PlantTFDB
PlantRegMap/PlantTFDB v5.0
Plant Transcription Factor Database
Transcription Factor Information
Basic Information | Signature Domain | Sequence | 
Basic Information? help Back to Top
TF ID CA04g00520
Organism
Taxonomic ID
Taxonomic Lineage
cellular organisms; Eukaryota; Viridiplantae; Streptophyta; Streptophytina; Embryophyta; Tracheophyta; Euphyllophyta; Spermatophyta; Magnoliophyta; Mesangiospermae; eudicotyledons; Gunneridae; Pentapetalae; asterids; lamiids; Solanales; Solanaceae; Solanoideae; Capsiceae; Capsicum
Family ERF
Protein Properties Length: 212aa    MW: 24262.1 Da    PI: 6.8816
Description ERF family protein
Gene Model
Gene Model ID Type Source Coding Sequence
CA04g00520genomePEPView CDS
Signature Domain? help Back to Top
Signature Domain
No. Domain Score E-value Start End HMM Start HMM End
1AP259.57.9e-1965115255
         AP2   2 gykGVrwdkkrgrWvAeIrdpsengkrkrfslgkfgtaeeAakaaiaarkkleg 55 
                  y+GVr+++ +g+++AeIrd + ng   r++lg+f++aeeAa a+++a+  ++g
  CA04g00520  65 SYRGVRRRP-WGKFAAEIRDSTRNG--IRVWLGTFDSAEEAALAYDQAAFLMRG 115
                 69*******.**********44465..**********************99998 PP

Protein Features ? help Back to Top
3D Structure
Database Entry ID E-value Start End InterPro ID Description
CDDcd000183.28E-3064122No hitNo description
PfamPF008472.7E-1365115IPR001471AP2/ERF domain
PROSITE profilePS5103222.61665123IPR001471AP2/ERF domain
Gene3DG3DSA:3.30.730.106.6E-3065123IPR001471AP2/ERF domain
SuperFamilySSF541711.96E-2265124IPR016177DNA-binding domain
SMARTSM003801.1E-3665129IPR001471AP2/ERF domain
PRINTSPR003671.3E-106677IPR001471AP2/ERF domain
PRINTSPR003671.3E-1089105IPR001471AP2/ERF domain
Gene Ontology ? help Back to Top
GO Term GO Category GO Description
GO:0006355Biological Processregulation of transcription, DNA-templated
GO:0006952Biological Processdefense response
GO:0009873Biological Processethylene-activated signaling pathway
GO:0003677Molecular FunctionDNA binding
GO:0003700Molecular Functiontranscription factor activity, sequence-specific DNA binding
Sequence ? help Back to Top
Protein Sequence    Length: 212 aa     Download sequence    Send to blast
MDFEFEFHKH NHNYNLNFNT SSLPFNINDS NEMFLYDLLQ AQADTGTSTN RAPMAEPKPS  60
SKAKSYRGVR RRPWGKFAAE IRDSTRNGIR VWLGTFDSAE EAALAYDQAA FLMRGTRAIL  120
NFSVERVVES LHEMKCHVEE GCSPVVALKK RHSLRKRKLN KKNCNVIKDE TNYVTNVVVF  180
EDLGVDYLEQ LLSSNDHSST SNDYQELWSN E*
3D Structure ? help Back to Top
Structure
PDB ID Evalue Query Start Query End Hit Start Hit End Description
2gcc_A3e-2961122162ATERF1
3gcc_A3e-2961122162ATERF1
Search in ModeBase
Nucleic Localization Signal ? help Back to Top
NLS
No. Start End Sequence
1153158LRKRKL
Functional Description ? help Back to Top
Source Description
UniProtActs as a transcriptional activator. Binds to the GCC-box pathogenesis-related promoter element. Involved in the regulation of gene expression during the plant development, and/or mediated by stress factors and by components of stress signal transduction pathways. Seems to be a key integrator of ethylene and jasmonate signals in the regulation of ethylene/jasmonate-dependent defenses. Can mediate resistance to necrotizing fungi (Botrytis cinerea and Plectosphaerella cucumerina) and to soil borne fungi (Fusarium oxysporum conglutinans and Fusiarium oxysporum lycopersici), but probably not to necrotizing bacteria (Pseudomonas syringae tomato). {ECO:0000269|PubMed:11950980, ECO:0000269|PubMed:12060224, ECO:0000269|PubMed:12509529, ECO:0000269|PubMed:15242170, ECO:0000269|PubMed:9851977}.
Binding Motif ? help Back to Top
Motif ID Method Source Motif file
MP00374DAPTransfer from AT3G23240Download
Motif logo
Regulation -- Description ? help Back to Top
Source Description
UniProtINDUCTION: Induced by Pseudomonas syringae tomato (both virulent and avirulent avrRpt2 strains), independently of PAD4. Ethylene induction is completely dependent on functional ETHYLENE-INSENSITIVE2 (EIN2), ETHYLENE-INSENSITIVE3 (EIN3), which is itself a transcription factor and CORONATIVE-INSENSITIVE1 (COI1) proteins. Induction by jasmonate, B.cinerea or F.oxysporum as well as the synergistic induction by ethylene and jasmonate requires EIN2 and COI1. Induction by methyl jasmonate (MeJA) is independent of JAR1. Induction by salicylic acid (SA) is dependent on NPR1 but not on PAD4. Seems not to be induced by Alternaria brassicicola. {ECO:0000269|PubMed:11950980, ECO:0000269|PubMed:12060224, ECO:0000269|PubMed:12509529, ECO:0000269|PubMed:12805630, ECO:0000269|PubMed:15242170, ECO:0000269|PubMed:9851977}.
Annotation -- Protein ? help Back to Top
Source Hit ID E-value Description
RefseqXP_016571789.11e-159PREDICTED: ethylene-responsive transcription factor 1B-like
SwissprotQ8LDC82e-72ERF92_ARATH; Ethylene-responsive transcription factor 1B
TrEMBLA0A1U8GUI71e-158A0A1U8GUI7_CAPAN; ethylene-responsive transcription factor 1B-like
STRINGPGSC0003DMT4000348731e-110(Solanum tuberosum)
Orthologous Group ? help Back to Top
LineageOrthologous Group IDTaxa NumberGene Number
AsteridsOGEA21241165
Best hit in Arabidopsis thaliana ? help Back to Top
Hit ID E-value Description
AT3G23240.11e-53ethylene response factor 1
Publications ? help Back to Top
  1. Zarate SI,Kempema LA,Walling LL
    Silverleaf whitefly induces salicylic acid defenses and suppresses effectual jasmonic acid defenses.
    Plant Physiol., 2007. 143(2): p. 866-75
    [PMID:17189328]
  2. Vahabi K,Camehl I,Sherameti I,Oelmüller R
    Growth of Arabidopsis seedlings on high fungal doses of Piriformospora indica has little effect on plant performance, stress, and defense gene expression in spite of elevated jasmonic acid and jasmonic acid-isoleucine levels in the roots.
    Plant Signal Behav, 2013. 8(11): p. e26301
    [PMID:24047645]
  3. Kim HG, et al.
    GDSL LIPASE1 modulates plant immunity through feedback regulation of ethylene signaling.
    Plant Physiol., 2013. 163(4): p. 1776-91
    [PMID:24170202]
  4. Li J,Jia H,Wang J
    cGMP and ethylene are involved in maintaining ion homeostasis under salt stress in Arabidopsis roots.
    Plant Cell Rep., 2014. 33(3): p. 447-59
    [PMID:24306353]
  5. Zhong S, et al.
    Ethylene-orchestrated circuitry coordinates a seedling's response to soil cover and etiolated growth.
    Proc. Natl. Acad. Sci. U.S.A., 2014. 111(11): p. 3913-20
    [PMID:24599595]
  6. Kim HG, et al.
    GDSL lipase 1 regulates ethylene signaling and ethylene-associated systemic immunity in Arabidopsis.
    FEBS Lett., 2014. 588(9): p. 1652-8
    [PMID:24631536]
  7. Schellingen K, et al.
    Cadmium-induced ethylene production and responses in Arabidopsis thaliana rely on ACS2 and ACS6 gene expression.
    BMC Plant Biol., 2014. 14: p. 214
    [PMID:25082369]
  8. Ellouzi H, et al.
    A comparative study of the early osmotic, ionic, redox and hormonal signaling response in leaves and roots of two halophytes and a glycophyte to salinity.
    Planta, 2014. 240(6): p. 1299-317
    [PMID:25156490]
  9. Nguyen AH, et al.
    Loss of Arabidopsis 5'-3' Exoribonuclease AtXRN4 Function Enhances Heat Stress Tolerance of Plants Subjected to Severe Heat Stress.
    Plant Cell Physiol., 2015. 56(9): p. 1762-72
    [PMID:26136597]
  10. Cheng MC,Kuo WC,Wang YM,Chen HY,Lin TP
    UBC18 mediates ERF1 degradation under light-dark cycles.
    New Phytol., 2017. 213(3): p. 1156-1167
    [PMID:27787902]
  11. Timmermann T, et al.
    Paraburkholderia phytofirmans PsJN Protects Arabidopsis thaliana Against a Virulent Strain of Pseudomonas syringae Through the Activation of Induced Resistance.
    Mol. Plant Microbe Interact., 2017. 30(3): p. 215-230
    [PMID:28118091]
  12. Yu Y,Huang R
    Integration of Ethylene and Light Signaling Affects Hypocotyl Growth in Arabidopsis.
    Front Plant Sci, 2017. 8: p. 57
    [PMID:28174592]
  13. Lestari R, et al.
    Overexpression of Hevea brasiliensis ethylene response factor HbERF-IXc5 enhances growth and tolerance to abiotic stress and affects laticifer differentiation.
    Plant Biotechnol. J., 2018. 16(1): p. 322-336
    [PMID:28626940]
  14. Dinolfo MI,Castañares E,Stenglein SA
    Resistance of Fusarium poae in Arabidopsis leaves requires mainly functional JA and ET signaling pathways.
    Fungal Biol, 2017. 121(10): p. 841-848
    [PMID:28889908]