PlantTFDB
PlantRegMap/PlantTFDB v5.0
Plant Transcription Factor Database
Transcription Factor Information
Basic Information | Signature Domain | Sequence | 
Basic Information? help Back to Top
TF ID XP_004489178.1
Organism
Taxonomic ID
Taxonomic Lineage
cellular organisms; Eukaryota; Viridiplantae; Streptophyta; Streptophytina; Embryophyta; Tracheophyta; Euphyllophyta; Spermatophyta; Magnoliophyta; Mesangiospermae; eudicotyledons; Gunneridae; Pentapetalae; rosids; fabids; Fabales; Fabaceae; Papilionoideae; Cicereae; Cicer
Family AP2
Protein Properties Length: 388aa    MW: 45004.2 Da    PI: 9.4064
Description AP2 family protein
Gene Model
Gene Model ID Type Source Coding Sequence
XP_004489178.1genomeNCBIView CDS
Signature Domain? help Back to Top
Signature Domain
No. Domain Score E-value Start End HMM Start HMM End
1AP249.31.2e-1566125155
             AP2   1 sgykGVrwdkkrgrWvAeIrd.pseng...kr.krfslgkfgtaeeAakaaiaarkkleg 55 
                     s+++GV++++++gr++A+++d  s+n    k+ k+++lg ++ +e Aa+a++ a+ k++g
  XP_004489178.1  66 SKFRGVSRHRWTGRYEAHLWDkHSWNItqkKKgKQVYLGAYDEEEAAARAYDLAAIKYWG 125
                     79*******************999955655447*************************98 PP

2AP252.41.3e-16168219155
             AP2   1 sgykGVrwdkkrgrWvAeIrd.psengkrkrfslgkfgtaeeAakaaiaarkkleg 55 
                     s+y+GV +++ +grW+A+I   +   g +k+ +lg++ t eeAa+a++ a+ +++g
  XP_004489178.1 168 SKYRGVARHHHNGRWEARIGRvF---G-NKYLYLGTYSTQEEAARAYDIAAIEYRG 219
                     89****99**********99966...3.6*************************97 PP

Protein Features ? help Back to Top
3D Structure
Database Entry ID E-value Start End InterPro ID Description
PfamPF008472.0E-1266125IPR001471AP2/ERF domain
SuperFamilySSF541712.22E-1666134IPR016177DNA-binding domain
PROSITE profilePS5103219.00667133IPR001471AP2/ERF domain
SMARTSM003802.0E-2467139IPR001471AP2/ERF domain
Gene3DG3DSA:3.30.730.108.2E-1567133IPR001471AP2/ERF domain
PRINTSPR003676.1E-56879IPR001471AP2/ERF domain
CDDcd000187.41E-25168229No hitNo description
SuperFamilySSF541718.5E-18168228IPR016177DNA-binding domain
PfamPF008474.8E-12168219IPR001471AP2/ERF domain
SMARTSM003801.6E-26169233IPR001471AP2/ERF domain
PROSITE profilePS5103218.887169227IPR001471AP2/ERF domain
Gene3DG3DSA:3.30.730.104.4E-18169228IPR001471AP2/ERF domain
PRINTSPR003676.1E-5209229IPR001471AP2/ERF domain
Gene Ontology ? help Back to Top
GO Term GO Category GO Description
GO:0006355Biological Processregulation of transcription, DNA-templated
GO:0003677Molecular FunctionDNA binding
GO:0003700Molecular Functiontranscription factor activity, sequence-specific DNA binding
Sequence ? help Back to Top
Protein Sequence    Length: 388 aa     Download sequence    Send to blast
MAMMLENEMS LKKSQRSMEK FEVKGARSVK RQRREHVIAS KRGHDNHKQQ VGEIENSTIN  60
TIKRSSKFRG VSRHRWTGRY EAHLWDKHSW NITQKKKGKQ VYLGAYDEEE AAARAYDLAA  120
IKYWGTSTFT NFSISDYEKE VEIMNTMTKE EYLATLRRKS SGFSRGVSKY RGVARHHHNG  180
RWEARIGRVF GNKYLYLGTY STQEEAARAY DIAAIEYRGI HAVTNFELSS YIKWLKPEST  240
TETKHESKAL PQDSQKVASP NNSTLIQESK LLALKKSFFN SDYMNSNEKQ EPSIENKNYS  300
FLSNKSTSPT ALSLLLRSSL FRELLEKNSN VSEDHEVTKE QQQQHNTASD DEFGGIFYDG  360
FDNIQFDFDT NKCNIELQER DLYSIFCT
Functional Description ? help Back to Top
Source Description
UniProtMay be involved in the regulation of gene expression by stress factors and by components of stress signal transduction pathways (By similarity). Transcriptional activator involved in the activation of a subset of sugar-responsive genes and the control of carbon flow from sucrose import to oil accumulation in developing seeds. Binds to the GCC-box pathogenesis-related promoter element. Promotes sugar uptake and seed oil accumulation by glycolysis. Required for embryo development, seed germination and, indirectly, for seedling establishment. Negative regulator of the ABA-mediated germination inhibition. {ECO:0000250, ECO:0000269|PubMed:12084821, ECO:0000269|PubMed:15500472, ECO:0000269|PubMed:15753106, ECO:0000269|PubMed:16553903, ECO:0000269|PubMed:16632590, ECO:0000269|PubMed:9733529}.
Cis-element ? help Back to Top
SourceLink
PlantRegMapXP_004489178.1
Regulation -- Description ? help Back to Top
Source Description
UniProtINDUCTION: Transiantly in leaves by sucrose, but not by abscisic acid (ABA). {ECO:0000269|PubMed:15753106}.
Regulation -- PlantRegMap ? help Back to Top
Source Upstream Regulator Target Gene
PlantRegMapRetrieve-
Annotation -- Nucleotide ? help Back to Top
Source Hit ID E-value Description
GenBankAC1379941e-165AC137994.19 Medicago truncatula clone mth2-23f15, complete sequence.
Annotation -- Protein ? help Back to Top
Source Hit ID E-value Description
RefseqXP_004489178.10.0AP2-like ethylene-responsive transcription factor At1g16060
SwissprotQ6X5Y61e-88WRI1_ARATH; Ethylene-responsive transcription factor WRI1
TrEMBLA0A1S2XGW20.0A0A1S2XGW2_CICAR; AP2-like ethylene-responsive transcription factor At1g16060
STRINGXP_004489178.10.0(Cicer arietinum)
Orthologous Group ? help Back to Top
LineageOrthologous Group IDTaxa NumberGene Number
FabidsOGEF21983283
Best hit in Arabidopsis thaliana ? help Back to Top
Hit ID E-value Description
AT1G79700.22e-79AP2 family protein
Publications ? help Back to Top
  1. Kim HU, et al.
    Ectopic overexpression of castor bean LEAFY COTYLEDON2 (LEC2) in Arabidopsis triggers the expression of genes that encode regulators of seed maturation and oil body proteins in vegetative tissues.
    FEBS Open Bio, 2013. 4: p. 25-32
    [PMID:24363987]
  2. Wu XL,Liu ZH,Hu ZH,Huang RZ
    BnWRI1 coordinates fatty acid biosynthesis and photosynthesis pathways during oil accumulation in rapeseed.
    J Integr Plant Biol, 2014. 56(6): p. 582-93
    [PMID:24393360]
  3. Shigematsu H, et al.
    Structural characterization of the mechanosensitive channel candidate MCA2 from Arabidopsis thaliana.
    PLoS ONE, 2014. 9(1): p. e87724
    [PMID:24475319]
  4. Kim HU, et al.
    Senescence-inducible LEC2 enhances triacylglycerol accumulation in leaves without negatively affecting plant growth.
    Plant Biotechnol. J., 2015. 13(9): p. 1346-59
    [PMID:25790072]
  5. Grimberg Å,Carlsson AS,Marttila S,Bhalerao R,Hofvander P
    Transcriptional transitions in Nicotiana benthamiana leaves upon induction of oil synthesis by WRINKLED1 homologs from diverse species and tissues.
    BMC Plant Biol., 2015. 15: p. 192
    [PMID:26253704]
  6. Kanai M,Mano S,Kondo M,Hayashi M,Nishimura M
    Extension of oil biosynthesis during the mid-phase of seed development enhances oil content in Arabidopsis seeds.
    Plant Biotechnol. J., 2016. 14(5): p. 1241-50
    [PMID:26503031]
  7. Li Q, et al.
    Wrinkled1 Accelerates Flowering and Regulates Lipid Homeostasis between Oil Accumulation and Membrane Lipid Anabolism in Brassica napus.
    Front Plant Sci, 2015. 6: p. 1015
    [PMID:26635841]
  8. Hofvander P, et al.
    Potato tuber expression of Arabidopsis WRINKLED1 increase triacylglycerol and membrane lipids while affecting central carbohydrate metabolism.
    Plant Biotechnol. J., 2016. 14(9): p. 1883-98
    [PMID:26914183]
  9. Shen SL, et al.
    CitAP2.10 activation of the terpene synthase CsTPS1 is associated with the synthesis of (+)-valencene in 'Newhall' orange.
    J. Exp. Bot., 2016. 67(14): p. 4105-15
    [PMID:27194737]
  10. Adhikari ND,Bates PD,Browse J
    WRINKLED1 Rescues Feedback Inhibition of Fatty Acid Synthesis in Hydroxylase-Expressing Seeds.
    Plant Physiol., 2016. 171(1): p. 179-91
    [PMID:27208047]
  11. Kim MJ,Jang IC,Chua NH
    The Mediator Complex MED15 Subunit Mediates Activation of Downstream Lipid-Related Genes by the WRINKLED1 Transcription Factor.
    Plant Physiol., 2016. 171(3): p. 1951-64
    [PMID:27246098]
  12. Bhattacharya S,Das N,Maiti MK
    Cumulative effect of heterologous AtWRI1 gene expression and endogenous BjAGPase gene silencing increases seed lipid content in Indian mustard Brassica juncea.
    Plant Physiol. Biochem., 2016. 107: p. 204-213
    [PMID:27314514]
  13. Ma W, et al.
    14-3-3 protein mediates plant seed oil biosynthesis through interaction with AtWRI1.
    Plant J., 2016. 88(2): p. 228-235
    [PMID:27322486]
  14. Li D, et al.
    MYB89 Transcription Factor Represses Seed Oil Accumulation.
    Plant Physiol., 2017. 173(2): p. 1211-1225
    [PMID:27932421]
  15. Ivarson E, et al.
    Effects of Overexpression of WRI1 and Hemoglobin Genes on the Seed Oil Content of Lepidium campestre.
    Front Plant Sci, 2016. 7: p. 2032
    [PMID:28119714]
  16. An D, et al.
    Expression of Camelina WRINKLED1 Isoforms Rescue the Seed Phenotype of the Arabidopsis wri1 Mutant and Increase the Triacylglycerol Content in Tobacco Leaves.
    Front Plant Sci, 2017. 8: p. 34
    [PMID:28174580]
  17. Zhai Z,Liu H,Shanklin J
    Phosphorylation of WRINKLED1 by KIN10 Results in Its Proteasomal Degradation, Providing a Link between Energy Homeostasis and Lipid Biosynthesis.
    Plant Cell, 2017. 29(4): p. 871-889
    [PMID:28314829]
  18. Jin J, et al.
    Transcriptome and functional analysis reveals hybrid vigor for oil biosynthesis in oil palm.
    Sci Rep, 2017. 7(1): p. 439
    [PMID:28348403]
  19. Kong Q, et al.
    The Arabidopsis WRINKLED1 transcription factor affects auxin homeostasis in roots.
    J. Exp. Bot., 2017. 68(16): p. 4627-4634
    [PMID:28981783]
  20. Kang NK, et al.
    Increased lipid production by heterologous expression of AtWRI1 transcription factor in Nannochloropsis salina.
    Biotechnol Biofuels, 2017. 10: p. 231
    [PMID:29046718]
  21. Pellaud S, et al.
    WRINKLED1 and ACYL-COA:DIACYLGLYCEROL ACYLTRANSFERASE1 regulate tocochromanol metabolism in Arabidopsis.
    New Phytol., 2018. 217(1): p. 245-260
    [PMID:29105089]
  22. Hanano A,Almousally I,Shaban M,Murphy DJ
    Arabidopsis plants exposed to dioxin result in a WRINKLED seed phenotype due to 20S proteasomal degradation of WRI1.
    J. Exp. Bot., 2018. 69(7): p. 1781-1794
    [PMID:29394403]