PlantTFDB
PlantRegMap/PlantTFDB v5.0
Plant Transcription Factor Database
Transcription Factor Information
Basic Information | Signature Domain | Sequence | 
Basic Information? help Back to Top
TF ID MELO3C002385P2
Organism
Taxonomic ID
Taxonomic Lineage
cellular organisms; Eukaryota; Viridiplantae; Streptophyta; Streptophytina; Embryophyta; Tracheophyta; Euphyllophyta; Spermatophyta; Magnoliophyta; Mesangiospermae; eudicotyledons; Gunneridae; Pentapetalae; rosids; fabids; Cucurbitales; Cucurbitaceae; Benincaseae; Cucumis
Family bHLH
Protein Properties Length: 551aa    MW: 60174.2 Da    PI: 5.776
Description bHLH family protein
Gene Model
Gene Model ID Type Source Coding Sequence
MELO3C002385P2genomeMELONOMICSView CDS
Signature Domain? help Back to Top
Signature Domain
No. Domain Score E-value Start End HMM Start HMM End
1HLH35.81.4e-11366408754
                     HHHHHHHHHHHHHHHHHHCTSCC.C...TTS-STCHHHHHHHHHHHHHH CS
             HLH   7 erErrRRdriNsafeeLrellPk.askapskKlsKaeiLekAveYIksL 54 
                     ++ErrRR+++N+++  Lr+++Pk +      K++ a+iL  A+eY+k+L
  MELO3C002385P2 366 MAERRRRKKLNDRLYMLRSVVPKiS------KMDRASILGDAIEYLKEL 408
                     79*********************66......****************98 PP

Protein Features ? help Back to Top
3D Structure
Database Entry ID E-value Start End InterPro ID Description
PROSITE profilePS5088815.58359408IPR011598Myc-type, basic helix-loop-helix (bHLH) domain
SuperFamilySSF474593.01E-16362424IPR011598Myc-type, basic helix-loop-helix (bHLH) domain
PfamPF000103.3E-9365408IPR011598Myc-type, basic helix-loop-helix (bHLH) domain
SMARTSM003536.2E-14365414IPR011598Myc-type, basic helix-loop-helix (bHLH) domain
Gene3DG3DSA:4.10.280.101.7E-15366420IPR011598Myc-type, basic helix-loop-helix (bHLH) domain
CDDcd000838.86E-13366412No hitNo description
CDDcd048738.42E-8479539No hitNo description
Gene Ontology ? help Back to Top
GO Term GO Category GO Description
GO:0046983Molecular Functionprotein dimerization activity
Sequence ? help Back to Top
Protein Sequence    Length: 551 aa     Download sequence    Send to blast
MLSRVGNVLW MENREDEDSS SWTKNNNDHN HLNHPVNCSV LNNKDEITSL STFKSMLEVE  60
DDWCISANAL HNHNHHTDIN DITFSQNFTD PPDNLLLPPG DSSSSCSPSS SVFNNIDPSQ  120
LRFFLPPTRT LSSLHKVVSN NPLEHGFDLG AEVGFLDVQA SNASTLLNDG GGLLTGFTDL  180
SPTSQMNTPN LCLGSQLTAQ NVAPMGDNCS GLAGFQSFDE NLGNALLLNR SKLLRPLESF  240
PSVGAQPTLF QKRAALRKSL ADKGSNLGVL SPDGGWFSNR IEGGIGKNEM GDENGKKRKM  300
IYADELQDTS IDTSRFNYDS DDFTENTNTK LDESGRNVGN TSNANSTVTG GDQKGKKKGL  360
PAKNLMAERR RRKKLNDRLY MLRSVVPKIS KMDRASILGD AIEYLKELLQ RINDLHNELE  420
FSPSGAALTP GASFHPLTPT PPSLSSRIKE ELCPSSFPSP NGQPARVEVR VREGRAVNIH  480
MFCGRRPGLL LSTVRALDNL GLDIQQAVIS CFNGFAMDIF RAEQCSEGQD VHPEQIKAIL  540
LDSVGFNSAT *
Nucleic Localization Signal ? help Back to Top
NLS
No. Start End Sequence
1355373KKKGLPAKNLMAERRRRKK
2367374ERRRRKKL
Functional Description ? help Back to Top
Source Description
UniProtTranscriptional activator that regulates the cold-induced transcription of CBF/DREB1 genes. Binds specifically to the MYC recognition sites (5'-CANNTG-3') found in the CBF3/DREB1A promoter. Mediates stomatal differentiation in the epidermis probably by controlling successive roles of SPCH, MUTE, and FAMA. Functions as a dimer with SPCH during stomatal initiation (PubMed:18641265, PubMed:28507175). {ECO:0000269|PubMed:17416732, ECO:0000269|PubMed:18641265, ECO:0000269|PubMed:28507175}.
Regulation -- Description ? help Back to Top
Source Description
UniProtINDUCTION: By high-salt stress, cold stress and abscisic acid (ABA) treatment.
Regulation -- PlantRegMap ? help Back to Top
Source Upstream Regulator Target Gene
PlantRegMapRetrieve-
Annotation -- Nucleotide ? help Back to Top
Source Hit ID E-value Description
GenBankLN6819320.0LN681932.1 Cucumis melo genomic scaffold, anchoredscaffold00001.
GenBankLN7132660.0LN713266.1 Cucumis melo genomic chromosome, chr_12.
Annotation -- Protein ? help Back to Top
Source Hit ID E-value Description
RefseqXP_008440093.10.0PREDICTED: transcription factor ICE1-like isoform X1
SwissprotQ9LSE21e-130ICE1_ARATH; Transcription factor ICE1
TrEMBLA0A1S3B0C10.0A0A1S3B0C1_CUCME; transcription factor ICE1-like isoform X1
STRINGXP_008440093.10.0(Cucumis melo)
Orthologous Group ? help Back to Top
LineageOrthologous Group IDTaxa NumberGene Number
FabidsOGEF24143482
Best hit in Arabidopsis thaliana ? help Back to Top
Hit ID E-value Description
AT3G26744.41e-100bHLH family protein
Publications ? help Back to Top
  1. Chen Y, et al.
    Ambient temperature enhanced freezing tolerance of Chrysanthemum dichrum CdICE1 Arabidopsis via miR398.
    BMC Biol., 2013. 11: p. 121
    [PMID:24350981]
  2. Xu F, et al.
    Increased drought tolerance through the suppression of ESKMO1 gene and overexpression of CBF-related genes in Arabidopsis.
    PLoS ONE, 2014. 9(9): p. e106509
    [PMID:25184213]
  3. Jiang W,Wu J,Zhang Y,Yin L,Lu J
    Isolation of a WRKY30 gene from Muscadinia rotundifolia (Michx) and validation of its function under biotic and abiotic stresses.
    Protoplasma, 2015. 252(5): p. 1361-74
    [PMID:25643917]
  4. Lang Z,Zhu J
    OST1 phosphorylates ICE1 to enhance plant cold tolerance.
    Sci China Life Sci, 2015. 58(3): p. 317-8
    [PMID:25680856]
  5. Juan JX, et al.
    Agrobacterium-mediated transformation of tomato with the ICE1 transcription factor gene.
    Genet. Mol. Res., 2015. 14(1): p. 597-608
    [PMID:25729995]
  6. Lee HG,Seo PJ
    The MYB96-HHP module integrates cold and abscisic acid signaling to activate the CBF-COR pathway in Arabidopsis.
    Plant J., 2015. 82(6): p. 962-77
    [PMID:25912720]
  7. Horst RJ, et al.
    Molecular Framework of a Regulatory Circuit Initiating Two-Dimensional Spatial Patterning of Stomatal Lineage.
    PLoS Genet., 2015. 11(7): p. e1005374
    [PMID:26203655]
  8. Lee JH,Jung JH,Park CM
    INDUCER OF CBF EXPRESSION 1 integrates cold signals into FLOWERING LOCUS C-mediated flowering pathways in Arabidopsis.
    Plant J., 2015. 84(1): p. 29-40
    [PMID:26248809]
  9. Wang CL,Zhang SC,Qi SD,Zheng CC,Wu CA
    Delayed germination of Arabidopsis seeds under chilling stress by overexpressing an abiotic stress inducible GhTPS11.
    Gene, 2016. 575(2 Pt 1): p. 206-12
    [PMID:26325072]
  10. Lee JH,Park CM
    Integration of photoperiod and cold temperature signals into flowering genetic pathways in Arabidopsis.
    Plant Signal Behav, 2015. 10(11): p. e1089373
    [PMID:26430754]
  11. Su F, et al.
    Burkholderia phytofirmans PsJN reduces impact of freezing temperatures on photosynthesis in Arabidopsis thaliana.
    Front Plant Sci, 2015. 6: p. 810
    [PMID:26483823]
  12. Klermund C, et al.
    LLM-Domain B-GATA Transcription Factors Promote Stomatal Development Downstream of Light Signaling Pathways in Arabidopsis thaliana Hypocotyls.
    Plant Cell, 2016. 28(3): p. 646-60
    [PMID:26917680]
  13. Chen L, et al.
    NRPB3, the third largest subunit of RNA polymerase II, is essential for stomatal patterning and differentiation in Arabidopsis.
    Development, 2016. 143(9): p. 1600-11
    [PMID:26989174]
  14. Lu X, et al.
    A novel Zea mays ssp. mexicana L. MYC-type ICE-like transcription factor gene ZmmICE1, enhances freezing tolerance in transgenic Arabidopsis thaliana.
    Plant Physiol. Biochem., 2017. 113: p. 78-88
    [PMID:28189052]
  15. Deng C,Ye H,Fan M,Pu T,Yan J
    The rice transcription factors OsICE confer enhanced cold tolerance in transgenic Arabidopsis.
    Plant Signal Behav, 2017. 12(5): p. e1316442
    [PMID:28414264]
  16. de Marcos A, et al.
    A Mutation in the bHLH Domain of the SPCH Transcription Factor Uncovers a BR-Dependent Mechanism for Stomatal Development.
    Plant Physiol., 2017. 174(2): p. 823-842
    [PMID:28507175]
  17. Kim SH, et al.
    Phosphorylation of the transcriptional repressor MYB15 by mitogen-activated protein kinase 6 is required for freezing tolerance in Arabidopsis.
    Nucleic Acids Res., 2017. 45(11): p. 6613-6627
    [PMID:28510716]
  18. Pal S, et al.
    TransDetect Identifies a New Regulatory Module Controlling Phosphate Accumulation.
    Plant Physiol., 2017. 175(2): p. 916-926
    [PMID:28827455]
  19. Zhao C, et al.
    MAP Kinase Cascades Regulate the Cold Response by Modulating ICE1 Protein Stability.
    Dev. Cell, 2017. 43(5): p. 618-629.e5
    [PMID:29056551]
  20. Li H, et al.
    MPK3- and MPK6-Mediated ICE1 Phosphorylation Negatively Regulates ICE1 Stability and Freezing Tolerance in Arabidopsis.
    Dev. Cell, 2017. 43(5): p. 630-642.e4
    [PMID:29056553]
  21. Lee JH,Jung JH,Park CM
    Light Inhibits COP1-Mediated Degradation of ICE Transcription Factors to Induce Stomatal Development in Arabidopsis.
    Plant Cell, 2017. 29(11): p. 2817-2830
    [PMID:29070509]
  22. Liu Y,Zhou J
    MAPping Kinase Regulation of ICE1 in Freezing Tolerance.
    Trends Plant Sci., 2018. 23(2): p. 91-93
    [PMID:29248419]
  23. Xie H, et al.
    Variation in ICE1 Methylation Primarily Determines Phenotypic Variation in Freezing Tolerance in Arabidopsis thaliana.
    Plant Cell Physiol., 2019. 60(1): p. 152-165
    [PMID:30295898]