PlantTFDB
PlantRegMap/PlantTFDB v5.0
Plant Transcription Factor Database
Transcription Factor Information
Basic Information | Signature Domain | Sequence | 
Basic Information? help Back to Top
TF ID PDK_30s681141g002
Organism
Taxonomic ID
Taxonomic Lineage
cellular organisms; Eukaryota; Viridiplantae; Streptophyta; Streptophytina; Embryophyta; Tracheophyta; Euphyllophyta; Spermatophyta; Magnoliophyta; Mesangiospermae; Liliopsida; Petrosaviidae; commelinids; Arecales; Arecaceae; Coryphoideae; Phoeniceae; Phoenix
Family G2-like
Protein Properties Length: 466aa    MW: 50961 Da    PI: 5.8904
Description G2-like family protein
Gene Model
Gene Model ID Type Source Coding Sequence
PDK_30s681141g002genomePDKView CDS
Signature Domain? help Back to Top
Signature Domain
No. Domain Score E-value Start End HMM Start HMM End
1G2-like108.82.8e-34201255155
            G2-like   1 kprlrWtpeLHerFveaveqLGGsekAtPktilelmkvkgLtlehvkSHLQkYRl 55 
                        kpr+rWtpeLHe+Fv+av+qLGGsekAtPk +l+lmkv++Lt++hvkSHLQkYR+
  PDK_30s681141g002 201 KPRMRWTPELHECFVDAVNQLGGSEKATPKGVLKLMKVESLTIYHVKSHLQKYRT 255
                        79****************************************************8 PP

Protein Features ? help Back to Top
3D Structure
Database Entry ID E-value Start End InterPro ID Description
PROSITE profilePS5129410.748198258IPR017930Myb domain
Gene3DG3DSA:1.10.10.601.9E-32199257IPR009057Homeodomain-like
SuperFamilySSF466896.63E-18200255IPR009057Homeodomain-like
TIGRFAMsTIGR015572.2E-25201255IPR006447Myb domain, plants
PfamPF002492.3E-9203254IPR001005SANT/Myb domain
PfamPF143791.7E-24322366IPR025756MYB-CC type transcription factor, LHEQLE-containing domain
Gene Ontology ? help Back to Top
GO Term GO Category GO Description
GO:0003677Molecular FunctionDNA binding
Sequence ? help Back to Top
Protein Sequence    Length: 466 aa     Download sequence    Send to blast
MERELRSTPL IPLRTPFVSN SAVVGPLYSS ASGFSSDLHF SSMAPNERHH NGASFVSQSP  60
NVGIPFPSTP SHSGSFCPAT SNHPRESADV SWCPEPIQGM LDYSDNITAG NNQIQSSCDV  120
ASDDLAKQNE WWTDLMNDDW KDILNETSAS ECQTKSVQPA TQASPSISVH QLQIHQSVPS  180
HSGELCAVSN SSPAAIAAAA KPRMRWTPEL HECFVDAVNQ LGGSEKATPK GVLKLMKVES  240
LTIYHVKSHL QKYRTARYRP DSSEGASQKK VTPQEEVSSL DLKTVSNILM KTPKIREDPE  300
IGKSVTGCLN ISMMQISFRS IDLTEALRLQ MEVQKRLHEQ LEIQRNLQLR IEEQGRYLQM  360
MFEKQSGISN LQASSSLEEP LTVSSDQTHS AAKIELPGKG RDESGIDPNG AKMSEGSRQV  420
GDKQKTLEAE SCNEMEANIV SGSHSPSCKR ARGPDGESLT PMSALD
3D Structure ? help Back to Top
Structure
PDB ID Evalue Query Start Query End Hit Start Hit End Description
6j4k_A2e-30200259160Protein PHOSPHATE STARVATION RESPONSE 1
6j4k_B2e-30200259160Protein PHOSPHATE STARVATION RESPONSE 1
6j5b_A2e-30200259160Protein PHOSPHATE STARVATION RESPONSE 1
6j5b_C2e-30200259160Protein PHOSPHATE STARVATION RESPONSE 1
6j5b_D2e-30200259160Protein PHOSPHATE STARVATION RESPONSE 1
6j5b_F2e-30200259160Protein PHOSPHATE STARVATION RESPONSE 1
6j5b_H2e-30200259160Protein PHOSPHATE STARVATION RESPONSE 1
6j5b_J2e-30200259160Protein PHOSPHATE STARVATION RESPONSE 1
Search in ModeBase
Functional Description ? help Back to Top
Source Description
UniProtTranscription factor involved in phosphate starvation signaling. Binds to P1BS, an imperfect palindromic sequence 5'-GNATATNC-3', to promote the expression of inorganic phosphate (Pi) starvation-responsive genes. Functionally redundant with PHR1 and PHR3 in regulating Pi starvation response and Pi homeostasis. PHR2 binding to DNA is repressed redundantly by SPX1, SPX2 and SPX4 in a PI-dependent manner. {ECO:0000250|UniProtKB:Q6Z156}.
UniProtTranscription factor involved in phosphate starvation signaling (PubMed:18263782, PubMed:26082401). Binds to P1BS, an imperfect palindromic sequence 5'-GNATATNC-3', to promote the expression of inorganic phosphate (Pi) starvation-responsive genes (PubMed:25657119, PubMed:26082401). Functionally redundant with PHR1 and PHR3 in regulating Pi starvation response and Pi homeostasis (PubMed:26082401). Involved in both systematic and local Pi-signaling pathways (PubMed:19704822). Regulates several Pi transporters (PubMed:18263782). Regulates the expression of PT2 (PubMed:20149131). Directly up-regulates SPX1 and SPX2 expression, but PHR2 binding to DNA is repressed redundantly by SPX1 and SPX2 in a PI-dependent manner (PubMed:25271318). The DNA-binding activity is also repressed by SPX4 (PubMed:24692424). Involved in root growth under Pi deprivation (PubMed:18263782). {ECO:0000269|PubMed:18263782, ECO:0000269|PubMed:19704822, ECO:0000269|PubMed:20149131, ECO:0000269|PubMed:24692424, ECO:0000269|PubMed:25271318, ECO:0000269|PubMed:25657119, ECO:0000269|PubMed:26082401}.
Regulation -- Description ? help Back to Top
Source Description
UniProtINDUCTION: Not regulated by Pi starvation. {ECO:0000269|PubMed:18263782, ECO:0000269|PubMed:26082401}.
Annotation -- Protein ? help Back to Top
Source Hit ID E-value Description
RefseqXP_008785163.10.0protein PHOSPHATE STARVATION RESPONSE 2-like
RefseqXP_008785164.10.0protein PHOSPHATE STARVATION RESPONSE 2-like
SwissprotB8B5N81e-107PHR2_ORYSI; Protein PHOSPHATE STARVATION RESPONSE 2
SwissprotQ6Z1561e-107PHR2_ORYSJ; Protein PHOSPHATE STARVATION RESPONSE 2
TrEMBLA0A2H3XKJ40.0A0A2H3XKJ4_PHODC; protein PHOSPHATE STARVATION RESPONSE 2-like
STRINGXP_008785163.10.0(Phoenix dactylifera)
Orthologous Group ? help Back to Top
LineageOrthologous Group IDTaxa NumberGene Number
MonocotsOGMP19713789
Best hit in Arabidopsis thaliana ? help Back to Top
Hit ID E-value Description
AT4G28610.11e-77phosphate starvation response 1
Publications ? help Back to Top
  1. Kikuchi S, et al.
    Collection, mapping, and annotation of over 28,000 cDNA clones from japonica rice.
    Science, 2003. 301(5631): p. 376-9
    [PMID:12869764]
  2. Wang C, et al.
    Involvement of OsSPX1 in phosphate homeostasis in rice.
    Plant J., 2009. 57(5): p. 895-904
    [PMID:19000161]
  3. Zhang Q,Wang C,Tian J,Li K,Shou H
    Identification of rice purple acid phosphatases related to phosphate starvation signalling.
    Plant Biol (Stuttg), 2011. 13(1): p. 7-15
    [PMID:21143719]
  4. Wu Z,Ren H,McGrath SP,Wu P,Zhao FJ
    Investigating the contribution of the phosphate transport pathway to arsenic accumulation in rice.
    Plant Physiol., 2011. 157(1): p. 498-508
    [PMID:21715673]
  5. Chen J, et al.
    OsPHF1 regulates the plasma membrane localization of low- and high-affinity inorganic phosphate transporters and determines inorganic phosphate uptake and translocation in rice.
    Plant Physiol., 2011. 157(1): p. 269-78
    [PMID:21753117]
  6. Wang C, et al.
    Functional characterization of the rice SPX-MFS family reveals a key role of OsSPX-MFS1 in controlling phosphate homeostasis in leaves.
    New Phytol., 2012. 196(1): p. 139-48
    [PMID:22803610]
  7. Tian J, et al.
    Overexpression of OsPAP10a, a root-associated acid phosphatase, increased extracellular organic phosphorus utilization in rice.
    J Integr Plant Biol, 2012. 54(9): p. 631-9
    [PMID:22805094]
  8. Shen C, et al.
    OsARF16, a transcription factor, is required for auxin and phosphate starvation response in rice (Oryza sativa L.).
    Plant Cell Environ., 2013. 36(3): p. 607-20
    [PMID:22913536]
  9. Wu P,Shou H,Xu G,Lian X
    Improvement of phosphorus efficiency in rice on the basis of understanding phosphate signaling and homeostasis.
    Curr. Opin. Plant Biol., 2013. 16(2): p. 205-12
    [PMID:23566853]
  10. Wang S, et al.
    Auxin response factor (OsARF12), a novel regulator for phosphate homeostasis in rice (Oryza sativa).
    New Phytol., 2014. 201(1): p. 91-103
    [PMID:24111723]
  11. Shi J, et al.
    The paralogous SPX3 and SPX5 genes redundantly modulate Pi homeostasis in rice.
    J. Exp. Bot., 2014. 65(3): p. 859-70
    [PMID:24368504]
  12. Li S,Wang C,Zhou L,Shou H
    Oxygen deficit alleviates phosphate overaccumulation toxicity in OsPHR2 overexpression plants.
    J. Plant Res., 2014. 127(3): p. 433-40
    [PMID:24687599]
  13. Zhou Z, et al.
    SPX proteins regulate Pi homeostasis and signaling in different subcellular level.
    Plant Signal Behav, 2015. 10(9): p. e1061163
    [PMID:26224365]
  14. Zhang K, et al.
    Down-regulation of OsSPX1 caused semi-male sterility, resulting in reduction of grain yield in rice.
    Plant Biotechnol. J., 2016. 14(8): p. 1661-72
    [PMID:26806409]
  15. Cao Y, et al.
    Identification and expression analysis of OsLPR family revealed the potential roles of OsLPR3 and 5 in maintaining phosphate homeostasis in rice.
    BMC Plant Biol., 2016. 16(1): p. 210
    [PMID:27716044]