PlantTFDB
PlantRegMap/PlantTFDB v5.0
Plant Transcription Factor Database
Transcription Factor Information
Basic Information | Signature Domain | Sequence | 
Basic Information? help Back to Top
TF ID Csa04g046570.1
Organism
Taxonomic ID
Taxonomic Lineage
cellular organisms; Eukaryota; Viridiplantae; Streptophyta; Streptophytina; Embryophyta; Tracheophyta; Euphyllophyta; Spermatophyta; Magnoliophyta; Mesangiospermae; eudicotyledons; Gunneridae; Pentapetalae; rosids; malvids; Brassicales; Brassicaceae; Camelineae; Camelina
Family bHLH
Protein Properties Length: 568aa    MW: 62543.3 Da    PI: 6.3328
Description bHLH family protein
Gene Model
Gene Model ID Type Source Coding Sequence
Csa04g046570.1genomeCSGPView CDS
Signature Domain? help Back to Top
Signature Domain
No. Domain Score E-value Start End HMM Start HMM End
1HLH56.54.9e-18381427455
                     HHHHHHHHHHHHHHHHHHHHHCTSCCC...TTS-STCHHHHHHHHHHHHHHH CS
             HLH   4 ahnerErrRRdriNsafeeLrellPkaskapskKlsKaeiLekAveYIksLq 55 
                      hn  ErrRRdriN+++  L+el+P++      K +Ka+iL +A++Y+ksLq
  Csa04g046570.1 381 VHNLSERRRRDRINERMKALQELIPHC-----SKTDKASILDEAIDYLKSLQ 427
                     6*************************9.....7******************9 PP

Protein Features ? help Back to Top
3D Structure
Database Entry ID E-value Start End InterPro ID Description
SuperFamilySSF474595.1E-21375436IPR011598Myc-type, basic helix-loop-helix (bHLH) domain
PROSITE profilePS5088819.2377426IPR011598Myc-type, basic helix-loop-helix (bHLH) domain
CDDcd000831.42E-10380431No hitNo description
PfamPF000102.3E-15381427IPR011598Myc-type, basic helix-loop-helix (bHLH) domain
Gene3DG3DSA:4.10.280.109.6E-22381435IPR011598Myc-type, basic helix-loop-helix (bHLH) domain
SMARTSM003531.5E-18383432IPR011598Myc-type, basic helix-loop-helix (bHLH) domain
Gene Ontology ? help Back to Top
GO Term GO Category GO Description
GO:0046983Molecular Functionprotein dimerization activity
Sequence ? help Back to Top
Protein Sequence    Length: 568 aa     Download sequence    Send to blast
MEQVFADWNF EDNFHMSTNK RSIRPEDELE ELLWRDGQVV LQSQARREPS VQLQSHKQDT  60
LRKPCNIFLD DQEIVPKPNN NALLDDQETV SWIQYPPDDV VDPFESEFSS HLFSTVNHLG  120
SPEKPRSVEE TVKNEAQAMA PPKFRSSVIT VGPSHCGSNQ STNDHQVITL PVSITDGSKN  180
VEERLDTSSG GSSGCSYGRN NKETVSGRSV TIDRKRKHVM DTDQESVSQS DVPLTSTXGS  240
PEKPRSVEET VKNEAQAMAP PKFRSSVITV GPSHCGRNQS TNDHQVTTLP VSMTDGSKNV  300
EERLDTSSGG SSGCSYGRNN KETVSGRSVT IDRKRKHVMD ADQESVSQSD VPLTSTDDIQ  360
VTGNKSSQRS GSTRRSRAAE VHNLSERRRR DRINERMKAL QELIPHCSKT DKASILDEAI  420
DYLKSLQMQL QVMWMGSGMA AAAAAAAATT PMMFPGVQSS PYINQMAMQS QMQLPQFPVM  480
NRSAPQNHPG LVCQNPVQLQ LQAQNQILSE QLARYMGGFP QMPPAANQAV QQQQQPTDMM  540
RFGSPAGPQS QLSAPASTDS LRMGKIG*
Nucleic Localization Signal ? help Back to Top
NLS
No. Start End Sequence
1385390ERRRRD
Functional Description ? help Back to Top
Source Description
UniProtTranscription factor acting negatively in the phytochrome B signaling pathway to promote the shade-avoidance response. Regulates PHYB abundance at the post-transcriptional level, possibly via the ubiquitin-proteasome pathway. Promotes ethylene activity in the dark. May regulate the expression of a subset of genes by binding to the G-box motif. Might be involved in the integration of light-signals to control both circadian and photomorphogenic processes. Activated by CRY1 and CRY2 in response to low blue light (LBL) by direct binding at chromatin on E-box variant 5'-CA[CT]GTG-3' to stimulate specific gene expression to adapt global physiology (e.g. hypocotyl elongation in low blue light) (PubMed:26724867). {ECO:0000269|PubMed:12826627, ECO:0000269|PubMed:15356333, ECO:0000269|PubMed:15486100, ECO:0000269|PubMed:17589502, ECO:0000269|PubMed:18047474, ECO:0000269|PubMed:18065691, ECO:0000269|PubMed:26724867}.
Cis-element ? help Back to Top
SourceLink
PlantRegMapCsa04g046570.1
Regulation -- Description ? help Back to Top
Source Description
UniProtINDUCTION: Follow a free-running robust circadian rhythm, with higher levels during the light phase. Rapidly induced by light in etiolated plants. Up-regulated by white light. Rapid degradation after red light exposure (at protein level). Accumulates to high levels in the dark, is selectively degraded in response to red light and remains at high levels under shade-mimicking conditions. {ECO:0000269|PubMed:12826627, ECO:0000269|PubMed:17589502, ECO:0000269|PubMed:18047474}.
Regulation -- PlantRegMap ? help Back to Top
Source Upstream Regulator Target Gene
PlantRegMapRetrieve-
Annotation -- Nucleotide ? help Back to Top
Source Hit ID E-value Description
GenBankAK3173740.0AK317374.1 Arabidopsis thaliana AT3G59060 mRNA, complete cds, clone: RAFL25-22-H20.
Annotation -- Protein ? help Back to Top
Source Hit ID E-value Description
RefseqXP_010504884.10.0PREDICTED: transcription factor PIF5 isoform X1
RefseqXP_010504885.10.0PREDICTED: transcription factor PIF5 isoform X2
SwissprotQ84LH80.0PIF5_ARATH; Transcription factor PIF5
TrEMBLB9DH290.0B9DH29_ARATH; AT3G59060 protein
STRINGXP_010504884.10.0(Camelina sativa)
Orthologous Group ? help Back to Top
LineageOrthologous Group IDTaxa NumberGene Number
MalvidsOGEM34682561
Best hit in Arabidopsis thaliana ? help Back to Top
Hit ID E-value Description
AT3G59060.41e-170phytochrome interacting factor 3-like 6
Publications ? help Back to Top
  1. Skinner MK,Rawls A,Wilson-Rawls J,Roalson EH
    Basic helix-loop-helix transcription factor gene family phylogenetics and nomenclature.
    Differentiation, 2010. 80(1): p. 1-8
    [PMID:20219281]
  2. Carabelli M,Turchi L,Ruzza V,Morelli G,Ruberti I
    Homeodomain-Leucine Zipper II family of transcription factors to the limelight: central regulators of plant development.
    Plant Signal Behav, 2014.
    [PMID:23838958]
  3. Karayekov E,Sellaro R,Legris M,Yanovsky MJ,Casal JJ
    Heat shock-induced fluctuations in clock and light signaling enhance phytochrome B-mediated Arabidopsis deetiolation.
    Plant Cell, 2013. 25(8): p. 2892-906
    [PMID:23933882]
  4. Mannen K, et al.
    Coordinated transcriptional regulation of isopentenyl diphosphate biosynthetic pathway enzymes in plastids by phytochrome-interacting factor 5.
    Biochem. Biophys. Res. Commun., 2014. 443(2): p. 768-74
    [PMID:24342623]
  5. Ding Y, et al.
    Four distinct types of dehydration stress memory genes in Arabidopsis thaliana.
    BMC Plant Biol., 2013. 13: p. 229
    [PMID:24377444]
  6. Di C, et al.
    Characterization of stress-responsive lncRNAs in Arabidopsis thaliana by integrating expression, epigenetic and structural features.
    Plant J., 2014. 80(5): p. 848-61
    [PMID:25256571]
  7. Dornbusch T,Michaud O,Xenarios I,Fankhauser C
    Differentially phased leaf growth and movements in Arabidopsis depend on coordinated circadian and light regulation.
    Plant Cell, 2014. 26(10): p. 3911-21
    [PMID:25281688]
  8. Seaton DD, et al.
    Linked circadian outputs control elongation growth and flowering in response to photoperiod and temperature.
    Mol. Syst. Biol., 2015. 11(1): p. 776
    [PMID:25600997]
  9. Filo J, et al.
    Gibberellin driven growth in elf3 mutants requires PIF4 and PIF5.
    Plant Signal Behav, 2015. 10(3): p. e992707
    [PMID:25738547]
  10. Mizuno T,Oka H,Yoshimura F,Ishida K,Yamashino T
    Insight into the mechanism of end-of-day far-red light (EODFR)-induced shade avoidance responses in Arabidopsis thaliana.
    Biosci. Biotechnol. Biochem., 2015. 79(12): p. 1987-94
    [PMID:26193333]
  11. Galvão VC,Collani S,Horrer D,Schmid M
    Gibberellic acid signaling is required for ambient temperature-mediated induction of flowering in Arabidopsis thaliana.
    Plant J., 2015. 84(5): p. 949-62
    [PMID:26466761]
  12. Miyazaki Y, et al.
    Enhancement of hypocotyl elongation by LOV KELCH PROTEIN2 production is mediated by auxin and phytochrome-interacting factors in Arabidopsis thaliana.
    Plant Cell Rep., 2016. 35(2): p. 455-67
    [PMID:26601822]
  13. Yue J, et al.
    TOPP4 Regulates the Stability of PHYTOCHROME INTERACTING FACTOR5 during Photomorphogenesis in Arabidopsis.
    Plant Physiol., 2016. 170(3): p. 1381-97
    [PMID:26704640]
  14. Pacín M,Semmoloni M,Legris M,Finlayson SA,Casal JJ
    Convergence of CONSTITUTIVE PHOTOMORPHOGENESIS 1 and PHYTOCHROME INTERACTING FACTOR signalling during shade avoidance.
    New Phytol., 2016. 211(3): p. 967-79
    [PMID:27105120]
  15. Fernández V,Takahashi Y,Le Gourrierec J,Coupland G
    Photoperiodic and thermosensory pathways interact through CONSTANS to promote flowering at high temperature under short days.
    Plant J., 2016. 86(5): p. 426-40
    [PMID:27117775]
  16. Martin G,Soy J,Monte E
    Genomic Analysis Reveals Contrasting PIFq Contribution to Diurnal Rhythmic Gene Expression in PIF-Induced and -Repressed Genes.
    Front Plant Sci, 2016. 7: p. 962
    [PMID:27458465]
  17. Gray JA,Shalit-Kaneh A,Chu DN,Hsu PY,Harmer SL
    The REVEILLE Clock Genes Inhibit Growth of Juvenile and Adult Plants by Control of Cell Size.
    Plant Physiol., 2017. 173(4): p. 2308-2322
    [PMID:28254761]
  18. Kasulin L, et al.
    A single haplotype hyposensitive to light and requiring strong vernalization dominates Arabidopsis thaliana populations in Patagonia, Argentina.
    Mol. Ecol., 2017. 26(13): p. 3389-3404
    [PMID:28316114]
  19. Wei Z, et al.
    Brassinosteroid Biosynthesis Is Modulated via a Transcription Factor Cascade of COG1, PIF4, and PIF5.
    Plant Physiol., 2017. 174(2): p. 1260-1273
    [PMID:28438793]
  20. Shor E,Paik I,Kangisser S,Green R,Huq E
    PHYTOCHROME INTERACTING FACTORS mediate metabolic control of the circadian system in Arabidopsis.
    New Phytol., 2017. 215(1): p. 217-228
    [PMID:28440582]
  21. Paik I,Kathare PK,Kim JI,Huq E
    Expanding Roles of PIFs in Signal Integration from Multiple Processes.
    Mol Plant, 2017. 10(8): p. 1035-1046
    [PMID:28711729]
  22. Swain S,Jiang HW,Hsieh HL
    FAR-RED INSENSITIVE 219/JAR1 Contributes to Shade Avoidance Responses of Arabidopsis Seedlings by Modulating Key Shade Signaling Components.
    Front Plant Sci, 2017. 8: p. 1901
    [PMID:29163619]