PlantTFDB
PlantRegMap/PlantTFDB v5.0
Plant Transcription Factor Database
Transcription Factor Information
Basic Information | Signature Domain | Sequence | 
Basic Information? help Back to Top
TF ID KN538794.1_FGP036
Organism
Taxonomic ID
Taxonomic Lineage
cellular organisms; Eukaryota; Viridiplantae; Streptophyta; Streptophytina; Embryophyta; Tracheophyta; Euphyllophyta; Spermatophyta; Magnoliophyta; Mesangiospermae; Liliopsida; Petrosaviidae; commelinids; Poales; Poaceae; BOP clade; Oryzoideae; Oryzeae; Oryzinae; Oryza
Family GATA
Protein Properties Length: 860aa    MW: 94598.3 Da    PI: 5.5757
Description GATA family protein
Gene Model
Gene Model ID Type Source Coding Sequence
KN538794.1_FGP036genomeBGIView CDS
Signature Domain? help Back to Top
Signature Domain
No. Domain Score E-value Start End HMM Start HMM End
1GATA47.32.8e-15209243133
               GATA   1 CsnCgttk..TplWRrgpdgnktLCnaCGlyyrkk 33 
                        C++Cg     Tp++Rrgpdg++tLCnaCGl+++ k
  KN538794.1_FGP036 209 CHHCGINAkaTPMMRRGPDGPRTLCNACGLMWANK 243
                        ****977777**********************986 PP

Protein Features ? help Back to Top
3D Structure
Database Entry ID E-value Start End InterPro ID Description
SMARTSM009795.9E-1173108IPR010399Tify domain
PROSITE profilePS5132014.97573108IPR010399Tify domain
PfamPF062001.2E-1276107IPR010399Tify domain
PROSITE profilePS5101713.404134176IPR010402CCT domain
PfamPF062032.6E-15134176IPR010402CCT domain
SMARTSM004011.5E-8203255IPR000679Zinc finger, GATA-type
SuperFamilySSF577161.76E-9207248No hitNo description
CDDcd002023.63E-11208249No hitNo description
Gene3DG3DSA:3.30.50.102.5E-13208244IPR013088Zinc finger, NHR/GATA-type
PROSITE patternPS003440209236IPR000679Zinc finger, GATA-type
PfamPF003205.3E-13209243IPR000679Zinc finger, GATA-type
PfamPF120661.6E-11358414IPR021933Protein of unknown function DUF3546
PfamPF049591.8E-35567754IPR007042Arsenite-resistance protein 2
PROSITE patternPS000280636659IPR007087Zinc finger, C2H2
Gene Ontology ? help Back to Top
GO Term GO Category GO Description
GO:0006355Biological Processregulation of transcription, DNA-templated
GO:0003700Molecular Functiontranscription factor activity, sequence-specific DNA binding
GO:0005515Molecular Functionprotein binding
GO:0008270Molecular Functionzinc ion binding
GO:0043565Molecular Functionsequence-specific DNA binding
Sequence ? help Back to Top
Protein Sequence    Length: 860 aa     Download sequence    Send to blast
MARFEEEHRA LGAEEEDEEE EDELEEEEEE MEEDEDAQHH EGVGGEVAVP MDAEAAAQLD  60
PHGGMLAAAG AVQPMASNQL TLSFQGEVYV FDSVSPDKVQ AVLLLLGGRE LNPGLGSGAS  120
SSAPYSKRLN FPHRVASLMR FREKRKERNF DKKIRYSVRK EVALRMQRNR GQFTSSKPKG  180
DEATSELTAS DGSPNWGSVE GRPPSAAECH HCGINAKATP MMRRGPDGPR TLCNACGLMW  240
ANKVKMPSSR CHANLGMLRD LSKAPPTPIQ VVASVNDGNG SAAAPTTEQE IPAPATANGH  300
ESSTYGYDHE RGGGRGGYDD DRYHGRYQNR AADWADSGFG ASNDGPGITQ REGLMTYKQF  360
IQVLEDDISP AEAEKRYQEY RTEYITTQKR AYFDLNKNDD RLKDKYHPTN LSSVIDSGPG  420
ITAAAASGSD GNSDDDGDSD KRRKHGRGSS KETDPLSGAP VAHPVSSESR RVQVDIEQAL  480
ALVRKLDTEK GIVGNILSSG DHDKSDVDKS HIGSMGPIII IRGLTTVKGL EGVELLDTLL  540
TYLWRIHGVD YYGMSETNEA KGSRHVRADN KASNTTNINA ADWEKKVDTF WQERLRGQDP  600
MVILAAKDKI DAAAVEVLEP YVRKIRDEKY GWKYGCGAKG CTKLFHAPEF VHKHLRLKHP  660
ELVLELTSKV REDLYFQNYM NDPNAPGGTP VMQQSAPDKS RQRPGMDNRL RYDRANRREY  720
DRAERDGGRY GRGDRSPSRD GADDQMFDAF RGRGPNAPFV PELPAPPILM PVPGAGPLGP  780
FVPAPPEIAM HMLREQGPPP PFEPNGPPHA NAGVLGPMMG GPAPIITMPP SFRQDPRRLR  840
SYNDLDAPDE EVTVLDYRSL
3D Structure ? help Back to Top
Structure
PDB ID Evalue Query Start Query End Hit Start Hit End Description
3ax1_A1e-1433536801351Serrate RNA effector molecule
Search in ModeBase
Functional Description ? help Back to Top
Source Description
UniProtActs as a mediator between the cap-binding complex (CBC) and both the pre-mRNA splicing and primary microRNAs (miRNAs) processing machinery. Required for proper processing of primary miRNAs to miRNAs, thereby playing a role in RNA-mediated gene silencing (RNAi) by miRNAs. Does not participate in sense post-transcriptional gene silencing. Acts as a regulator of meristem activity and adaxial leaf fate via the miRNA gene-silencing pathway by regulating the expression of PHB and by limiting the competence of shoot tissue to respond to KNOX expression. Its function is however not limited to miRNA-mediated repression of leaf polarity genes, but rather acts as a general regulator of primary microRNAs processing. Also critical for the accumulation of the trans-acting small interfering RNA (ta-siRNA). Required for pre-mRNA splicing. {ECO:0000269|PubMed:16222298, ECO:0000269|PubMed:16889646, ECO:0000269|PubMed:16977334, ECO:0000269|PubMed:18550839, ECO:0000269|PubMed:18632569}.
Cis-element ? help Back to Top
SourceLink
PlantRegMapKN538794.1_FGP036
Regulation -- PlantRegMap ? help Back to Top
Source Upstream Regulator Target Gene
PlantRegMapRetrieve-
Annotation -- Nucleotide ? help Back to Top
Source Hit ID E-value Description
GenBankAK1209470.0AK120947.1 Oryza sativa Japonica Group cDNA clone:J023038B04, full insert sequence.
Annotation -- Protein ? help Back to Top
Source Hit ID E-value Description
RefseqXP_025882281.10.0serrate RNA effector molecule
SwissprotQ9ZVD00.0SRRT_ARATH; Serrate RNA effector molecule
TrEMBLA0A0E0HUV90.0A0A0E0HUV9_ORYNI; Uncharacterized protein
STRINGONIVA06G28780.10.0(Oryza nivara)
Orthologous Group ? help Back to Top
LineageOrthologous Group IDTaxa NumberGene Number
MonocotsOGMP173444
Best hit in Arabidopsis thaliana ? help Back to Top
Hit ID E-value Description
AT1G51600.23e-66ZIM-LIKE 2
Publications ? help Back to Top
  1. Clarke JH,Tack D,Findlay K,Van Montagu M,Van Lijsebettens M
    The SERRATE locus controls the formation of the early juvenile leaves and phase length in Arabidopsis.
    Plant J., 1999. 20(4): p. 493-501
    [PMID:10607301]
  2. Fang Y,Spector DL
    Identification of nuclear dicing bodies containing proteins for microRNA biogenesis in living Arabidopsis plants.
    Curr. Biol., 2007. 17(9): p. 818-23
    [PMID:17442570]
  3. Chenu K,Franck N,Lecoeur J
    Simulations of virtual plants reveal a role for SERRATE in the response of leaf development to light in Arabidopsis thaliana.
    New Phytol., 2007. 175(3): p. 472-81
    [PMID:17635222]
  4. Fujioka Y,Utsumi M,Ohba Y,Watanabe Y
    Location of a possible miRNA processing site in SmD3/SmB nuclear bodies in Arabidopsis.
    Plant Cell Physiol., 2007. 48(9): p. 1243-53
    [PMID:17675322]
  5. Wilson MD, et al.
    ARS2 is a conserved eukaryotic gene essential for early mammalian development.
    Mol. Cell. Biol., 2008. 28(5): p. 1503-14
    [PMID:18086880]
  6. Dong Z,Han MH,Fedoroff N
    The RNA-binding proteins HYL1 and SE promote accurate in vitro processing of pri-miRNA by DCL1.
    Proc. Natl. Acad. Sci. U.S.A., 2008. 105(29): p. 9970-5
    [PMID:18632569]
  7. Yu B, et al.
    The FHA domain proteins DAWDLE in Arabidopsis and SNIP1 in humans act in small RNA biogenesis.
    Proc. Natl. Acad. Sci. U.S.A., 2008. 105(29): p. 10073-8
    [PMID:18632581]
  8. Kim W, et al.
    Histone acetyltransferase GCN5 interferes with the miRNA pathway in Arabidopsis.
    Cell Res., 2009. 19(7): p. 899-909
    [PMID:19436261]
  9. Voisin D, et al.
    Dissection of the complex phenotype in cuticular mutants of Arabidopsis reveals a role of SERRATE as a mediator.
    PLoS Genet., 2009. 5(10): p. e1000703
    [PMID:19876373]
  10. Werner S,Wollmann H,Schneeberger K,Weigel D
    Structure determinants for accurate processing of miR172a in Arabidopsis thaliana.
    Curr. Biol., 2010. 20(1): p. 42-8
    [PMID:20015654]
  11. Yang SW, et al.
    Structure of Arabidopsis HYPONASTIC LEAVES1 and its molecular implications for miRNA processing.
    Structure, 2010. 18(5): p. 594-605
    [PMID:20462493]
  12. Furumizu C,Tsukaya H,Komeda Y
    Characterization of EMU, the Arabidopsis homolog of the yeast THO complex member HPR1.
    RNA, 2010. 16(9): p. 1809-17
    [PMID:20668032]
  13. Wang M, et al.
    Molecular insights into plant cell proliferation disturbance by Agrobacterium protein 6b.
    Genes Dev., 2011. 25(1): p. 64-76
    [PMID:21156810]
  14. Bassel GW, et al.
    Genome-wide network model capturing seed germination reveals coordinated regulation of plant cellular phase transitions.
    Proc. Natl. Acad. Sci. U.S.A., 2011. 108(23): p. 9709-14
    [PMID:21593420]
  15. Machida S,Chen HY,Adam Yuan Y
    Molecular insights into miRNA processing by Arabidopsis thaliana SERRATE.
    Nucleic Acids Res., 2011. 39(17): p. 7828-36
    [PMID:21685453]
  16. Wang W, et al.
    An importin β protein negatively regulates MicroRNA activity in Arabidopsis.
    Plant Cell, 2011. 23(10): p. 3565-76
    [PMID:21984696]
  17. Christie M,Carroll BJ
    SERRATE is required for intron suppression of RNA silencing in Arabidopsis.
    Plant Signal Behav, 2011. 6(12): p. 2035-7
    [PMID:22112452]
  18. Liu J, et al.
    Genome-wide analysis uncovers regulation of long intergenic noncoding RNAs in Arabidopsis.
    Plant Cell, 2012. 24(11): p. 4333-45
    [PMID:23136377]
  19. Manavella PA, et al.
    Fast-forward genetics identifies plant CPL phosphatases as regulators of miRNA processing factor HYL1.
    Cell, 2012. 151(4): p. 859-870
    [PMID:23141542]
  20. Ben Chaabane S, et al.
    STA1, an Arabidopsis pre-mRNA processing factor 6 homolog, is a new player involved in miRNA biogenesis.
    Nucleic Acids Res., 2013. 41(3): p. 1984-97
    [PMID:23268445]
  21. Wu X, et al.
    A role for the RNA-binding protein MOS2 in microRNA maturation in Arabidopsis.
    Cell Res., 2013. 23(5): p. 645-57
    [PMID:23399598]
  22. Wang L, et al.
    NOT2 proteins promote polymerase II-dependent transcription and interact with multiple MicroRNA biogenesis factors in Arabidopsis.
    Plant Cell, 2013. 25(2): p. 715-27
    [PMID:23424246]
  23. Iwata Y,Takahashi M,Fedoroff NV,Hamdan SM
    Dissecting the interactions of SERRATE with RNA and DICER-LIKE 1 in Arabidopsis microRNA precursor processing.
    Nucleic Acids Res., 2013. 41(19): p. 9129-40
    [PMID:23921632]
  24. Speth C,Willing EM,Rausch S,Schneeberger K,Laubinger S
    RACK1 scaffold proteins influence miRNA abundance in Arabidopsis.
    Plant J., 2013. 76(3): p. 433-45
    [PMID:23941160]
  25. Raczynska KD, et al.
    The SERRATE protein is involved in alternative splicing in Arabidopsis thaliana.
    Nucleic Acids Res., 2014. 42(2): p. 1224-44
    [PMID:24137006]
  26. Bulgakov VP,Veremeichik GN,Shkryl YN
    The rolB gene activates the expression of genes encoding microRNA processing machinery.
    Biotechnol. Lett., 2015. 37(4): p. 921-5
    [PMID:25491479]
  27. Baranauskė S, et al.
    Functional mapping of the plant small RNA methyltransferase: HEN1 physically interacts with HYL1 and DICER-LIKE 1 proteins.
    Nucleic Acids Res., 2015. 43(5): p. 2802-12
    [PMID:25680966]
  28. Chen T,Cui P,Xiong L
    The RNA-binding protein HOS5 and serine/arginine-rich proteins RS40 and RS41 participate in miRNA biogenesis in Arabidopsis.
    Nucleic Acids Res., 2015. 43(17): p. 8283-98
    [PMID:26227967]
  29. Niu D, et al.
    miRNA863-3p sequentially targets negative immune regulator ARLPKs and positive regulator SERRATE upon bacterial infection.
    Nat Commun, 2016. 7: p. 11324
    [PMID:27108563]
  30. Yoshikawa M
    Pre-microRNA processing activity in nuclear extracts from Arabidopsis suspension cells.
    J. Plant Res., 2017. 130(1): p. 75-82
    [PMID:27885505]
  31. Cho SK, et al.
    HIGLE is a bifunctional homing endonuclease that directly interacts with HYL1 and SERRATE in Arabidopsis thaliana.
    FEBS Lett., 2017. 591(10): p. 1383-1393
    [PMID:28321834]
  32. Yan J, et al.
    The SnRK2 kinases modulate miRNA accumulation in Arabidopsis.
    PLoS Genet., 2017. 13(4): p. e1006753
    [PMID:28419088]
  33. Foley SW, et al.
    A Global View of RNA-Protein Interactions Identifies Post-transcriptional Regulators of Root Hair Cell Fate.
    Dev. Cell, 2017. 41(2): p. 204-220.e5
    [PMID:28441533]
  34. Armenta-Medina A, et al.
    Arabidopsis thaliana miRNAs promote embryo pattern formation beginning in the zygote.
    Dev. Biol., 2017. 431(2): p. 145-151
    [PMID:28912016]
  35. Lepe-Soltero D, et al.
    Annotating and quantifying pri-miRNA transcripts using RNA-Seq data of wild type and serrate-1 globular stage embryos of Arabidopsis thaliana.
    Data Brief, 2017. 15: p. 642-647
    [PMID:29124087]
  36. Wang Z, et al.
    SWI2/SNF2 ATPase CHR2 remodels pri-miRNAs via Serrate to impede miRNA production.
    Nature, 2018. 557(7706): p. 516-521
    [PMID:29769717]
  37. Speth C, et al.
    Arabidopsis RNA processing factor SERRATE regulates the transcription of intronless genes.
    Elife, 2019.
    [PMID:30152752]