PlantTFDB
PlantRegMap/PlantTFDB v5.0
Plant Transcription Factor Database
Transcription Factor Information
Basic Information | Signature Domain | Sequence | 
Basic Information? help Back to Top
TF ID KHN38126.1
Organism
Taxonomic ID
Taxonomic Lineage
cellular organisms; Eukaryota; Viridiplantae; Streptophyta; Streptophytina; Embryophyta; Tracheophyta; Euphyllophyta; Spermatophyta; Magnoliophyta; Mesangiospermae; eudicotyledons; Gunneridae; Pentapetalae; rosids; fabids; Fabales; Fabaceae; Papilionoideae; Phaseoleae; Glycine; Soja
Family AP2
Protein Properties Length: 424aa    MW: 47963.8 Da    PI: 6.4641
Description AP2 family protein
Gene Model
Gene Model ID Type Source Coding Sequence
KHN38126.1genomeTCUHKView CDS
Signature Domain? help Back to Top
Signature Domain
No. Domain Score E-value Start End HMM Start HMM End
1AP240.19.2e-1355111155
         AP2   1 sgykGVrwdkkrgrWvAeIrd.pseng.krkrfslgkfgtaeeAakaaiaarkkleg 55 
                 s y+GV++++++gr++A+++d  s+n+ ++k+   g ++t+e Aa+ ++ a++k++g
  KHN38126.1  55 SIYRGVTRHRWTGRFEAHLWDkSSWNNiQSKKGKQGAYDTEESAARTYDLAALKYWG 111
                 57*******************7777**97755555********************98 PP

2AP250.26.6e-16154205155
         AP2   1 sgykGVrwdkkrgrWvAeIrdpsengkrkrfslgkfgtaeeAakaaiaarkkleg 55 
                 s+y+GV +++ +grW+A+I  ++    +k+ +lg++ t eeAa a++ a+ +++g
  KHN38126.1 154 SKYRGVARHHHNGRWEARIGRVCG---NKYLYLGTYKTQEEAAVAYDMAAIEYRG 205
                 89****99***********99644...4*************************97 PP

Protein Features ? help Back to Top
3D Structure
Database Entry ID E-value Start End InterPro ID Description
PfamPF008471.8E-955111IPR001471AP2/ERF domain
SuperFamilySSF541715.89E-1555121IPR016177DNA-binding domain
CDDcd000189.81E-1955120No hitNo description
SMARTSM003805.3E-2056125IPR001471AP2/ERF domain
PROSITE profilePS5103218.9456119IPR001471AP2/ERF domain
Gene3DG3DSA:3.30.730.104.3E-1356119IPR001471AP2/ERF domain
PRINTSPR003675.4E-65768IPR001471AP2/ERF domain
CDDcd000184.97E-24154215No hitNo description
PfamPF008471.1E-10154205IPR001471AP2/ERF domain
SuperFamilySSF541711.31E-17154215IPR016177DNA-binding domain
SMARTSM003801.7E-26155219IPR001471AP2/ERF domain
PROSITE profilePS5103218.123155213IPR001471AP2/ERF domain
Gene3DG3DSA:3.30.730.105.9E-18155213IPR001471AP2/ERF domain
PRINTSPR003675.4E-6195215IPR001471AP2/ERF domain
Gene Ontology ? help Back to Top
GO Term GO Category GO Description
GO:0006355Biological Processregulation of transcription, DNA-templated
GO:0005634Cellular Componentnucleus
GO:0003677Molecular FunctionDNA binding
GO:0003700Molecular Functiontranscription factor activity, sequence-specific DNA binding
Sequence ? help Back to Top
Protein Sequence    Length: 424 aa     Download sequence    Send to blast
MKRSPASSCS SSTSSVGFEV HHPIEKRRPK HPRRNNLKSQ KCKQNQTTTG GRRSSIYRGV  60
TRHRWTGRFE AHLWDKSSWN NIQSKKGKQG AYDTEESAAR TYDLAALKYW GKDATLNFPI  120
ETYTKDLEEM DKVSREEYLA SLRRQSSGFS RGISKYRGVA RHHHNGRWEA RIGRVCGNKY  180
LYLGTYKTQE EAAVAYDMAA IEYRGVNAVT NFDISNYMDK IKKKNDQTLQ QQQTEVQTET  240
VPNSSDSEEA EVEQQHTTTI TTPPPSENLH MLPQEHQVQY THHVSPRDEE SSSLVTIMEH  300
VLEQDLPWSF MYTGLSQFQD PNLAFSKGDD DLAGMFDGAG FEEDIDFLFS TQPGDHETES  360
DVNNMSAVLD SVECGDTNGA GGRSMVYHHV DNNNKQKKMM LSFASSSSPS STTTTVSCDY  420
ALDL
Functional Description ? help Back to Top
Source Description
UniProtMay be involved in the regulation of gene expression by stress factors and by components of stress signal transduction pathways (By similarity). Transcriptional activator involved in the activation of a subset of sugar-responsive genes and the control of carbon flow from sucrose import to oil accumulation in developing seeds. Binds to the GCC-box pathogenesis-related promoter element. Promotes sugar uptake and seed oil accumulation by glycolysis. Required for embryo development, seed germination and, indirectly, for seedling establishment. Negative regulator of the ABA-mediated germination inhibition. {ECO:0000250, ECO:0000269|PubMed:12084821, ECO:0000269|PubMed:15500472, ECO:0000269|PubMed:15753106, ECO:0000269|PubMed:16553903, ECO:0000269|PubMed:16632590, ECO:0000269|PubMed:9733529}.
Cis-element ? help Back to Top
SourceLink
PlantRegMapKHN38126.1
Regulation -- Description ? help Back to Top
Source Description
UniProtINDUCTION: Transiantly in leaves by sucrose, but not by abscisic acid (ABA). {ECO:0000269|PubMed:15753106}.
Regulation -- PlantRegMap ? help Back to Top
Source Upstream Regulator Target Gene
PlantRegMapRetrieve-
Annotation -- Nucleotide ? help Back to Top
Source Hit ID E-value Description
GenBankGU2200510.0GU220051.1 Glycine max wrinkled 1 (WRI1) mRNA, complete cds.
Annotation -- Protein ? help Back to Top
Source Hit ID E-value Description
RefseqXP_028244871.10.0ethylene-responsive transcription factor WRI1-like
SwissprotQ6X5Y61e-105WRI1_ARATH; Ethylene-responsive transcription factor WRI1
TrEMBLA0A445JIS70.0A0A445JIS7_GLYSO; Ethylene-responsive transcription factor WRI1
STRINGGLYMA08G24420.10.0(Glycine max)
Orthologous Group ? help Back to Top
LineageOrthologous Group IDTaxa NumberGene Number
FabidsOGEF98593241
Best hit in Arabidopsis thaliana ? help Back to Top
Hit ID E-value Description
AT3G54320.31e-103AP2 family protein
Publications ? help Back to Top
  1. Kim HU, et al.
    Ectopic overexpression of castor bean LEAFY COTYLEDON2 (LEC2) in Arabidopsis triggers the expression of genes that encode regulators of seed maturation and oil body proteins in vegetative tissues.
    FEBS Open Bio, 2013. 4: p. 25-32
    [PMID:24363987]
  2. Wu XL,Liu ZH,Hu ZH,Huang RZ
    BnWRI1 coordinates fatty acid biosynthesis and photosynthesis pathways during oil accumulation in rapeseed.
    J Integr Plant Biol, 2014. 56(6): p. 582-93
    [PMID:24393360]
  3. Shigematsu H, et al.
    Structural characterization of the mechanosensitive channel candidate MCA2 from Arabidopsis thaliana.
    PLoS ONE, 2014. 9(1): p. e87724
    [PMID:24475319]
  4. Qi X, et al.
    Identification of a novel salt tolerance gene in wild soybean by whole-genome sequencing.
    Nat Commun, 2014. 5: p. 4340
    [PMID:25004933]
  5. Kim HU, et al.
    Senescence-inducible LEC2 enhances triacylglycerol accumulation in leaves without negatively affecting plant growth.
    Plant Biotechnol. J., 2015. 13(9): p. 1346-59
    [PMID:25790072]
  6. Grimberg Å,Carlsson AS,Marttila S,Bhalerao R,Hofvander P
    Transcriptional transitions in Nicotiana benthamiana leaves upon induction of oil synthesis by WRINKLED1 homologs from diverse species and tissues.
    BMC Plant Biol., 2015. 15: p. 192
    [PMID:26253704]
  7. Kanai M,Mano S,Kondo M,Hayashi M,Nishimura M
    Extension of oil biosynthesis during the mid-phase of seed development enhances oil content in Arabidopsis seeds.
    Plant Biotechnol. J., 2016. 14(5): p. 1241-50
    [PMID:26503031]
  8. Li Q, et al.
    Wrinkled1 Accelerates Flowering and Regulates Lipid Homeostasis between Oil Accumulation and Membrane Lipid Anabolism in Brassica napus.
    Front Plant Sci, 2015. 6: p. 1015
    [PMID:26635841]
  9. Hofvander P, et al.
    Potato tuber expression of Arabidopsis WRINKLED1 increase triacylglycerol and membrane lipids while affecting central carbohydrate metabolism.
    Plant Biotechnol. J., 2016. 14(9): p. 1883-98
    [PMID:26914183]
  10. Shen SL, et al.
    CitAP2.10 activation of the terpene synthase CsTPS1 is associated with the synthesis of (+)-valencene in 'Newhall' orange.
    J. Exp. Bot., 2016. 67(14): p. 4105-15
    [PMID:27194737]
  11. Adhikari ND,Bates PD,Browse J
    WRINKLED1 Rescues Feedback Inhibition of Fatty Acid Synthesis in Hydroxylase-Expressing Seeds.
    Plant Physiol., 2016. 171(1): p. 179-91
    [PMID:27208047]
  12. Kim MJ,Jang IC,Chua NH
    The Mediator Complex MED15 Subunit Mediates Activation of Downstream Lipid-Related Genes by the WRINKLED1 Transcription Factor.
    Plant Physiol., 2016. 171(3): p. 1951-64
    [PMID:27246098]
  13. Bhattacharya S,Das N,Maiti MK
    Cumulative effect of heterologous AtWRI1 gene expression and endogenous BjAGPase gene silencing increases seed lipid content in Indian mustard Brassica juncea.
    Plant Physiol. Biochem., 2016. 107: p. 204-213
    [PMID:27314514]
  14. Ma W, et al.
    14-3-3 protein mediates plant seed oil biosynthesis through interaction with AtWRI1.
    Plant J., 2016. 88(2): p. 228-235
    [PMID:27322486]
  15. Li D, et al.
    MYB89 Transcription Factor Represses Seed Oil Accumulation.
    Plant Physiol., 2017. 173(2): p. 1211-1225
    [PMID:27932421]
  16. Ivarson E, et al.
    Effects of Overexpression of WRI1 and Hemoglobin Genes on the Seed Oil Content of Lepidium campestre.
    Front Plant Sci, 2016. 7: p. 2032
    [PMID:28119714]
  17. An D, et al.
    Expression of Camelina WRINKLED1 Isoforms Rescue the Seed Phenotype of the Arabidopsis wri1 Mutant and Increase the Triacylglycerol Content in Tobacco Leaves.
    Front Plant Sci, 2017. 8: p. 34
    [PMID:28174580]
  18. Zhai Z,Liu H,Shanklin J
    Phosphorylation of WRINKLED1 by KIN10 Results in Its Proteasomal Degradation, Providing a Link between Energy Homeostasis and Lipid Biosynthesis.
    Plant Cell, 2017. 29(4): p. 871-889
    [PMID:28314829]
  19. Jin J, et al.
    Transcriptome and functional analysis reveals hybrid vigor for oil biosynthesis in oil palm.
    Sci Rep, 2017. 7(1): p. 439
    [PMID:28348403]
  20. Kong Q, et al.
    The Arabidopsis WRINKLED1 transcription factor affects auxin homeostasis in roots.
    J. Exp. Bot., 2017. 68(16): p. 4627-4634
    [PMID:28981783]
  21. Kang NK, et al.
    Increased lipid production by heterologous expression of AtWRI1 transcription factor in Nannochloropsis salina.
    Biotechnol Biofuels, 2017. 10: p. 231
    [PMID:29046718]
  22. Pellaud S, et al.
    WRINKLED1 and ACYL-COA:DIACYLGLYCEROL ACYLTRANSFERASE1 regulate tocochromanol metabolism in Arabidopsis.
    New Phytol., 2018. 217(1): p. 245-260
    [PMID:29105089]
  23. Hanano A,Almousally I,Shaban M,Murphy DJ
    Arabidopsis plants exposed to dioxin result in a WRINKLED seed phenotype due to 20S proteasomal degradation of WRI1.
    J. Exp. Bot., 2018. 69(7): p. 1781-1794
    [PMID:29394403]