PlantTFDB
PlantRegMap/PlantTFDB v5.0
Plant Transcription Factor Database
Transcription Factor Information
Basic Information | Signature Domain | Sequence | 
Basic Information? help Back to Top
TF ID Medtr7g096780.1
Common NameMTR_7g096780
Organism
Taxonomic ID
Taxonomic Lineage
cellular organisms; Eukaryota; Viridiplantae; Streptophyta; Streptophytina; Embryophyta; Tracheophyta; Euphyllophyta; Spermatophyta; Magnoliophyta; Mesangiospermae; eudicotyledons; Gunneridae; Pentapetalae; rosids; fabids; Fabales; Fabaceae; Papilionoideae; Trifolieae; Medicago
Family ERF
Protein Properties Length: 235aa    MW: 26536.9 Da    PI: 8.651
Description ERF family protein
Gene Model
Gene Model ID Type Source Coding Sequence
Medtr7g096780.1genomeMtView CDS
Signature Domain? help Back to Top
Signature Domain
No. Domain Score E-value Start End HMM Start HMM End
1AP251.82.1e-1685130351
              AP2   3 ykGVrwdkkrgrWvAeIrdpsengkrkrfslgkfgtaeeAakaaiaark 51 
                      y+GVr ++ +g+++AeIrd + ng   r+++g+f+tae Aa a+++a+ 
  Medtr7g096780.1  85 YRGVRTRP-WGKFAAEIRDTTRNG--VRVWIGTFDTAEAAALAYDQAAF 130
                      9****999.**********54465..*********************96 PP

Protein Features ? help Back to Top
3D Structure
Database Entry ID E-value Start End InterPro ID Description
SMARTSM003801.1E-3184148IPR001471AP2/ERF domain
Gene3DG3DSA:3.30.730.108.0E-2884143IPR001471AP2/ERF domain
PROSITE profilePS5103221.61484142IPR001471AP2/ERF domain
SuperFamilySSF541711.37E-2084143IPR016177DNA-binding domain
PfamPF008473.1E-1185130IPR001471AP2/ERF domain
CDDcd000182.25E-1685144No hitNo description
PRINTSPR003675.5E-108596IPR001471AP2/ERF domain
PRINTSPR003675.5E-10108124IPR001471AP2/ERF domain
Gene Ontology ? help Back to Top
GO Term GO Category GO Description
GO:0006355Biological Processregulation of transcription, DNA-templated
GO:0005634Cellular Componentnucleus
GO:0003677Molecular FunctionDNA binding
GO:0003700Molecular Functiontranscription factor activity, sequence-specific DNA binding
Sequence ? help Back to Top
Protein Sequence    Length: 235 aa     Download sequence    Send to blast
MDFYSSANLF DISWEELFMF NNIDSNSSSY SGEMDLQELT YNGHVEEENS PQPSLAPKTL  60
NPKPPSCKST NHSHVNPTKR EKRLYRGVRT RPWGKFAAEI RDTTRNGVRV WIGTFDTAEA  120
AALAYDQAAF LTRGYRAILN FSEHVVKESL QNMNFKTLLN QGCSPLLELK RMHVLRTRSK  180
NPSKKGKRDS KSMVLNNAQN VLVLEDLGSE YLEQLLMSSV SLEGVGNHQV FIQS*
3D Structure ? help Back to Top
Structure
PDB ID Evalue Query Start Query End Hit Start Hit End Description
1gcc_A2e-2685141359ETHYLENE RESPONSIVE ELEMENT BINDING FACTOR 1
Search in ModeBase
Expression -- UniGene ? help Back to Top
UniGene ID E-value Expressed in
Mtr.185670.0root
Expression -- Description ? help Back to Top
Source Description
UniprotTISSUE SPECIFICITY: Ubiquitously expressed, mostly in flowers and rosettes after ethylene treatment. {ECO:0000269|PubMed:11950980}.
Functional Description ? help Back to Top
Source Description
UniProtActs as a transcriptional activator. Binds to the GCC-box pathogenesis-related promoter element. Involved in the regulation of gene expression during the plant development, and/or mediated by stress factors and by components of stress signal transduction pathways. Seems to be a key integrator of ethylene and jasmonate signals in the regulation of ethylene/jasmonate-dependent defenses. Can mediate resistance to necrotizing fungi (Botrytis cinerea and Plectosphaerella cucumerina) and to soil borne fungi (Fusarium oxysporum conglutinans and Fusiarium oxysporum lycopersici), but probably not to necrotizing bacteria (Pseudomonas syringae tomato). {ECO:0000269|PubMed:11950980, ECO:0000269|PubMed:12060224, ECO:0000269|PubMed:12509529, ECO:0000269|PubMed:15242170, ECO:0000269|PubMed:9851977}.
UniProtTranscription activator that binds to the GCC-box cis-acting elements found in the promoter regions of ethylene-responsive genes (PubMed:23057995). Acts downstream of MYC2 in the jasmonate-mediated response to Botrytis cinerea infection (PubMed:28733419). With MYC2 forms a transcription module that regulates pathogen-responsive genes (PubMed:28733419). {ECO:0000269|PubMed:23057995, ECO:0000269|PubMed:28733419}.
Cis-element ? help Back to Top
SourceLink
PlantRegMapMedtr7g096780.1
Regulation -- Description ? help Back to Top
Source Description
UniProtINDUCTION: Induced by Pseudomonas syringae tomato (both virulent and avirulent avrRpt2 strains), independently of PAD4. Ethylene induction is completely dependent on functional ETHYLENE-INSENSITIVE2 (EIN2), ETHYLENE-INSENSITIVE3 (EIN3), which is itself a transcription factor and CORONATIVE-INSENSITIVE1 (COI1) proteins. Induction by jasmonate, B.cinerea or F.oxysporum as well as the synergistic induction by ethylene and jasmonate requires EIN2 and COI1. Induction by methyl jasmonate (MeJA) is independent of JAR1. Induction by salicylic acid (SA) is dependent on NPR1 but not on PAD4. Seems not to be induced by Alternaria brassicicola. {ECO:0000269|PubMed:11950980, ECO:0000269|PubMed:12060224, ECO:0000269|PubMed:12509529, ECO:0000269|PubMed:12805630, ECO:0000269|PubMed:15242170, ECO:0000269|PubMed:9851977}.
UniProtINDUCTION: Induced by wounding and infection with the fungal pathogen Botrytis cinerea. {ECO:0000269|PubMed:28733419}.
Regulation -- PlantRegMap ? help Back to Top
Source Upstream Regulator Target Gene
PlantRegMapRetrieve-
Annotation -- Protein ? help Back to Top
Source Hit ID E-value Description
RefseqXP_013449887.11e-176ethylene-responsive transcription factor 1B
SwissprotA0A3Q7I5Y92e-47ERFC3_SOLLC; Ethylene-response factor C3
SwissprotQ8LDC83e-47ERF92_ARATH; Ethylene-responsive transcription factor 1B
TrEMBLA0A072UDN11e-175A0A072UDN1_MEDTR; Ethylene-responsive transcription factor 1B
STRINGXP_004493869.12e-92(Cicer arietinum)
Orthologous Group ? help Back to Top
LineageOrthologous Group IDTaxa NumberGene Number
FabidsOGEF31133199
Best hit in Arabidopsis thaliana ? help Back to Top
Hit ID E-value Description
AT3G23240.13e-40ethylene response factor 1
Publications ? help Back to Top
  1. Zarate SI,Kempema LA,Walling LL
    Silverleaf whitefly induces salicylic acid defenses and suppresses effectual jasmonic acid defenses.
    Plant Physiol., 2007. 143(2): p. 866-75
    [PMID:17189328]
  2. Young ND, et al.
    The Medicago genome provides insight into the evolution of rhizobial symbioses.
    Nature, 2011. 480(7378): p. 520-4
    [PMID:22089132]
  3. Tomato Genome Consortium
    The tomato genome sequence provides insights into fleshy fruit evolution.
    Nature, 2012. 485(7400): p. 635-41
    [PMID:22660326]
  4. Pirrello J, et al.
    Functional analysis and binding affinity of tomato ethylene response factors provide insight on the molecular bases of plant differential responses to ethylene.
    BMC Plant Biol., 2012. 12: p. 190
    [PMID:23057995]
  5. Vahabi K,Camehl I,Sherameti I,Oelmüller R
    Growth of Arabidopsis seedlings on high fungal doses of Piriformospora indica has little effect on plant performance, stress, and defense gene expression in spite of elevated jasmonic acid and jasmonic acid-isoleucine levels in the roots.
    Plant Signal Behav, 2013. 8(11): p. e26301
    [PMID:24047645]
  6. Kim HG, et al.
    GDSL LIPASE1 modulates plant immunity through feedback regulation of ethylene signaling.
    Plant Physiol., 2013. 163(4): p. 1776-91
    [PMID:24170202]
  7. Li J,Jia H,Wang J
    cGMP and ethylene are involved in maintaining ion homeostasis under salt stress in Arabidopsis roots.
    Plant Cell Rep., 2014. 33(3): p. 447-59
    [PMID:24306353]
  8. Zhong S, et al.
    Ethylene-orchestrated circuitry coordinates a seedling's response to soil cover and etiolated growth.
    Proc. Natl. Acad. Sci. U.S.A., 2014. 111(11): p. 3913-20
    [PMID:24599595]
  9. Kim HG, et al.
    GDSL lipase 1 regulates ethylene signaling and ethylene-associated systemic immunity in Arabidopsis.
    FEBS Lett., 2014. 588(9): p. 1652-8
    [PMID:24631536]
  10. Schellingen K, et al.
    Cadmium-induced ethylene production and responses in Arabidopsis thaliana rely on ACS2 and ACS6 gene expression.
    BMC Plant Biol., 2014. 14: p. 214
    [PMID:25082369]
  11. Ellouzi H, et al.
    A comparative study of the early osmotic, ionic, redox and hormonal signaling response in leaves and roots of two halophytes and a glycophyte to salinity.
    Planta, 2014. 240(6): p. 1299-317
    [PMID:25156490]
  12. Nguyen AH, et al.
    Loss of Arabidopsis 5'-3' Exoribonuclease AtXRN4 Function Enhances Heat Stress Tolerance of Plants Subjected to Severe Heat Stress.
    Plant Cell Physiol., 2015. 56(9): p. 1762-72
    [PMID:26136597]
  13. Cheng MC,Kuo WC,Wang YM,Chen HY,Lin TP
    UBC18 mediates ERF1 degradation under light-dark cycles.
    New Phytol., 2017. 213(3): p. 1156-1167
    [PMID:27787902]
  14. Timmermann T, et al.
    Paraburkholderia phytofirmans PsJN Protects Arabidopsis thaliana Against a Virulent Strain of Pseudomonas syringae Through the Activation of Induced Resistance.
    Mol. Plant Microbe Interact., 2017. 30(3): p. 215-230
    [PMID:28118091]
  15. Yu Y,Huang R
    Integration of Ethylene and Light Signaling Affects Hypocotyl Growth in Arabidopsis.
    Front Plant Sci, 2017. 8: p. 57
    [PMID:28174592]
  16. Lestari R, et al.
    Overexpression of Hevea brasiliensis ethylene response factor HbERF-IXc5 enhances growth and tolerance to abiotic stress and affects laticifer differentiation.
    Plant Biotechnol. J., 2018. 16(1): p. 322-336
    [PMID:28626940]
  17. Du M, et al.
    MYC2 Orchestrates a Hierarchical Transcriptional Cascade That Regulates Jasmonate-Mediated Plant Immunity in Tomato.
    Plant Cell, 2017. 29(8): p. 1883-1906
    [PMID:28733419]
  18. Dinolfo MI,Castañares E,Stenglein SA
    Resistance of Fusarium poae in Arabidopsis leaves requires mainly functional JA and ET signaling pathways.
    Fungal Biol, 2017. 121(10): p. 841-848
    [PMID:28889908]