PlantTFDB
PlantRegMap/PlantTFDB v5.0
Plant Transcription Factor Database
Transcription Factor Information
Basic Information | Signature Domain | Sequence | 
Basic Information? help Back to Top
TF ID Csa20g023360.1
Organism
Taxonomic ID
Taxonomic Lineage
cellular organisms; Eukaryota; Viridiplantae; Streptophyta; Streptophytina; Embryophyta; Tracheophyta; Euphyllophyta; Spermatophyta; Magnoliophyta; Mesangiospermae; eudicotyledons; Gunneridae; Pentapetalae; rosids; malvids; Brassicales; Brassicaceae; Camelineae; Camelina
Family CO-like
Protein Properties Length: 377aa    MW: 42256.7 Da    PI: 7.5566
Description CO-like family protein
Gene Model
Gene Model ID Type Source Coding Sequence
Csa20g023360.1genomeCSGPView CDS
Signature Domain? help Back to Top
Signature Domain
No. Domain Score E-value Start End HMM Start HMM End
1zf-B_box21.45.3e-071662242
        zf-B_box  2 eerkCpeHeekelqlfCedCqqllCedClleeHkg......Htvvpl 42
                    ++r C+++ ++  + +C+ ++ +lC +C  + H+       H++vp+
  Csa20g023360.1 16 RARACDTCRSNVCTVYCHADSAYLCMSCDAQVHSAnrvasrHKRVPV 62
                    6789*****************************66889999*99986 PP

2zf-B_box30.67.2e-1059105242
        zf-B_box   2 eerkCpeHeekelqlfCedCqqllCedClleeHkg......Htvvpl 42 
                     + ++C+ +e+ ++ + Ce ++  lC  C +e H+       H +vp+
  Csa20g023360.1  59 RVPVCESCERAPAAFLCEADDASLCTACDSEVHSAnplarrHHRVPI 105
                     5689*****************************66899999877775 PP

3CCT652.2e-22308351144
             CCT   1 ReaallRYkeKrktRkFeKkirYesRKavAesRpRvKGrFvkqa 44 
                     Rea++lRY+eKrktRkFeK+irY+sRKa+Ae+RpRv+GrF+k+ 
  Csa20g023360.1 308 REARVLRYREKRKTRKFEKTIRYASRKAYAERRPRVNGRFAKRR 351
                     9*****************************************86 PP

Protein Features ? help Back to Top
3D Structure
Database Entry ID E-value Start End InterPro ID Description
SMARTSM003363.3E-101562IPR000315B-box-type zinc finger
PROSITE profilePS5011911.9171562IPR000315B-box-type zinc finger
CDDcd000212.13E-81862No hitNo description
PROSITE profilePS5011911.73258105IPR000315B-box-type zinc finger
PfamPF006434.0E-859105IPR000315B-box-type zinc finger
CDDcd000213.53E-961105No hitNo description
SMARTSM003366.4E-1063105IPR000315B-box-type zinc finger
PROSITE profilePS5101716.559308350IPR010402CCT domain
PfamPF062033.9E-16308350IPR010402CCT domain
Gene Ontology ? help Back to Top
GO Term GO Category GO Description
GO:0005622Cellular Componentintracellular
GO:0005515Molecular Functionprotein binding
GO:0008270Molecular Functionzinc ion binding
Sequence ? help Back to Top
Protein Sequence    Length: 377 aa     Download sequence    Send to blast
MSKHESNDIS SGGDNRARAC DTCRSNVCTV YCHADSAYLC MSCDAQVHSA NRVASRHKRV  60
PVCESCERAP AAFLCEADDA SLCTACDSEV HSANPLARRH HRVPILPISG NSYSSMASHH  120
QSETIMTDQE KVPVVDQERS VQGGEESKKV ASWLFTNSDK NKANHNGNNQ NNGLLFSDAY  180
LDLADYNSSI DCQFTGQYNQ QQQDCGVPQT SYGGDRAVPL QLEESRGHLH HKEENFQFDI  240
TYGSSGSHYS NKGSQNHNAY ISAMETGVVP ESTPRVITAS HPRKPKATID HIPDPPSQMI  300
TQLSPMDREA RVLRYREKRK TRKFEKTIRY ASRKAYAERR PRVNGRFAKR REIEDEDHRF  360
NTMLMYDTGY GVVPSF*
Functional Description ? help Back to Top
Source Description
UniProtTranscription factor that acts in the long day flowering pathway and may mediate between the circadian clock and the control of flowering. Plays a role in the regulation of flowering time by acting on 'SUPPRESSOR OF OVEREXPRESSION OF CO1', 'TERMINAL FLOWER 1' and 'FLOWERING LOCUS T'. Also regulates P5CS2 and ACS10 (involved in proline and ethylene biosynthesis, respectively). Regulates the expression of NAKR1 by binding to the 5'-TGTG(N2-3)ATG-3' motif (PubMed:27255839). {ECO:0000269|PubMed:10834834, ECO:0000269|PubMed:11323677, ECO:0000269|PubMed:21950734, ECO:0000269|PubMed:27255839}.
Cis-element ? help Back to Top
SourceLink
PlantRegMapCsa20g023360.1
Regulation -- Description ? help Back to Top
Source Description
UniProtINDUCTION: Expressed with a circadian rhythm showing a broad peak between 12 hours and dawn. Higher expression under long days.
Regulation -- PlantRegMap ? help Back to Top
Source Upstream Regulator Target Gene
PlantRegMapRetrieve-
Annotation -- Protein ? help Back to Top
Source Hit ID E-value Description
RefseqXP_010492434.10.0PREDICTED: zinc finger protein CONSTANS-like
SwissprotQ390570.0CONS_ARATH; Zinc finger protein CONSTANS
TrEMBLR0H7K60.0R0H7K6_9BRAS; Uncharacterized protein
STRINGXP_010492434.10.0(Camelina sativa)
Orthologous Group ? help Back to Top
LineageOrthologous Group IDTaxa NumberGene Number
MalvidsOGEM21282670
Best hit in Arabidopsis thaliana ? help Back to Top
Hit ID E-value Description
AT5G15840.10.0B-box type zinc finger protein with CCT domain
Publications ? help Back to Top
  1. Yeoh CC, et al.
    Fine mapping links the FTa1 flowering time regulator to the dominant spring1 locus in Medicago.
    PLoS ONE, 2013. 8(1): p. e53467
    [PMID:23308229]
  2. Joon Seo P,Jung JH,Park MJ,Lee K,Park CM
    Controlled turnover of CONSTANS protein by the HOS1 E3 ligase regulates floral transition at low temperatures.
    Plant Signal Behav, 2013. 8(4): p. e23780
    [PMID:23425850]
  3. Yu Y, et al.
    MlWRKY12, a novel Miscanthus transcription factor, participates in pith secondary cell wall formation and promotes flowering.
    Plant Sci., 2013. 212: p. 1-9
    [PMID:24094048]
  4. Sgamma T,Jackson A,Muleo R,Thomas B,Massiah A
    TEMPRANILLO is a regulator of juvenility in plants.
    Sci Rep, 2014. 4: p. 3704
    [PMID:24424565]
  5. Qian H, et al.
    The circadian clock gene regulatory module enantioselectively mediates imazethapyr-induced early flowering in Arabidopsis thaliana.
    J. Plant Physiol., 2014. 171(5): p. 92-8
    [PMID:24484962]
  6. Ortiz-Marchena MI, et al.
    Photoperiodic control of carbon distribution during the floral transition in Arabidopsis.
    Plant Cell, 2014. 26(2): p. 565-84
    [PMID:24563199]
  7. Endo M,Kudo D,Koto T,Shimizu H,Araki T
    Light-dependent destabilization of PHL in Arabidopsis.
    Plant Signal Behav, 2014. 9(3): p. e28118
    [PMID:24614229]
  8. Steinbach Y,Hennig L
    Arabidopsis MSI1 functions in photoperiodic flowering time control.
    Front Plant Sci, 2014. 5: p. 77
    [PMID:24639681]
  9. Johansson M,Staiger D
    SRR1 is essential to repress flowering in non-inductive conditions in Arabidopsis thaliana.
    J. Exp. Bot., 2014. 65(20): p. 5811-22
    [PMID:25129129]
  10. Shim JS,Imaizumi T
    Circadian clock and photoperiodic response in Arabidopsis: from seasonal flowering to redox homeostasis.
    Biochemistry, 2015. 54(2): p. 157-70
    [PMID:25346271]
  11. Fu J,Yang L,Dai S
    Identification and characterization of the CONSTANS-like gene family in the short-day plant Chrysanthemum lavandulifolium.
    Mol. Genet. Genomics, 2015. 290(3): p. 1039-54
    [PMID:25523304]
  12. Song YH,Shim JS,Kinmonth-Schultz HA,Imaizumi T
    Photoperiodic flowering: time measurement mechanisms in leaves.
    Annu Rev Plant Biol, 2015. 66: p. 441-64
    [PMID:25534513]
  13. Liu T,Zhu S,Tang Q,Tang S
    Identification of a CONSTANS homologous gene with distinct diurnal expression patterns in varied photoperiods in ramie (Boehmeria nivea L. Gaud).
    Gene, 2015. 560(1): p. 63-70
    [PMID:25623329]
  14. Golembeski GS,Kinmonth-Schultz HA,Song YH,Imaizumi T
    Photoperiodic flowering regulation in Arabidopsis thaliana.
    Adv. Bot. Res., 2014. 72: p. 1-28
    [PMID:25684830]
  15. Leal Valentim F, et al.
    A quantitative and dynamic model of the Arabidopsis flowering time gene regulatory network.
    PLoS ONE, 2015. 10(2): p. e0116973
    [PMID:25719734]
  16. Han Y,Zhang X,Wang W,Wang Y,Ming F
    Correction: the suppression of WRKY44 by GIGANTEA-miR172 pathway is involved in drought response of Arabidopsis thaliana.
    PLoS ONE, 2015. 10(4): p. e0124854
    [PMID:25844872]
  17. Lucas-Reina E,Romero-Campero FJ,Romero JM,Valverde F
    An Evolutionarily Conserved DOF-CONSTANS Module Controls Plant Photoperiodic Signaling.
    Plant Physiol., 2015. 168(2): p. 561-74
    [PMID:25897001]
  18. Simon S,Rühl M,de Montaigu A,Wötzel S,Coupland G
    Evolution of CONSTANS Regulation and Function after Gene Duplication Produced a Photoperiodic Flowering Switch in the Brassicaceae.
    Mol. Biol. Evol., 2015. 32(9): p. 2284-301
    [PMID:25972346]
  19. Ortiz-Marchena MI,Romero JM,Valverde F
    Photoperiodic control of sugar release during the floral transition: What is the role of sugars in the florigenic signal?
    Plant Signal Behav, 2015. 10(5): p. e1017168
    [PMID:26039474]
  20. Wang C,Dehesh K
    From retrograde signaling to flowering time.
    Plant Signal Behav, 2015. 10(6): p. e1022012
    [PMID:26098376]
  21. Hajdu A, et al.
    High-level expression and phosphorylation of phytochrome B modulates flowering time in Arabidopsis.
    Plant J., 2015. 83(5): p. 794-805
    [PMID:26120968]
  22. Golembeski GS,Imaizumi T
    Photoperiodic Regulation of Florigen Function in Arabidopsis thaliana.
    Arabidopsis Book, 2015. 13: p. e0178
    [PMID:26157354]
  23. Jang K,Lee HG,Jung SJ,Paek NC,Seo PJ
    The E3 Ubiquitin Ligase COP1 Regulates Thermosensory Flowering by Triggering GI Degradation in Arabidopsis.
    Sci Rep, 2015. 5: p. 12071
    [PMID:26159740]
  24. Marín-González E, et al.
    SHORT VEGETATIVE PHASE Up-Regulates TEMPRANILLO2 Floral Repressor at Low Ambient Temperatures.
    Plant Physiol., 2015. 169(2): p. 1214-24
    [PMID:26243615]
  25. Sarid-Krebs L, et al.
    Phosphorylation of CONSTANS and its COP1-dependent degradation during photoperiodic flowering of Arabidopsis.
    Plant J., 2015. 84(3): p. 451-63
    [PMID:26358558]
  26. Lazaro A,Mouriz A,Piñeiro M,Jarillo JA
    Red Light-Mediated Degradation of CONSTANS by the E3 Ubiquitin Ligase HOS1 Regulates Photoperiodic Flowering in Arabidopsis.
    Plant Cell, 2015. 27(9): p. 2437-54
    [PMID:26373454]
  27. Matsoukas IG
    Florigens and antiflorigens: a molecular genetic understanding.
    Essays Biochem., 2015. 58: p. 133-49
    [PMID:26374892]
  28. Mulki MA,von Korff M
    CONSTANS Controls Floral Repression by Up-Regulating VERNALIZATION2 (VRN-H2) in Barley.
    Plant Physiol., 2016. 170(1): p. 325-37
    [PMID:26556793]
  29. Xu L, et al.
    Genome-wide association study reveals the genetic architecture of flowering time in rapeseed (Brassica napus L.).
    DNA Res., 2016. 23(1): p. 43-52
    [PMID:26659471]
  30. Wada T,Tominaga-Wada R
    CAPRICE family genes control flowering time through both promoting and repressing CONSTANS and FLOWERING LOCUS T expression.
    Plant Sci., 2015. 241: p. 260-5
    [PMID:26706076]
  31. Tang Q, et al.
    The mitogen-activated protein kinase phosphatase PHS1 regulates flowering in Arabidopsis thaliana.
    Planta, 2016. 243(4): p. 909-23
    [PMID:26721646]
  32. Xu F, et al.
    DELLA proteins physically interact with CONSTANS to regulate flowering under long days in Arabidopsis.
    FEBS Lett., 2016. 590(4): p. 541-9
    [PMID:26801684]
  33. Kinmonth-Schultz HA, et al.
    Cool night-time temperatures induce the expression of CONSTANS and FLOWERING LOCUS T to regulate flowering in Arabidopsis.
    New Phytol., 2016. 211(1): p. 208-24
    [PMID:26856528]
  34. Sun X, et al.
    The Oryza sativa Regulator HDR1 Associates with the Kinase OsK4 to Control Photoperiodic Flowering.
    PLoS Genet., 2016. 12(3): p. e1005927
    [PMID:26954091]
  35. Nemoto Y,Nonoue Y,Yano M,Izawa T
    Hd1,a CONSTANS ortholog in rice, functions as an Ehd1 repressor through interaction with monocot-specific CCT-domain protein Ghd7.
    Plant J., 2016. 86(3): p. 221-33
    [PMID:26991872]
  36. Fernández V,Takahashi Y,Le Gourrierec J,Coupland G
    Photoperiodic and thermosensory pathways interact through CONSTANS to promote flowering at high temperature under short days.
    Plant J., 2016. 86(5): p. 426-40
    [PMID:27117775]
  37. Zhu Y,Liu L,Shen L,Yu H
    NaKR1 regulates long-distance movement of FLOWERING LOCUS T in Arabidopsis.
    Nat Plants, 2016. 2(6): p. 16075
    [PMID:27255839]
  38. Wang H, et al.
    The DELLA-CONSTANS Transcription Factor Cascade Integrates Gibberellic Acid and Photoperiod Signaling to Regulate Flowering.
    Plant Physiol., 2016. 172(1): p. 479-88
    [PMID:27406167]
  39. Gil KE, et al.
    Alternative splicing provides a proactive mechanism for the diurnal CONSTANS dynamics in Arabidopsis photoperiodic flowering.
    Plant J., 2017. 89(1): p. 128-140
    [PMID:27607358]
  40. Shim JS,Kubota A,Imaizumi T
    Circadian Clock and Photoperiodic Flowering in Arabidopsis: CONSTANS Is a Hub for Signal Integration.
    Plant Physiol., 2017. 173(1): p. 5-15
    [PMID:27688622]
  41. Park HJ,Kim WY,Pardo JM,Yun DJ
    Molecular Interactions Between Flowering Time and Abiotic Stress Pathways.
    Int Rev Cell Mol Biol, 2016. 327: p. 371-412
    [PMID:27692179]
  42. Riboni M,Robustelli Test A,Galbiati M,Tonelli C,Conti L
    ABA-dependent control of GIGANTEA signalling enables drought escape via up-regulation of FLOWERING LOCUS T in Arabidopsis thaliana.
    J. Exp. Bot., 2016. 67(22): p. 6309-6322
    [PMID:27733440]
  43. Song YH
    The Effect of Fluctuations in Photoperiod and Ambient Temperature on the Timing of Flowering: Time to Move on Natural Environmental Conditions.
    Mol. Cells, 2016. 39(10): p. 715-721
    [PMID:27788575]
  44. Hayama R, et al.
    PSEUDO RESPONSE REGULATORs stabilize CONSTANS protein to promote flowering in response to day length.
    EMBO J., 2017. 36(7): p. 904-918
    [PMID:28270524]
  45. Gnesutta N, et al.
    CONSTANS Imparts DNA Sequence Specificity to the Histone Fold NF-YB/NF-YC Dimer.
    Plant Cell, 2017. 29(6): p. 1516-1532
    [PMID:28526714]
  46. Liu J, et al.
    MicroRNA319-regulated TCPs interact with FBHs and PFT1 to activate CO transcription and control flowering time in Arabidopsis.
    PLoS Genet., 2017. 13(5): p. e1006833
    [PMID:28558040]
  47. Cai D,Liu H,Sang N,Huang X
    Identification and characterization of CONSTANS-like (COL) gene family in upland cotton (Gossypium hirsutum L.).
    PLoS ONE, 2017. 12(6): p. e0179038
    [PMID:28591177]
  48. Kubota A, et al.
    TCP4-dependent induction of CONSTANS transcription requires GIGANTEA in photoperiodic flowering in Arabidopsis.
    PLoS Genet., 2017. 13(6): p. e1006856
    [PMID:28628608]
  49. Shibuta M,Abe M
    FE Controls the Transcription of Downstream Flowering Regulators Through Two Distinct Mechanisms in Leaf Phloem Companion Cells.
    Plant Cell Physiol., 2017. 58(11): p. 2017-2025
    [PMID:29036620]
  50. Kurokura T,Samad S,Koskela E,Mouhu K,Hytönen T
    Fragaria vesca CONSTANS controls photoperiodic flowering and vegetative development.
    J. Exp. Bot., 2017. 68(17): p. 4839-4850
    [PMID:29048562]
  51. Hassidim M, et al.
    CIRCADIAN CLOCK ASSOCIATED1 (CCA1) and the Circadian Control of Stomatal Aperture.
    Plant Physiol., 2017. 175(4): p. 1864-1877
    [PMID:29084902]
  52. Ordoñez-Herrera N, et al.
    The Transcription Factor COL12 Is a Substrate of the COP1/SPA E3 Ligase and Regulates Flowering Time and Plant Architecture.
    Plant Physiol., 2018. 176(2): p. 1327-1340
    [PMID:29187570]
  53. Kumar S,Choudhary P,Gupta M,Nath U
    VASCULAR PLANT ONE-ZINC FINGER1 (VOZ1) and VOZ2 Interact with CONSTANS and Promote Photoperiodic Flowering Transition.
    Plant Physiol., 2018. 176(4): p. 2917-2930
    [PMID:29507119]
  54. Kumar A,Singh A,Panigrahy M,Sahoo PK,Panigrahi KCS
    Carbon nanoparticles influence photomorphogenesis and flowering time in Arabidopsis thaliana.
    Plant Cell Rep., 2018. 37(6): p. 901-912
    [PMID:29541883]
  55. Liu Y, et al.
    CIB1 and CO interact to mediate CRY2-dependent regulation of flowering.
    EMBO Rep., 2019.
    [PMID:30126927]