PlantTFDB
PlantRegMap/PlantTFDB v5.0
Plant Transcription Factor Database
Transcription Factor Information
Basic Information | Signature Domain | Sequence | 
Basic Information? help Back to Top
TF ID CCG024441.1
Organism
Taxonomic ID
Taxonomic Lineage
cellular organisms; Eukaryota; Viridiplantae; Streptophyta; Streptophytina; Embryophyta; Tracheophyta; Euphyllophyta; Spermatophyta; Magnoliophyta; Mesangiospermae; eudicotyledons; Gunneridae; Pentapetalae; rosids; fabids; Malpighiales; Salicaceae; Saliceae; Populus
Family ERF
Protein Properties Length: 228aa    MW: 25547.5 Da    PI: 5.4498
Description ERF family protein
Gene Model
Gene Model ID Type Source Coding Sequence
CCG024441.1genomeLZUView CDS
Signature Domain? help Back to Top
Signature Domain
No. Domain Score E-value Start End HMM Start HMM End
1AP249.21.3e-1559108255
          AP2   2 gykGVrwdkkrgrWvAeIrdpsengkrkrfslgkfgtaeeAakaaiaarkkleg 55 
                   ++GVr +    +Wv+e+r+p   +k+ r++lg++ t+e+Aa+a++ a+++++g
  CCG024441.1  59 IFRGVRKRN-GDKWVCELREP---NKKSRIWLGTYPTPEMAARAHDVAALAFRG 108
                  59****887.8*********8...347************************998 PP

Protein Features ? help Back to Top
3D Structure
Database Entry ID E-value Start End InterPro ID Description
CDDcd000184.32E-2758118No hitNo description
PfamPF008473.1E-1158108IPR001471AP2/ERF domain
PROSITE profilePS5103221.4759116IPR001471AP2/ERF domain
Gene3DG3DSA:3.30.730.103.6E-2959118IPR001471AP2/ERF domain
SuperFamilySSF541714.9E-2059118IPR016177DNA-binding domain
SMARTSM003806.2E-2859122IPR001471AP2/ERF domain
PRINTSPR003676.3E-76071IPR001471AP2/ERF domain
PRINTSPR003676.3E-78298IPR001471AP2/ERF domain
Gene Ontology ? help Back to Top
GO Term GO Category GO Description
GO:0006355Biological Processregulation of transcription, DNA-templated
GO:0003677Molecular FunctionDNA binding
GO:0003700Molecular Functiontranscription factor activity, sequence-specific DNA binding
Sequence ? help Back to Top
Protein Sequence    Length: 228 aa     Download sequence    Send to blast
MVMGGSNCFS PDKQESSLLS DSSGSQQDSP SSNEKVLLAT SRPKKRAGRR IFKETRHPIF  60
RGVRKRNGDK WVCELREPNK KSRIWLGTYP TPEMAARAHD VAALAFRGKS ACLNFADSAW  120
RLPVPISNEA KDIRRAASEA AELFRTTDFG GQEMEYFRRE DRGEVCSSPN DDIRDLPSEN  180
VGYIDEEAEF NMPGLLANMA EGLLLSPPHY TGDWNDGQID ADWSLWSS
Functional Description ? help Back to Top
Source Description
UniProtTranscriptional activator that binds specifically to the DNA sequence 5'-[AG]CCGAC-3'. Binding to the C-repeat/DRE element mediates cold-inducible transcription. CBF/DREB1 factors play a key role in freezing tolerance and cold acclimation. {ECO:0000269|PubMed:11798174, ECO:0000269|PubMed:16244146}.
Regulation -- Description ? help Back to Top
Source Description
UniProtINDUCTION: By cold stress. {ECO:0000269|PubMed:9735350, ECO:0000269|PubMed:9952441}.
Annotation -- Nucleotide ? help Back to Top
Source Hit ID E-value Description
GenBankKC3457530.0KC345753.1 Populus euphratica C-repeat binding factor 2 mRNA, complete cds.
Annotation -- Protein ? help Back to Top
Source Hit ID E-value Description
RefseqXP_011029177.11e-170PREDICTED: dehydration-responsive element-binding protein 1E
SwissprotQ9SYS61e-66DRE1C_ARATH; Dehydration-responsive element-binding protein 1C
TrEMBLA0A1C9UL061e-154A0A1C9UL06_POPEU; C-repeat binding factor 1
STRINGPOPTR_0001s08720.11e-146(Populus trichocarpa)
Orthologous Group ? help Back to Top
LineageOrthologous Group IDTaxa NumberGene Number
FabidsOGEF24333224
Best hit in Arabidopsis thaliana ? help Back to Top
Hit ID E-value Description
AT4G25470.11e-67C-repeat/DRE binding factor 2
Publications ? help Back to Top
  1. Keily J, et al.
    Model selection reveals control of cold signalling by evening-phased components of the plant circadian clock.
    Plant J., 2013. 76(2): p. 247-57
    [PMID:23909712]
  2. Ding Y, et al.
    Four distinct types of dehydration stress memory genes in Arabidopsis thaliana.
    BMC Plant Biol., 2013. 13: p. 229
    [PMID:24377444]
  3. Shi H, et al.
    The Cysteine2/Histidine2-Type Transcription Factor ZINC FINGER OF ARABIDOPSIS THALIANA6 Modulates Biotic and Abiotic Stress Responses by Activating Salicylic Acid-Related Genes and C-REPEAT-BINDING FACTOR Genes in Arabidopsis.
    Plant Physiol., 2014. 165(3): p. 1367-1379
    [PMID:24834923]
  4. Oakley CG,Ågren J,Atchison RA,Schemske DW
    QTL mapping of freezing tolerance: links to fitness and adaptive trade-offs.
    Mol. Ecol., 2014. 23(17): p. 4304-15
    [PMID:25039860]
  5. Miyazaki Y,Abe H,Takase T,Kobayashi M,Kiyosue T
    Overexpression of LOV KELCH protein 2 confers dehydration tolerance and is associated with enhanced expression of dehydration-inducible genes in Arabidopsis thaliana.
    Plant Cell Rep., 2015. 34(5): p. 843-52
    [PMID:25627253]
  6. Park S, et al.
    Regulation of the Arabidopsis CBF regulon by a complex low-temperature regulatory network.
    Plant J., 2015. 82(2): p. 193-207
    [PMID:25736223]
  7. Sazegari S,Niazi A,Ahmadi FS
    A study on the regulatory network with promoter analysis for Arabidopsis DREB-genes.
    Bioinformation, 2015. 11(2): p. 101-6
    [PMID:25848171]
  8. Li Y,Xu B,Du Q,Zhang D
    Transcript abundance patterns of Populus C-repeat binding factor2 orthologs and genetic association of PsCBF2 allelic variation with physiological and biochemical traits in response to abiotic stress.
    Planta, 2015. 242(1): p. 295-312
    [PMID:25916311]
  9. Shi H,Qian Y,Tan DX,Reiter RJ,He C
    Melatonin induces the transcripts of CBF/DREB1s and their involvement in both abiotic and biotic stresses in Arabidopsis.
    J. Pineal Res., 2015. 59(3): p. 334-42
    [PMID:26182834]
  10. Wang CL,Zhang SC,Qi SD,Zheng CC,Wu CA
    Delayed germination of Arabidopsis seeds under chilling stress by overexpressing an abiotic stress inducible GhTPS11.
    Gene, 2016. 575(2 Pt 1): p. 206-12
    [PMID:26325072]
  11. Gehan MA, et al.
    Natural variation in the C-repeat binding factor cold response pathway correlates with local adaptation of Arabidopsis ecotypes.
    Plant J., 2015. 84(4): p. 682-93
    [PMID:26369909]
  12. Su F, et al.
    Burkholderia phytofirmans PsJN reduces impact of freezing temperatures on photosynthesis in Arabidopsis thaliana.
    Front Plant Sci, 2015. 6: p. 810
    [PMID:26483823]
  13. Chan Z, et al.
    RDM4 modulates cold stress resistance in Arabidopsis partially through the CBF-mediated pathway.
    New Phytol., 2016. 209(4): p. 1527-39
    [PMID:26522658]
  14. Wu J, et al.
    Overexpression of Muscadinia rotundifolia CBF2 gene enhances biotic and abiotic stress tolerance in Arabidopsis.
    Protoplasma, 2017. 254(1): p. 239-251
    [PMID:26795343]
  15. Gao S, et al.
    A cotton miRNA is involved in regulation of plant response to salt stress.
    Sci Rep, 2016. 6: p. 19736
    [PMID:26813144]
  16. Shi H,Wei Y,He C
    Melatonin-induced CBF/DREB1s are essential for diurnal change of disease resistance and CCA1 expression in Arabidopsis.
    Plant Physiol. Biochem., 2016. 100: p. 150-155
    [PMID:26828406]
  17. Norén L, et al.
    Circadian and Plastid Signaling Pathways Are Integrated to Ensure Correct Expression of the CBF and COR Genes during Photoperiodic Growth.
    Plant Physiol., 2016. 171(2): p. 1392-406
    [PMID:27208227]
  18. Zhao C, et al.
    Mutational Evidence for the Critical Role of CBF Transcription Factors in Cold Acclimation in Arabidopsis.
    Plant Physiol., 2016. 171(4): p. 2744-59
    [PMID:27252305]
  19. Jia Y, et al.
    The cbfs triple mutants reveal the essential functions of CBFs in cold acclimation and allow the definition of CBF regulons in Arabidopsis.
    New Phytol., 2016. 212(2): p. 345-53
    [PMID:27353960]
  20. Zhao C,Zhu JK
    The broad roles of CBF genes: From development to abiotic stress.
    Plant Signal Behav, 2016. 11(8): p. e1215794
    [PMID:27472659]
  21. Bolt S,Zuther E,Zintl S,Hincha DK,Schmülling T
    ERF105 is a transcription factor gene of Arabidopsis thaliana required for freezing tolerance and cold acclimation.
    Plant Cell Environ., 2017. 40(1): p. 108-120
    [PMID:27723941]
  22. Shi Y, et al.
    The precise regulation of different COR genes by individual CBF transcription factors in Arabidopsis thaliana.
    J Integr Plant Biol, 2017. 59(2): p. 118-133
    [PMID:28009483]
  23. Li H, et al.
    BZR1 Positively Regulates Freezing Tolerance via CBF-Dependent and CBF-Independent Pathways in Arabidopsis.
    Mol Plant, 2017. 10(4): p. 545-559
    [PMID:28089951]
  24. Kidokoro S, et al.
    Different Cold-Signaling Pathways Function in the Responses to Rapid and Gradual Decreases in Temperature.
    Plant Cell, 2017. 29(4): p. 760-774
    [PMID:28351986]
  25. Li A, et al.
    Transcriptome Profiling Reveals the Negative Regulation of Multiple Plant Hormone Signaling Pathways Elicited by Overexpression of C-Repeat Binding Factors.
    Front Plant Sci, 2017. 8: p. 1647
    [PMID:28983312]
  26. Cho S, et al.
    Accession-Dependent CBF Gene Deletion by CRISPR/Cas System in Arabidopsis.
    Front Plant Sci, 2017. 8: p. 1910
    [PMID:29163623]
  27. Beine-Golovchuk O, et al.
    Plant Temperature Acclimation and Growth Rely on Cytosolic Ribosome Biogenesis Factor Homologs.
    Plant Physiol., 2018. 176(3): p. 2251-2276
    [PMID:29382692]
  28. Park S,Gilmour SJ,Grumet R,Thomashow MF
    CBF-dependent and CBF-independent regulatory pathways contribute to the differences in freezing tolerance and cold-regulated gene expression of two Arabidopsis ecotypes locally adapted to sites in Sweden and Italy.
    PLoS ONE, 2018. 13(12): p. e0207723
    [PMID:30517145]