PlantTFDB
PlantRegMap/PlantTFDB v5.0
Plant Transcription Factor Database
Transcription Factor Information
Basic Information | Signature Domain | Sequence | 
Basic Information? help Back to Top
TF ID orange1.1g011398m
Common NameCISIN_1g011370mg, LOC102620321
Organism
Taxonomic ID
Taxonomic Lineage
cellular organisms; Eukaryota; Viridiplantae; Streptophyta; Streptophytina; Embryophyta; Tracheophyta; Euphyllophyta; Spermatophyta; Magnoliophyta; Mesangiospermae; eudicotyledons; Gunneridae; Pentapetalae; rosids; malvids; Sapindales; Rutaceae; Aurantioideae; Citrus
Family bHLH
Protein Properties Length: 488aa    MW: 53696.1 Da    PI: 5.2326
Description bHLH family protein
Gene Model
Gene Model ID Type Source Coding Sequence
orange1.1g011398mgenomeICGCView CDS
Signature Domain? help Back to Top
Signature Domain
No. Domain Score E-value Start End HMM Start HMM End
1HLH35.91.4e-11307349754
                        HHHHHHHHHHHHHHHHHHCTSCC.C...TTS-STCHHHHHHHHHHHHHH CS
                HLH   7 erErrRRdriNsafeeLrellPk.askapskKlsKaeiLekAveYIksL 54 
                        ++ErrRR+++N+++  Lr+++Pk +      K++ a+iL  A++Y+k+L
  orange1.1g011398m 307 MAERRRRKKLNDRLYMLRSVVPKiS------KMDRASILGDAIDYLKEL 349
                        79*********************66......****************98 PP

Protein Features ? help Back to Top
3D Structure
Database Entry ID E-value Start End InterPro ID Description
PROSITE profilePS5088815.682300349IPR011598Myc-type, basic helix-loop-helix (bHLH) domain
SuperFamilySSF474591.44E-16303368IPR011598Myc-type, basic helix-loop-helix (bHLH) domain
PfamPF000103.2E-9306349IPR011598Myc-type, basic helix-loop-helix (bHLH) domain
SMARTSM003534.2E-14306355IPR011598Myc-type, basic helix-loop-helix (bHLH) domain
Gene3DG3DSA:4.10.280.101.3E-15307362IPR011598Myc-type, basic helix-loop-helix (bHLH) domain
CDDcd000831.21E-12307353No hitNo description
CDDcd048732.17E-7416457No hitNo description
Gene Ontology ? help Back to Top
GO Term GO Category GO Description
GO:0046983Molecular Functionprotein dimerization activity
Sequence ? help Back to Top
Protein Sequence    Length: 488 aa     Download sequence    Send to blast
MVLEPNGAVW MEGEEEQPLS VSWTTAAAAT ATTTARATTE PKEDEMHVNA VSLSGFKSIL  60
DTDWFLNSTL NNPPQDFTNT TGLLETHQEL RAFNAFQETN LFFQPIESHP FTLNPTHSLL  120
PPNNNDNNSN SHLPFVSGFD LGGEAAGFIQ PASGFMGLTT TQICATNDSD FHGFGSSYSN  180
CFDNLEGLFF NSNSKAKVCS QSQPTLFEKR AALRQSSGKL ENLEILGGNL LLENIKCRKN  240
EEASVDISSL NYESDEYNNN NNNNNASNDN NVNGKVDESV KNWNAGGSAT VGDNKGKRKG  300
LPAKNLMAER RRRKKLNDRL YMLRSVVPKI SKMDRASILG DAIDYLKELL QRINDLHNEL  360
ESTPTGSLMQ PSTSIQPMTP TPPTLPCRVK EEISRSPTGE AARVEVRIRE GRAVNIHMFC  420
ARRPGLLLST MRALDSLGLD IQQAVISCFN GFALDVFRAE QCREGQDVLP KQIKSVLLDT  480
AGFHDVM*
Nucleic Localization Signal ? help Back to Top
NLS
No. Start End Sequence
1296314KRKGLPAKNLMAERRRRKK
2308315ERRRRKKL
Expression -- UniGene ? help Back to Top
UniGene ID E-value Expressed in
Csi.103990.0callus| fruit
Csi.52460.0callus
Expression -- Description ? help Back to Top
Source Description
UniprotTISSUE SPECIFICITY: Widely expressed in the whole plant with high expression in leaves and stem. Broad expression within stomatal cell lineages of leaf epidermis. {ECO:0000269|PubMed:18641265}.
Functional Description ? help Back to Top
Source Description
UniProtTranscriptional activator that regulates the cold-induced transcription of CBF/DREB1 genes. Binds specifically to the MYC recognition sites (5'-CANNTG-3') found in the CBF3/DREB1A promoter. Mediates stomatal differentiation in the epidermis probably by controlling successive roles of SPCH, MUTE, and FAMA. Functions as a dimer with SPCH during stomatal initiation (PubMed:18641265, PubMed:28507175). {ECO:0000269|PubMed:17416732, ECO:0000269|PubMed:18641265, ECO:0000269|PubMed:28507175}.
Regulation -- Description ? help Back to Top
Source Description
UniProtINDUCTION: By high-salt stress, cold stress and abscisic acid (ABA) treatment.
Regulation -- PlantRegMap ? help Back to Top
Source Upstream Regulator Target Gene
PlantRegMapRetrieve-
Annotation -- Nucleotide ? help Back to Top
Source Hit ID E-value Description
GenBankJX5126450.0JX512645.1 Citrus trifoliata bHLH mRNA, complete cds.
Annotation -- Protein ? help Back to Top
Source Hit ID E-value Description
RefseqXP_006446948.10.0transcription factor ICE1
RefseqXP_006446949.10.0transcription factor ICE1
RefseqXP_006468882.10.0transcription factor ICE1
SwissprotQ9LSE21e-121ICE1_ARATH; Transcription factor ICE1
TrEMBLA0A067DWI30.0A0A067DWI3_CITSI; Uncharacterized protein
TrEMBLV4W2Q30.0V4W2Q3_9ROSI; Uncharacterized protein
STRINGXP_006468882.10.0(Citrus sinensis)
STRINGXP_006446948.10.0(Citrus clementina)
Best hit in Arabidopsis thaliana ? help Back to Top
Hit ID E-value Description
AT3G26744.41e-109bHLH family protein
Publications ? help Back to Top
  1. Chen Y, et al.
    Ambient temperature enhanced freezing tolerance of Chrysanthemum dichrum CdICE1 Arabidopsis via miR398.
    BMC Biol., 2013. 11: p. 121
    [PMID:24350981]
  2. Xu F, et al.
    Increased drought tolerance through the suppression of ESKMO1 gene and overexpression of CBF-related genes in Arabidopsis.
    PLoS ONE, 2014. 9(9): p. e106509
    [PMID:25184213]
  3. Jiang W,Wu J,Zhang Y,Yin L,Lu J
    Isolation of a WRKY30 gene from Muscadinia rotundifolia (Michx) and validation of its function under biotic and abiotic stresses.
    Protoplasma, 2015. 252(5): p. 1361-74
    [PMID:25643917]
  4. Lang Z,Zhu J
    OST1 phosphorylates ICE1 to enhance plant cold tolerance.
    Sci China Life Sci, 2015. 58(3): p. 317-8
    [PMID:25680856]
  5. Juan JX, et al.
    Agrobacterium-mediated transformation of tomato with the ICE1 transcription factor gene.
    Genet. Mol. Res., 2015. 14(1): p. 597-608
    [PMID:25729995]
  6. Lee HG,Seo PJ
    The MYB96-HHP module integrates cold and abscisic acid signaling to activate the CBF-COR pathway in Arabidopsis.
    Plant J., 2015. 82(6): p. 962-77
    [PMID:25912720]
  7. Horst RJ, et al.
    Molecular Framework of a Regulatory Circuit Initiating Two-Dimensional Spatial Patterning of Stomatal Lineage.
    PLoS Genet., 2015. 11(7): p. e1005374
    [PMID:26203655]
  8. Lee JH,Jung JH,Park CM
    INDUCER OF CBF EXPRESSION 1 integrates cold signals into FLOWERING LOCUS C-mediated flowering pathways in Arabidopsis.
    Plant J., 2015. 84(1): p. 29-40
    [PMID:26248809]
  9. Wang CL,Zhang SC,Qi SD,Zheng CC,Wu CA
    Delayed germination of Arabidopsis seeds under chilling stress by overexpressing an abiotic stress inducible GhTPS11.
    Gene, 2016. 575(2 Pt 1): p. 206-12
    [PMID:26325072]
  10. Lee JH,Park CM
    Integration of photoperiod and cold temperature signals into flowering genetic pathways in Arabidopsis.
    Plant Signal Behav, 2015. 10(11): p. e1089373
    [PMID:26430754]
  11. Su F, et al.
    Burkholderia phytofirmans PsJN reduces impact of freezing temperatures on photosynthesis in Arabidopsis thaliana.
    Front Plant Sci, 2015. 6: p. 810
    [PMID:26483823]
  12. Klermund C, et al.
    LLM-Domain B-GATA Transcription Factors Promote Stomatal Development Downstream of Light Signaling Pathways in Arabidopsis thaliana Hypocotyls.
    Plant Cell, 2016. 28(3): p. 646-60
    [PMID:26917680]
  13. Chen L, et al.
    NRPB3, the third largest subunit of RNA polymerase II, is essential for stomatal patterning and differentiation in Arabidopsis.
    Development, 2016. 143(9): p. 1600-11
    [PMID:26989174]
  14. Lu X, et al.
    A novel Zea mays ssp. mexicana L. MYC-type ICE-like transcription factor gene ZmmICE1, enhances freezing tolerance in transgenic Arabidopsis thaliana.
    Plant Physiol. Biochem., 2017. 113: p. 78-88
    [PMID:28189052]
  15. Deng C,Ye H,Fan M,Pu T,Yan J
    The rice transcription factors OsICE confer enhanced cold tolerance in transgenic Arabidopsis.
    Plant Signal Behav, 2017. 12(5): p. e1316442
    [PMID:28414264]
  16. de Marcos A, et al.
    A Mutation in the bHLH Domain of the SPCH Transcription Factor Uncovers a BR-Dependent Mechanism for Stomatal Development.
    Plant Physiol., 2017. 174(2): p. 823-842
    [PMID:28507175]
  17. Kim SH, et al.
    Phosphorylation of the transcriptional repressor MYB15 by mitogen-activated protein kinase 6 is required for freezing tolerance in Arabidopsis.
    Nucleic Acids Res., 2017. 45(11): p. 6613-6627
    [PMID:28510716]
  18. Pal S, et al.
    TransDetect Identifies a New Regulatory Module Controlling Phosphate Accumulation.
    Plant Physiol., 2017. 175(2): p. 916-926
    [PMID:28827455]
  19. Zhao C, et al.
    MAP Kinase Cascades Regulate the Cold Response by Modulating ICE1 Protein Stability.
    Dev. Cell, 2017. 43(5): p. 618-629.e5
    [PMID:29056551]
  20. Li H, et al.
    MPK3- and MPK6-Mediated ICE1 Phosphorylation Negatively Regulates ICE1 Stability and Freezing Tolerance in Arabidopsis.
    Dev. Cell, 2017. 43(5): p. 630-642.e4
    [PMID:29056553]
  21. Lee JH,Jung JH,Park CM
    Light Inhibits COP1-Mediated Degradation of ICE Transcription Factors to Induce Stomatal Development in Arabidopsis.
    Plant Cell, 2017. 29(11): p. 2817-2830
    [PMID:29070509]
  22. Liu Y,Zhou J
    MAPping Kinase Regulation of ICE1 in Freezing Tolerance.
    Trends Plant Sci., 2018. 23(2): p. 91-93
    [PMID:29248419]
  23. Xie H, et al.
    Variation in ICE1 Methylation Primarily Determines Phenotypic Variation in Freezing Tolerance in Arabidopsis thaliana.
    Plant Cell Physiol., 2019. 60(1): p. 152-165
    [PMID:30295898]