PPC domain protein TEK negatively regulates floral repressors including MAF4 and MAF5.
    Plant Signal Behav, 2014.
    [PMID:23733063]
  66. Xu Y,Gan ES,He Y,Ito T
    Flowering and genome integrity control by a nuclear matrix protein in Arabidopsis.
    Nucleus, 2013 Jul-Aug. 4(4): p. 274-6
    [PMID:23836195]
  67. Lee J,Amasino RM
    Two FLX family members are non-redundantly required to establish the vernalization requirement in Arabidopsis.
    Nat Commun, 2013. 4: p. 2186
    [PMID:23864009]
  68. Wong CE,Singh MB,Bhalla PL
    Novel members of the AGAMOUS LIKE 6 subfamily of MIKCC-type MADS-box genes in soybean.
    BMC Plant Biol., 2013. 13: p. 105
    [PMID:23870482]
  69. Ding L,Kim SY,Michaels SD
    FLOWERING LOCUS C EXPRESSOR family proteins regulate FLOWERING LOCUS C expression in both winter-annual and rapid-cycling Arabidopsis.
    Plant Physiol., 2013. 163(1): p. 243-52
    [PMID:23899645]
  70. Ruelens P, et al.
    FLOWERING LOCUS C in monocots and the tandem origin of angiosperm-specific MADS-box genes.
    Nat Commun, 2013. 4: p. 2280
    [PMID:23955420]
  71. Heidari B,Nemie-Feyissa D,Kangasjärvi S,Lillo C
    Antagonistic regulation of flowering time through distinct regulatory subunits of protein phosphatase 2A.
    PLoS ONE, 2013. 8(7): p. e67987
    [PMID:23976921]
  72. Rosa S, et al.
    Physical clustering of FLC alleles during Polycomb-mediated epigenetic silencing in vernalization.
    Genes Dev., 2013. 27(17): p. 1845-50
    [PMID:24013499]
  73. Eickelberg GJ,Fisher AJ
    Environmental regulation of plant gene expression: an RT-qPCR laboratory project for an upper-level undergraduate biochemistry or molecular biology course.
    Biochem Mol Biol Educ, 2013 Sep-Oct. 41(5): p. 325-33
    [PMID:24038665]
  74. Xiao D, et al.
    The Brassica rapa FLC homologue FLC2 is a key regulator of flowering time, identified through transcriptional co-expression networks.
    J. Exp. Bot., 2013. 64(14): p. 4503-16
    [PMID:24078668]
  75. Shafiq S,Berr A,Shen WH
    Combinatorial functions of diverse histone methylations in Arabidopsis thaliana flowering time regulation.
    New Phytol., 2014. 201(1): p. 312-22
    [PMID:24102415]
  76. Rataj K,Simpson GG
    Message ends: RNA 3' processing and flowering time control.
    J. Exp. Bot., 2014. 65(2): p. 353-63
    [PMID:24363425]
  77. Yan Y,Wang H,Hamera S,Chen X,Fang R
    miR444a has multiple functions in the rice nitrate-signaling pathway.
    Plant J., 2014. 78(1): p. 44-55
    [PMID:24460537]
  78. Steinbach Y,Hennig L
    Arabidopsis MSI1 functions in photoperiodic flowering time control.
    Front Plant Sci, 2014. 5: p. 77
    [PMID:24639681]
  79. Cai Q, et al.
    Jasmonic acid regulates spikelet development in rice.
    Nat Commun, 2014. 5: p. 3476
    [PMID:24647160]
  80. Jones AL,Sung S
    Mechanisms underlying epigenetic regulation in Arabidopsis thaliana.
    Integr. Comp. Biol., 2014. 54(1): p. 61-7
    [PMID:24808013]
  81. Zhou Q, et al.
    The large-scale investigation of gene expression in Leymus chinensis stigmas provides a valuable resource for understanding the mechanisms of poaceae self-incompatibility.
    BMC Genomics, 2014. 15: p. 399
    [PMID:24886329]
  82. Shiono K, et al.
    Microarray analysis of laser-microdissected tissues indicates the biosynthesis of suberin in the outer part of roots during formation of a barrier to radial oxygen loss in rice (Oryza sativa).
    J. Exp. Bot., 2014. 65(17): p. 4795-806
    [PMID:24913626]
  83. Müller-Xing R,Clarenz O,Pokorny L,Goodrich J,Schubert D
    Polycomb-Group Proteins and FLOWERING LOCUS T Maintain Commitment to Flowering in Arabidopsis thaliana.
    Plant Cell, 2014. 26(6): p. 2457-2471
    [PMID:24920331]
  84. Shih MC, et al.
    BeMADS1 is a key to delivery MADSs into nucleus in reproductive tissues-De novo characterization of Bambusa edulis transcriptome and study of MADS genes in bamboo floral development.
    BMC Plant Biol., 2014. 14: p. 179
    [PMID:24989161]
  85. Wang Y, et al.
    Molecular identification and interaction assay of the gene (OsUbc13) encoding a ubiquitin-conjugating enzyme in rice.
    J Zhejiang Univ Sci B, 2014. 15(7): p. 624-37
    [PMID:25001222]
  86. Castaings L, et al.
    Evolutionary conservation of cold-induced antisense RNAs of FLOWERING LOCUS C in Arabidopsis thaliana perennial relatives.
    Nat Commun, 2014. 5: p. 4457
    [PMID:25030056]
  87. Dittmar EL,Oakley CG,Ågren J,Schemske DW
    Flowering time QTL in natural populations of Arabidopsis thaliana and implications for their adaptive value.
    Mol. Ecol., 2014. 23(17): p. 4291-303
    [PMID:25039363]
  88. Jali SS, et al.
    A plant-specific HUA2-LIKE (HULK) gene family in Arabidopsis thaliana is essential for development.
    Plant J., 2014. 80(2): p. 242-54
    [PMID:25070081]
  89. Wang H, et al.
    OsMADS32 interacts with PI-like proteins and regulates rice flower development.
    J Integr Plant Biol, 2015. 57(5): p. 504-13
    [PMID:25081486]
  90. Nayar S,Kapoor M,Kapoor S
    Post-translational regulation of rice MADS29 function: homodimerization or binary interactions with other seed-expressed MADS proteins modulate its translocation into the nucleus.
    J. Exp. Bot., 2014. 65(18): p. 5339-50
    [PMID:25096923]
  91. Yu C, et al.
    The effects of fluctuations in the nutrient supply on the expression of five members of the AGL17 clade of MADS-box genes in rice.
    PLoS ONE, 2014. 9(8): p. e105597
    [PMID:25140876]
  92. Schmalenbach I,Zhang L,Ryngajllo M,Jiménez-Gómez JM
    Functional analysis of the Landsberg erecta allele of FRIGIDA.
    BMC Plant Biol., 2014. 14: p. 218
    [PMID:25207670]
  93. Duan W, et al.
    Genome-wide analysis of the MADS-box gene family in Brassica rapa (Chinese cabbage).
    Mol. Genet. Genomics, 2015. 290(1): p. 239-55
    [PMID:25216934]
  94. Crevillén P, et al.
    Epigenetic reprogramming that prevents transgenerational inheritance of the vernalized state.
    Nature, 2014. 515(7528): p. 587-90
    [PMID:25219852]
  95. Conrad LJ, et al.
    The polycomb group gene EMF2B is essential for maintenance of floral meristem determinacy in rice.
    Plant J., 2014. 80(5): p. 883-94
    [PMID:25279942]
  96. Zhang J, et al.
    Down-regulation of a LBD-like gene, OsIG1, leads to occurrence of unusual double ovules and developmental abnormalities of various floral organs and megagametophyte in rice.
    J. Exp. Bot., 2015. 66(1): p. 99-112
    [PMID:25324400]
  97. Suter L,Rüegg M,Zemp N,Hennig L,Widmer A
    Gene regulatory variation mediates flowering responses to vernalization along an altitudinal gradient in Arabidopsis.
    Plant Physiol., 2014. 166(4): p. 1928-42
    [PMID:25339407]
  98. Yasui Y,Kohchi T
    VASCULAR PLANT ONE-ZINC FINGER1 and VOZ2 repress the FLOWERING LOCUS C clade members to control flowering time in Arabidopsis.
    Biosci. Biotechnol. Biochem., 2014. 78(11): p. 1850-5
    [PMID:25351333]
  99. Gillmor CS,Silva-Ortega CO,Willmann MR,Buendía-Monreal M,Poethig RS
    The Arabidopsis Mediator CDK8 module genes CCT (MED12) and GCT (MED13) are global regulators of developmental phase transitions.
    Development, 2014. 141(23): p. 4580-9
    [PMID:25377553]
  100. Tian Y, et al.
    Genome-wide identification and analysis of the MADS-box gene family in apple.
    Gene, 2015. 555(2): p. 277-90
    [PMID:25447908]
  101. Lee J,Yun JY,Zhao W,Shen WH,Amasino RM
    A methyltransferase required for proper timing of the vernalization response in Arabidopsis.
    Proc. Natl. Acad. Sci. U.S.A., 2015. 112(7): p. 2269-74
    [PMID:25605879]
  102. Yan D, et al.
    Curved chimeric palea 1 encoding an EMF1-like protein maintains epigenetic repression of OsMADS58 in rice palea development.
    Plant J., 2015. 82(1): p. 12-24
    [PMID:25647350]
  103. Bouché F,Detry N,Périlleux C
    Heat can erase epigenetic marks of vernalization in Arabidopsis.
    Plant Signal Behav, 2015. 10(3): p. e990799
    [PMID:25648822]
  104. Chen R, et al.
    A Gene Expression Profiling of Early Rice Stamen Development that Reveals Inhibition of Photosynthetic Genes by OsMADS58.
    Mol Plant, 2015. 8(7): p. 1069-89
    [PMID:25684654]
  105. Zhang C, et al.
    The chromatin-remodeling factor AtINO80 plays crucial roles in genome stability maintenance and in plant development.
    Plant J., 2015. 82(4): p. 655-68
    [PMID:25832737]
  106. Wells CE,Vendramin E,Jimenez Tarodo S,Verde I,Bielenberg DG
    A genome-wide analysis of MADS-box genes in peach [Prunus persica (L.) Batsch].
    BMC Plant Biol., 2015. 15: p. 41
    [PMID:25848674]
  107. Hu Y, et al.
    Interactions of OsMADS1 with Floral Homeotic Genes in Rice Flower Development.
    Mol Plant, 2015. 8(9): p. 1366-84
    [PMID:25917758]
  108. Luo M, et al.
    Regulation of flowering time by the histone deacetylase HDA5 in Arabidopsis.
    Plant J., 2015. 82(6): p. 925-36
    [PMID:25922987]
  109. Müller-Xing R,Schubert D,Goodrich J
    Non-inductive conditions expose the cryptic bract of flower phytomeres in Arabidopsis thaliana.
    Plant Signal Behav, 2015. 10(4): p. e1010868
    [PMID:25924005]
  110. Berry S,Dean C
    Environmental perception and epigenetic memory: mechanistic insight through FLC.
    Plant J., 2015. 83(1): p. 133-48
    [PMID:25929799]
  111. Berry S,Hartley M,Olsson TS,Dean C,Howard M
    Local chromatin environment of a Polycomb target gene instructs its own epigenetic inheritance.
    Elife, 2016.
    [PMID:25955967]
  112. Kang MY, et al.
    Negative regulatory roles of DE-ETIOLATED1 in flowering time in Arabidopsis.
    Sci Rep, 2015. 5: p. 9728
    [PMID:25962685]
  113. Lyons R, et al.
    Investigating the Association between Flowering Time and Defense in the Arabidopsis thaliana-Fusarium oxysporum Interaction.
    PLoS ONE, 2015. 10(6): p. e0127699
    [PMID:26034991]
  114. Kataya AR,Heidari B,Lillo C
    Protein phosphatase 2A regulatory subunits affecting plant innate immunity, energy metabolism, and flowering time--joint functions among B'η subfamily members.
    Plant Signal Behav, 2015. 10(5): p. e1026024
    [PMID:26039486]
  115. Zhang Y, et al.
    Integrative genome-wide analysis reveals HLP1, a novel RNA-binding protein, regulates plant flowering by targeting alternative polyadenylation.
    Cell Res., 2015. 25(7): p. 864-76
    [PMID:26099751]
  116. Ito Y,Nakano T
    Development and regulation of pedicel abscission in tomato.
    Front Plant Sci, 2015. 6: p. 442
    [PMID:26124769]
  117. Hepworth J,Dean C
    Flowering Locus C's Lessons: Conserved Chromatin Switches Underpinning Developmental Timing and Adaptation.
    Plant Physiol., 2015. 168(4): p. 1237-45
    [PMID:26149571]
  118. Méndez-Vigo B, et al.
    Environmental and genetic interactions reveal FLOWERING LOCUS C as a modulator of the natural variation for the plasticity of flowering in Arabidopsis.
    Plant Cell Environ., 2016. 39(2): p. 282-94
    [PMID:26173848]
  119. Duncan S, et al.
    Seasonal shift in timing of vernalization as an adaptation to extreme winter.
    Elife, 2016.
    [PMID:26203563]
  120. Lee JH,Jung JH,Park CM
    INDUCER OF CBF EXPRESSION 1 integrates cold signals into FLOWERING LOCUS C-mediated flowering pathways in Arabidopsis.
    Plant J., 2015. 84(1): p. 29-40
    [PMID:26248809]
  121. Cao Y,Wen L,Wang Z,Ma L
    SKIP Interacts with the Paf1 Complex to Regulate Flowering via the Activation of FLC Transcription in Arabidopsis.
    Mol Plant, 2015. 8(12): p. 1816-9
    [PMID:26384244]
  122. Xiao J, et al.
    JACALIN-LECTIN LIKE1 Regulates the Nuclear Accumulation of GLYCINE-RICH RNA-BINDING PROTEIN7, Influencing the RNA Processing of FLOWERING LOCUS C Antisense Transcripts and Flowering Time in Arabidopsis.
    Plant Physiol., 2015. 169(3): p. 2102-17
    [PMID:26392261]
  123. Khong GN, et al.
    OsMADS26 Negatively Regulates Resistance to Pathogens and Drought Tolerance in Rice.
    Plant Physiol., 2015. 169(4): p. 2935-49
    [PMID:26424158]
  124. Lee JH,Park CM
    Integration of photoperiod and cold temperature signals into flowering genetic pathways in Arabidopsis.
    Plant Signal Behav, 2015. 10(11): p. e1089373
    [PMID:26430754]
  125. Finnegan EJ
    Time-dependent stabilization of the +1 nucleosome is an early step in the transition to stable cold-induced repression of FLC.
    Plant J., 2015. 84(5): p. 875-85
    [PMID:26437570]
  126. Schilling S, et al.
    Non-canonical structure, function and phylogeny of the Bsister MADS-box gene OsMADS30 of rice (Oryza sativa).
    Plant J., 2015. 84(6): p. 1059-72
    [PMID:26473514]
  127. Shu K, et al.
    ABSCISIC ACID-INSENSITIVE 4 negatively regulates flowering through directly promoting Arabidopsis FLOWERING LOCUS C transcription.
    J. Exp. Bot., 2016. 67(1): p. 195-205
    [PMID:26507894]
  128. Kang MY,Kwon HY,Kim NY,Sakuraba Y,Paek NC
    CONSTITUTIVE PHOTOMORPHOGENIC 10 (COP10) Contributes to Floral Repression under Non-Inductive Short Days in Arabidopsis.
    Int J Mol Sci, 2015. 16(11): p. 26493-505
    [PMID:26556345]
  129. Li M, et al.
    DELLA proteins interact with FLC to repress flowering transition.
    J Integr Plant Biol, 2016. 58(7): p. 642-55
    [PMID:26584710]
  130. Franks SJ, et al.
    Variation in the flowering time orthologs BrFLC and BrSOC1 in a natural population of Brassica rapa.
    PeerJ, 2015. 3: p. e1339
    [PMID:26644966]
  131. Sanchez-Bermejo E,Balasubramanian S
    Natural variation involving deletion alleles of FRIGIDA modulate temperature-sensitive flowering responses in Arabidopsis thaliana.
    Plant Cell Environ., 2016. 39(6): p. 1353-65
    [PMID:26662639]
  132. Burghardt LT, et al.
    Fluctuating, warm temperatures decrease the effect of a key floral repressor on flowering time in Arabidopsis thaliana.
    New Phytol., 2016. 210(2): p. 564-76
    [PMID:26681345]
  133. Moumeni A, et al.
    Transcriptional profiling of the leaves of near-isogenic rice lines with contrasting drought tolerance at the reproductive stage in response to water deficit.
    BMC Genomics, 2015. 16: p. 1110
    [PMID:26715311]
  134. Tang Q, et al.
    The mitogen-activated protein kinase phosphatase PHS1 regulates flowering in Arabidopsis thaliana.
    Planta, 2016. 243(4): p. 909-23
    [PMID:26721646]
  135. Wu Z, et al.
    RNA Binding Proteins RZ-1B and RZ-1C Play Critical Roles in Regulating Pre-mRNA Splicing and Gene Expression during Development in Arabidopsis.
    Plant Cell, 2016. 28(1): p. 55-73
    [PMID:26721863]
  136. Bai X, et al.
    Regulatory role of FZP in the determination of panicle branching and spikelet formation in rice.
    Sci Rep, 2016. 6: p. 19022
    [PMID:26744119]
  137. Liu B, et al.
    Interplay of the histone methyltransferases SDG8 and SDG26 in the regulation of transcription and plant flowering and development.
    Biochim. Biophys. Acta, 2016. 1859(4): p. 581-90
    [PMID:26854085]
  138. Wang H, et al.
    A Signaling Cascade from miR444 to RDR1 in Rice Antiviral RNA Silencing Pathway.
    Plant Physiol., 2016. 170(4): p. 2365-77
    [PMID:26858364]
  139. Shi H,Wei Y,Wang Q,Reiter RJ,He C
    Melatonin mediates the stabilization of DELLA proteins to repress the floral transition in Arabidopsis.
    J. Pineal Res., 2016. 60(3): p. 373-9
    [PMID:26887824]
  140. Chen C, et al.
    Heat stress yields a unique MADS box transcription factor in determining seed size and thermal sensitivity.
    Plant Physiol., 2016. 171(1): p. 606-22
    [PMID:26936896]
  141. Dreni L,Zhang D
    Flower development: the evolutionary history and functions of the AGL6 subfamily MADS-box genes.
    J. Exp. Bot., 2016. 67(6): p. 1625-38
    [PMID:26956504]
  142. Saleh A,Alvarez-Venegas R,Liu N,Avramova Z
    Corrigendum to "Dynamic and stable histone H3 methylation patterns at the Arabidopsis FLC and AP1 loci" [Gene. 2008 Oct. 15; 423(1):43-47].
    Gene, 2016. 585(2): p. 266-7
    [PMID:27094816]
  143. Mahrez W, et al.
    BRR2a Affects Flowering Time via FLC Splicing.
    PLoS Genet., 2016. 12(4): p. e1005924
    [PMID:27100965]
  144. Kwak JS,Son GH,Kim SI,Song JT,Seo HS
    Arabidopsis HIGH PLOIDY2 Sumoylates and Stabilizes Flowering Locus C through Its E3 Ligase Activity.
    Front Plant Sci, 2016. 7: p. 530
    [PMID:27148346]
  145. Nishio H, et al.
    From the laboratory to the field: assaying histone methylation at FLOWERING LOCUS C in naturally growing Arabidopsis halleri.
    Genes Genet. Syst., 2016. 91(1): p. 15-26
    [PMID:27150718]
  146. Li Z, et al.
    Coupling of histone methylation and RNA processing by the nuclear mRNA cap-binding complex.
    Nat Plants, 2016. 2: p. 16015
    [PMID:27249350]
  147. Shibaya T, et al.
    Hd18, Encoding Histone Acetylase Related to Arabidopsis FLOWERING LOCUS D, is Involved in the Control of Flowering Time in Rice.
    Plant Cell Physiol., 2016. 57(9): p. 1828-38
    [PMID:27318280]
  148. Zhang B, et al.
    A High Temperature-Dependent Mitochondrial Lipase EXTRA GLUME1 Promotes Floral Phenotypic Robustness against Temperature Fluctuation in Rice (Oryza sativa L.).
    PLoS Genet., 2016. 12(7): p. e1006152
    [PMID:27367609]
  149. Khanday I, et al.
    Genome-Wide Targets Regulated by the OsMADS1 Transcription Factor Reveals Its DNA Recognition Properties.
    Plant Physiol., 2016. 172(1): p. 372-88
    [PMID:27457124]
  150. Alter P, et al.
    Flowering Time-Regulated Genes in Maize Include the Transcription Factor ZmMADS1.
    Plant Physiol., 2016. 172(1): p. 389-404
    [PMID:27457125]
  151. Yang H,Howard M,Dean C
    Physical coupling of activation and derepression activities to maintain an active transcriptional state at FLC.
    Proc. Natl. Acad. Sci. U.S.A., 2016. 113(33): p. 9369-74
    [PMID:27482092]
  152. Zhang Y,Rataj K,Simpson GG,Tong L
    Crystal Structure of the SPOC Domain of the Arabidopsis Flowering Regulator FPA.
    PLoS ONE, 2016. 11(8): p. e0160694
    [PMID:27513867]
  153. Feng P, et al.
    Chloroplast retrograde signal regulates flowering.
    Proc. Natl. Acad. Sci. U.S.A., 2016. 113(38): p. 10708-13
    [PMID:27601637]
  154. Wu F, et al.
    The ABCs of flower development: mutational analysis of AP1/FUL-like genes in rice provides evidence for a homeotic (A)-function in grasses.
    Plant J., 2017. 89(2): p. 310-324
    [PMID:27689766]
  155. Park HJ,Kim WY,Pardo JM,Yun DJ
    Molecular Interactions Between Flowering Time and Abiotic Stress Pathways.
    Int Rev Cell Mol Biol, 2016. 327: p. 371-412
    [PMID:27692179]
  156. Li C, et al.
    Genome-Wide Characterization of the MADS-Box Gene Family in Radish (Raphanus sativus L.) and Assessment of Its Roles in Flowering and Floral Organogenesis.
    Front Plant Sci, 2016. 7: p. 1390
    [PMID:27703461]
  157. Rosa S,Duncan S,Dean C
    Mutually exclusive sense-antisense transcription at FLC facilitates environmentally induced gene repression.
    Nat Commun, 2016. 7: p. 13031
    [PMID:27713408]
  158. Yuan W, et al.
    A cis cold memory element and a trans epigenome reader mediate Polycomb silencing of FLC by vernalization in Arabidopsis.
    Nat. Genet., 2016. 48(12): p. 1527-1534
    [PMID:27819666]
  159. Gong X,Shen L,Peng YZ,Gan Y,Yu H
    DNA Topoisomerase Iα Affects the Floral Transition.
    Plant Physiol., 2017. 173(1): p. 642-654
    [PMID:27837087]
  160. Ågren J,Oakley CG,Lundemo S,Schemske DW
    Adaptive divergence in flowering time among natural populations of Arabidopsis thaliana: Estimates of selection and QTL mapping.
    Evolution, 2017. 71(3): p. 550-564
    [PMID:27859214]
  161. Li C,Cui Y
    A DNA element that remembers winter.
    Nat. Genet., 2016. 48(12): p. 1451-1452
    [PMID:27898079]
  162. Kong X,Luo X,Qu GP,Liu P,Jin JB
    Arabidopsis SUMO protease ASP1 positively regulates flowering time partially through regulating FLC stability .
    J Integr Plant Biol, 2017. 59(1): p. 15-29
    [PMID:27925396]
  163. Kapolas G, et al.
    APRF1 promotes flowering under long days in Arabidopsis thaliana.
    Plant Sci., 2016. 253: p. 141-153
    [PMID:27968983]
  164. Sharma N, et al.
    A Flowering Locus C Homolog Is a Vernalization-Regulated Repressor in Brachypodium and Is Cold Regulated in Wheat.
    Plant Physiol., 2017. 173(2): p. 1301-1315
    [PMID:28034954]
  165. Huang B,Qian P,Gao N,Shen J,Hou S
    Fackel interacts with gibberellic acid signaling and vernalization to mediate flowering in Arabidopsis.
    Planta, 2017. 245(5): p. 939-950
    [PMID:28108812]
  166. Kim DH,Sung S
    Vernalization-Triggered Intragenic Chromatin Loop Formation by Long Noncoding RNAs.
    Dev. Cell, 2017. 40(3): p. 302-312.e4
    [PMID:28132848]
  167. Zhu A,Greaves IK,Dennis ES,Peacock WJ
    Genome-wide analyses of four major histone modifications in Arabidopsis hybrids at the germinating seed stage.
    BMC Genomics, 2017. 18(1): p. 137
    [PMID:28173754]
  168. Lu C, et al.
    Phosphorylation of SPT5 by CDKD;2 Is Required for VIP5 Recruitment and Normal Flowering in Arabidopsis thaliana.
    Plant Cell, 2017. 29(2): p. 277-291
    [PMID:28188267]
  169. Denis E, et al.
    WOX14 promotes bioactive gibberellin synthesis and vascular cell differentiation in Arabidopsis.
    Plant J., 2017. 90(3): p. 560-572
    [PMID:28218997]
  170. Nasim Z,Fahim M,Ahn JH
    Possible Role of MADS AFFECTING FLOWERING 3 and B-BOX DOMAIN PROTEIN 19 in Flowering Time Regulation of Arabidopsis Mutants with Defects in Nonsense-Mediated mRNA Decay.
    Front Plant Sci, 2017. 8: p. 191
    [PMID:28261246]
  171. Kiefer C, et al.
    Divergence of annual and perennial species in the Brassicaceae and the contribution of cis-acting variation at FLC orthologues.
    Mol. Ecol., 2017. 26(13): p. 3437-3457
    [PMID:28261921]
  172. Yan Q,Xia X,Sun Z,Fang Y
    Depletion of Arabidopsis SC35 and SC35-like serine/arginine-rich proteins affects the transcription and splicing of a subset of genes.
    PLoS Genet., 2017. 13(3): p. e1006663
    [PMID:28273088]
  173. Kasulin L, et al.
    A single haplotype hyposensitive to light and requiring strong vernalization dominates Arabidopsis thaliana populations in Patagonia, Argentina.
    Mol. Ecol., 2017. 26(13): p. 3389-3404
    [PMID:28316114]
  174. Auge GA,Blair LK,Neville H,Donohue K
    Maternal vernalization and vernalization-pathway genes influence progeny seed germination.
    New Phytol., 2017. 216(2): p. 388-400
    [PMID:28328177]
  175. Zhou Y,Romero-Campero FJ,Gómez-Zambrano Á,Turck F,Calonje M
    H2A monoubiquitination in Arabidopsis thaliana is generally independent of LHP1 and PRC2 activity.
    Genome Biol., 2017. 18(1): p. 69
    [PMID:28403905]
  176. Kim DH,Sung S
    Accelerated vernalization response by an altered PHD-finger protein in Arabidopsis.
    Plant Signal Behav, 2017. 12(5): p. e1308619
    [PMID:28498016]
  177. Nakamura M,Hennig L
    Inheritance of vernalization memory at FLOWERING LOCUS C during plant regeneration.
    J. Exp. Bot., 2017. 68(11): p. 2813-2819
    [PMID:28498984]
  178. He R, et al.
    A photo-responsive F-box protein FOF2 regulates floral initiation by promoting FLC expression in Arabidopsis.
    Plant J., 2017. 91(5): p. 788-801
    [PMID:28608936]
  179. Ietswaart R,Rosa S,Wu Z,Dean C,Howard M
    Cell-Size-Dependent Transcription of FLC and Its Antisense Long Non-coding RNA COOLAIR Explain Cell-to-Cell Expression Variation.
    Cell Syst, 2017. 4(6): p. 622-635.e9
    [PMID:28624615]
  180. Kim D,Abdelaziz ME,Ntui VO,Guo X,Al-Babili S
    Colonization by the endophyte Piriformospora indica leads to early flowering in Arabidopsis thaliana likely by triggering gibberellin biosynthesis.
    Biochem. Biophys. Res. Commun., 2017. 490(4): p. 1162-1167
    [PMID:28668394]
  181. Whittaker C,Dean C
    The FLC Locus: A Platform for Discoveries in Epigenetics and Adaptation.
    Annu. Rev. Cell Dev. Biol., 2017. 33: p. 555-575
    [PMID:28693387]
  182. Kim DH,Xi Y,Sung S
    Modular function of long noncoding RNA, COLDAIR, in the vernalization response.
    PLoS Genet., 2017. 13(7): p. e1006939
    [PMID:28759577]
  183. Yang H, et al.
    Distinct phases of Polycomb silencing to hold epigenetic memory of cold in Arabidopsis.
    Science, 2017. 357(6356): p. 1142-1145
    [PMID:28818969]
  184. Cheng JZ,Zhou YP,Lv TX,Xie CP,Tian CE
    Research progress on the autonomous flowering time pathway in Arabidopsis.
    Physiol Mol Biol Plants, 2017. 23(3): p. 477-485
    [PMID:28878488]
  185. Cui Z, et al.
    SKIP controls flowering time via the alternative splicing of SEF pre-mRNA in Arabidopsis.
    BMC Biol., 2017. 15(1): p. 80
    [PMID:28893254]
  186. Tao Z, et al.
    Embryonic epigenetic reprogramming by a pioneer transcription factor in plants.
    Nature, 2017. 551(7678): p. 124-128
    [PMID:29072296]
  187. Yan Z,Jia J,Yan X,Shi H,Han Y
    Arabidopsis KHZ1 and KHZ2, two novel non-tandem CCCH zinc-finger and K-homolog domain proteins, have redundant roles in the regulation of flowering and senescence.
    Plant Mol. Biol., 2017. 95(6): p. 549-565
    [PMID:29076025]
  188. Eom H, et al.
    TAF15b, involved in the autonomous pathway for flowering, represses transcription of FLOWERING LOCUS C.
    Plant J., 2018. 93(1): p. 79-91
    [PMID:29086456]
  189. Sang S,Chen Y,Yang Q,Wang P
    Arabidopsis inositol polyphosphate multikinase delays flowering time through mediating transcriptional activation of FLOWERING LOCUS C.
    J. Exp. Bot., 2017. 68(21-22): p. 5787-5800
    [PMID:29161428]
  190. Chen Q, et al.
    Functional FRIGIDA allele enhances drought tolerance by regulating the P5CS1 pathway in Arabidopsis thaliana.
    Biochem. Biophys. Res. Commun., 2018. 495(1): p. 1102-1107
    [PMID:29175388]
  191. Mateos JL, et al.
    Divergence of regulatory networks governed by the orthologous transcription factors FLC and PEP1 in Brassicaceae species.
    Proc. Natl. Acad. Sci. U.S.A., 2017. 114(51): p. E11037-E11046
    [PMID:29203652]
  192. Zhou JX, et al.
    Arabidopsis PWWP domain proteins mediate H3K27 trimethylation on FLC and regulate flowering time.
    J Integr Plant Biol, 2018. 60(5): p. 362-368
    [PMID:29314758]
  193. Hepworth J, et al.
    Absence of warmth permits epigenetic memory of winter in Arabidopsis.
    Nat Commun, 2018. 9(1): p. 639
    [PMID:29434233]
  194. Dotto M,Gómez MS,Soto MS,Casati P
    UV-B radiation delays flowering time through changes in the PRC2 complex activity and miR156 levels in Arabidopsis thaliana.
    Plant Cell Environ., 2018. 41(6): p. 1394-1406
    [PMID:29447428]
  195. Kumar S,Choudhary P,Gupta M,Nath U
    VASCULAR PLANT ONE-ZINC FINGER1 (VOZ1) and VOZ2 Interact with CONSTANS and Promote Photoperiodic Flowering Transition.
    Plant Physiol., 2018. 176(4): p. 2917-2930
    [PMID:29507119]
  196. Wu B, et al.
    Structural insight into the role of VAL1 B3 domain for targeting to FLC locus in Arabidopsis thaliana.
    Biochem. Biophys. Res. Commun., 2018. 501(2): p. 415-422
    [PMID:29733847]
  197. Chen M,Penfield S
    Feedback regulation of COOLAIR expression controls seed dormancy and flowering time.
    Science, 2018. 360(6392): p. 1014-1017
    [PMID:29853684]
  198. Li Z,Ou Y,Zhang Z,Li J,He Y
    Brassinosteroid Signaling Recruits Histone 3 Lysine-27 Demethylation Activity to FLOWERING LOCUS C Chromatin to Inhibit the Floral Transition in Arabidopsis.
    Mol Plant, 2018. 11(9): p. 1135-1146
    [PMID:29969683]
  199. Richter R, et al.
    Floral regulators FLC and SOC1 directly regulate expression of the B3-type transcription factor TARGET OF FLC AND SVP 1 at the Arabidopsis shoot apex via antagonistic chromatin modifications.
    PLoS Genet., 2019. 15(4): p. e1008065
    [PMID:30946745]